HZB Facility Talk

Thorsten Kamps

Helmholtz-Zentrum Berlin and Humboldt-Universität zu Berlin

HGF MT ARD ST3

ST3 Annual Meeting, Dresden, 05. to 07.07.2023

Today

- Our facilites for proton therapy,
- Walk you through Bessy II, its upgrade path and Bessy III,
- Take you to SEALAB: Accelerator R&D for ultrafast scattering applications
- Conclude and open some points for the transition from PoF IV to PoF V

Disclaimer

- Stay tuned for the presentation by Arnold Kruschinski on Steady State Microbunching and related activities at the Metrology Light Source, Thursday afternoon
- Will leave out activities related to Superconducting Radio-Frequency (SRF) developments like VSR Demo, check ARD-ST1
- Would like to thank all my colleagues at HZB and elsewhere to help with material for this presentation.

05.07.2023

05.07.2023

Protons for eye tumor therapy and accelerator R&D

A. Denker, et al. IPAC 2023 – THPM129 G. Kourkafas, et al. IPAC 2023 - THPM065 A. Rousseti, et al., IPAC 2ß23 – THPL043

05.07.2023

05.07.2023

Two radiation sources – UV and Soft X-Rays for materials discovery

accelerators to provide unique research opportunities

Our synchrotron radiation source Bessy II

Bessy II, a soft X-ray light source with 36 beamlines (13 undulators, 2 wave length shifters), setup from 1992 to 1998, in user operation since 1999. Constantly evolving.

Complex fill pattern supporting imaging, spectroscopy and timing experiments: low- α mode for ps beams serving CSR and THz, femto slicing for 100 fs beams for pump probe applications

HZB :: BESSY II Light Source

05.07.2023

A. Jankowiak, M. Ries, A. Schälicke

One center, two campuses and many accelerators

In operando?

Courtesy Karena W. Chapman

IUPAC Project 2021-009-2-500 : to clarify Latin terms used to describe the characterization of materials made under non-ambient conditions, materials within systems, and of materials during change

05.07.2023

Ultrafast processes need pump/probe strategies

Use a pulsed source (synchrotron with timing modes, UED, XFEL) to probe a system at defined intervals after a reaction is initiated

05.07.2023

Courtesy

Developing SEALAB towards a multi-science facility

TK et al., arXiv:1910.00881v2 [physics.acc-ph] 8 Jan 2020
J.-G. Hwang et al., J. Korean Phys. Soc. 77, 337–343 (2020).
TK et al., IPAC 2023

05.07.2023

Status of the SRF photoinjector of SEALAB

05.07.2023

Ultrafast scattering modalities with the SRF photoinjector of SEALAB

Capabilities of the photoinjector:

1 to 3.5 MeV beam energy with **variable** bunch charge (1 fC to 100 pC), pulse length (10 fs to 6 ps) and spot size (10 to 100s μm), **high stability at MHz repetition rate.**

Very **flexible accelerator/lens system**: one gun cavity and three booster cavities, many quadrupoles, done optimization for bunching/diffraction/imaging schemes, **Ultrafast science drivers: fs thermometer for the lattice** – study of functional materials, solar cells, ... Later protein imaging

Complementary to SR and FEL light sources. Enabling **multi-modal capabilities** for the integrated research facility Bessy II/III.

Ultrafast scattering modalities with the SRF photoinjector of SEALAB

B. Alberdi-Esuain, J.G. Hwang, et al., Sci. Rep. (2022) 12:13365 B. Alberdi-Eusain, IPAC 2023 – TUPL124 and PAHBB 2023

Bunch compression and arrival time jitter studies

Trade-off between bunch length and jitter i mproves with number of cavities

B. Alberdi-Esuain, J.G. Hwang, et al., Sci. Rep. (2022) 12:13365 B. Alberdi-Eusain, IPAC 2023 – TUPL124 and PAHBB 2023

Tackle the main inefficiencies from grid to dump for SRF accelerators

8 GeV LINAC new construction

J. d'Hondt, J. Knobloch, A. Neumann

One center, two campuses and many accelerators

Summary

HZB operates and develops large scale user facilities - synchrotron radiation sources, proton therapy - and accelerator R&D Infrastructures like SEALAB

We advance **fundamental and applied accelerator science and forefront technologies** for the continuous improvement of these facilities and to develop state-of the-art accelerator concepts and novel disruptive methods and paradigms to provide perfect experimental opportunities for HZB's present and future users/partners.

Our strategy is to maintain Bessy II at the forefront by an ambitious R&D program (Bessy II+), which is strongly linked to our new facility Bessy III.

ARD is crucial to our success, especially here in ST3 where we look at ultra-short pulse generation and diagnostics with SRF photoinjectors, innovative schemes for storage ring based FELs (SSMB) and proton therapy modalities \rightarrow control of the complete 6D phase space for every bunch to enable innovative modalities for FEL, SR and ultrafast applications. Energy-efficiency stability and reliability during all phases of the accelerator lifecycle.

