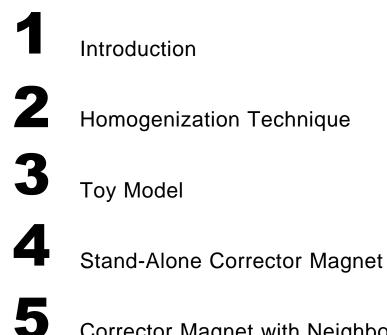

FINITE ELEMENT SIMULATION OF FAST CORRECTOR MAGNETS FOR PETRA IV

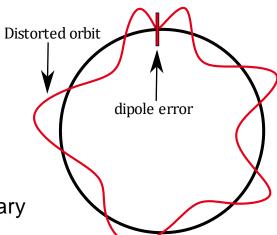
Jan-Magnus Christmann¹, Moritz von Tresckow¹, Herbert De Gersem¹, Alexander Aloev², Sajjad H. Mirza², Sven Pfeiffer², and Holger Schlarb²

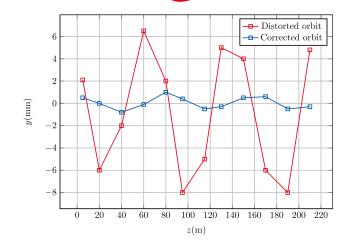
¹TEMF, TU Darmstadt, Germany


²DESY, Hamburg, Germany

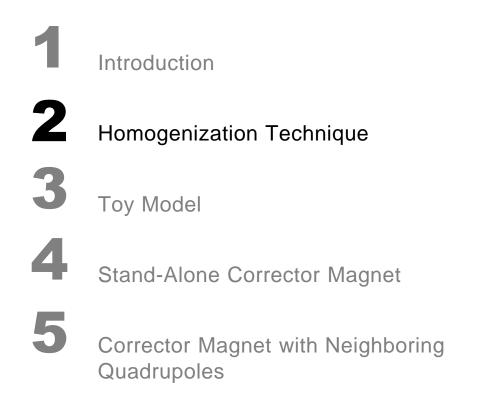
PETRA IV Conceptual Design Report

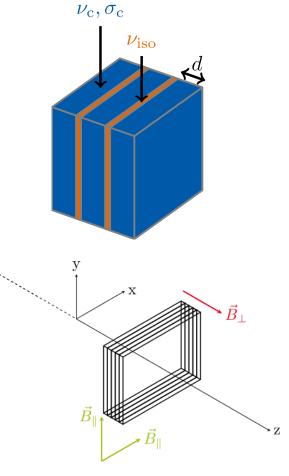
Dept. of Electrical Engineering and Information Technology | TEMF | Jan-Magnus Christmann

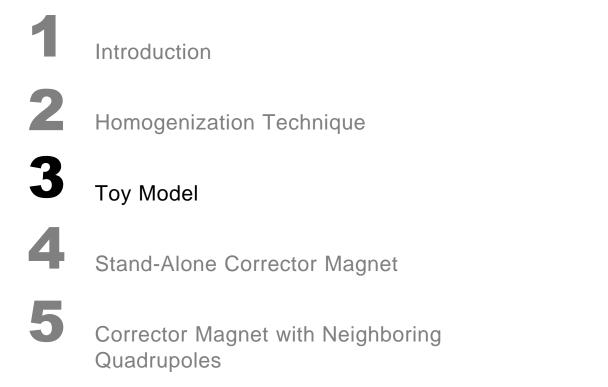

Corrector Magnet with Neighboring Quadrupoles



INTRODUCTION

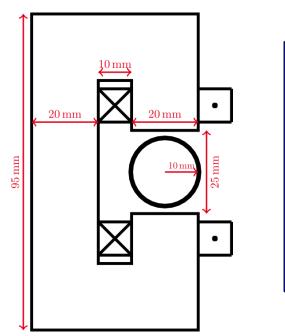

- Circular accelerators need dipole magnets to correct orbit distortions
- **PETRA IV**: ultra-low emittance synchrotron radiation source
- → fast orbit feedback system, corrector magnets with frequencies in kHz range necessary
- Strong eddy currents → power losses, time delay, and field distortion
- Simulation challenging due to small skin depths and laminated yoke
- → Need for technique to simplify simulations

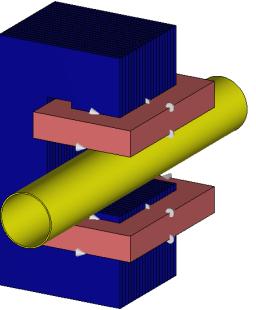




HOMOGENIZATION TECHNIQUE

- Magnetoquasistatic PDE: $\nabla \times (\nu(\vec{r}) \nabla \times \underline{\vec{A}}(\vec{r})) + j\omega\sigma(\vec{r})\underline{\vec{A}}(\vec{r}) = \underline{\vec{J}}_{s}(\vec{r})$
- Replace reluctivity $\nu(\vec{r})$ and conductivity $\sigma(\vec{r})$ in the laminated yoke with spatially constant tensors

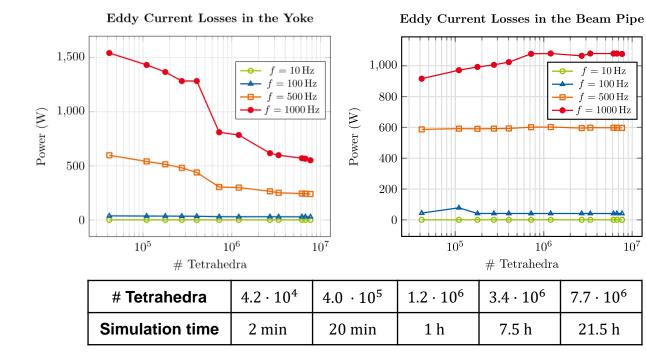




TECHNISCHE UNIVERSITÄT DARMSTADT

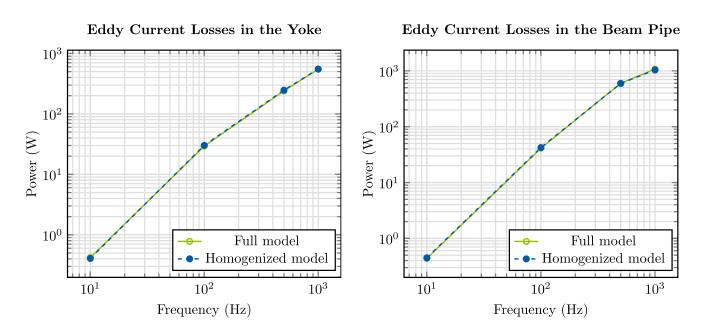
MODEL DESCRIPTION

- Iron yoke: length = 40 mm, lamination thickness = 1.83 mm
- **Copper beam pipe:** thickness = 0.5 mm, length = 140 mm
- **Coils**: current = 10 A (peak), # turns = 250
- Frequency domain simulation via CST Studio Suite[®]



TOY MODEL

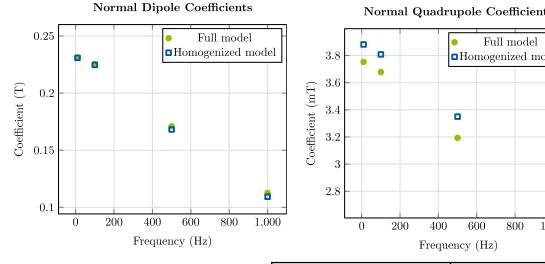
SIMULATION OF THE FULL MODEL



- Strong mesh dependence of power losses at higher frequencies
 - → Obtaining reliable results is difficult
 - ➔ Need for simplified model

TOY MODEL

HOMOGENIZED VS. FULL MODEL

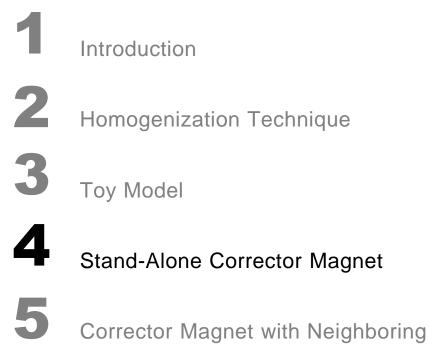


- Good approximation of losses in yoke & beam pipe (max. relative error 4 %)
- Simulation time reduced from several hours to 4 min

TOY MODEL

HOMOGENIZED VS. FULL MODEL

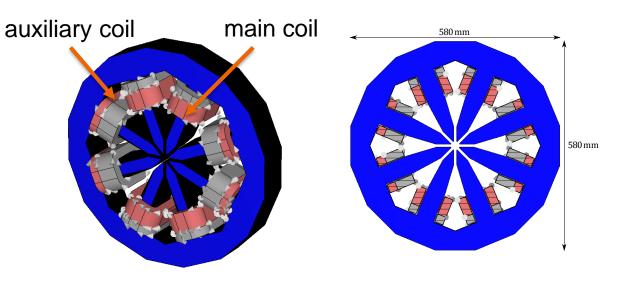
nal Quadrupole Coefficients	Normal Sextupole Coefficients
• Full model • Homogenized model	20 Full model
•	Coefficient (m) 16
•	
•	10
200 400 600 800 1,000	0 200 400 600 800 1,000
Frequency (Hz)	Frequency (Hz)


				→ Aperture
				represented
			- -	
400	600	800	1,000	
Freque	ncy (Hz))		

nomogenization technique	
yields accurate approximation	۱
of multipole coefficients	
Aperture field accurately	
represented	

Homogonization toobnique

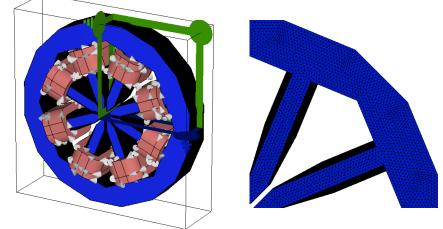
Multipole coefficient	Average rel. error
Dipole	1 %
Quadrupole	5 %
Sextupole	2 %

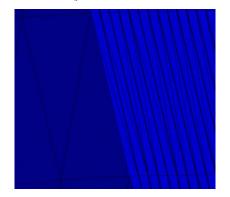

6 Conclusion/Outlook

Corrector Magn
 Quadrupoles

MODEL DESCRIPTION

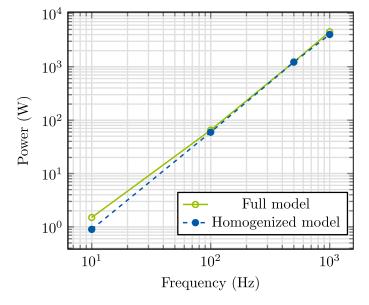
- Dipole corrector with octupole-like design
- Coils:
 - 4 main coils: current = 27.4 A (peak), # turns = 53
 - 4 auxiliary coils: current = 27.4 A (peak), # turns = 22
- Iron yoke:
 - Diameter = 580 mm, length = 90 mm
 - Lamination thickness = 0.5 mm
- At first **no beam pipe**




Design by A. Aloev (DESY), inspired by APS

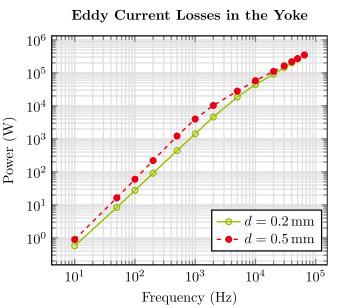
SIMULATION OF THE FULL MODEL

- Frequency domain simulation via CST Studio Suite[®]
- Three symmetry planes, test frequencies f = 10 Hz, 100 Hz, 500 Hz, 1 kHz
- Long simulation times even for relatively coarse meshes
- Finest mesh: # tetrahedra = $2.3 \cdot 10^6$ **→** simulation time = 26 h
- Skin depth cannot be resolved → power loss still mesh-dependent



HOMOGENIZED VS. FULL MODEL

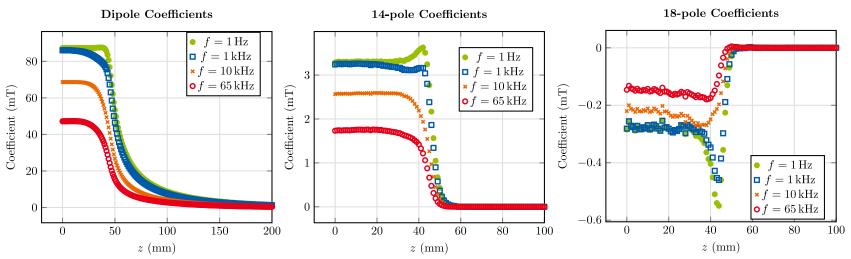
Eddy Current Losses in the Yoke


Multipole coefficient	Average rel. deviation
Dipole	1 %
14-pole	1 %
18-pole	3 %

Keep in mind: Power losses in full model are still mesh-dependent !

- Similar power losses
- Good agreement in multipole coefficients
- Simulation time reduces from 26 h to 5 min
- → Homogenized model can be used for further studies

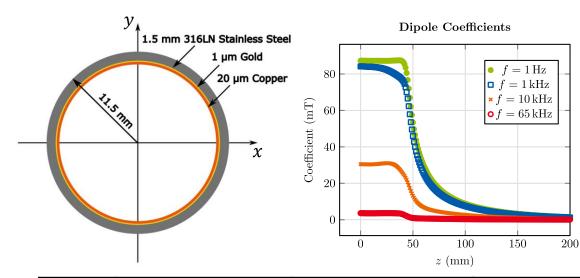
LOSSES FOR DIFFERENT LAMINATION THICKNESSES


f(U-)	Eddy current losses (W)				
f(Hz)	d = 0.2 mm	d = 0.3 mm	d = 0.4 mm	d = 0.5 mm	
10	$5.8 \cdot 10^{-1}$	$6.5 \cdot 10^{-1}$	$7.6 \cdot 10^{-1}$	$9.0 \cdot 10^{-1}$	
100	$2.8\cdot10^{1}$	$3.4\cdot10^{1}$	$4.6\cdot10^{1}$	$6.0\cdot10^{1}$	
500	$4.4\cdot10^2$	$6.2 \cdot 10^{2}$	$9.0\cdot10^2$	$1.2 \cdot 10^{3}$	
1000	$1.4\cdot 10^3$	$2.1 \cdot 10^{3}$	$3.1\cdot10^3$	$4.0 \cdot 10^{3}$	
10000	$4.4\cdot 10^4$	$4.9\cdot 10^4$	$5.5\cdot 10^4$	$5.8\cdot10^4$	
30000	$1.4\cdot 10^5$	$1.6\cdot 10^5$	$1.6\cdot 10^5$	$1.6 \cdot 10^{5}$	
65000	$3.5\cdot10^5$	3.6 · 10 ⁵	$3.6 \cdot 10^{5}$	$3.5 \cdot 10^{5}$	

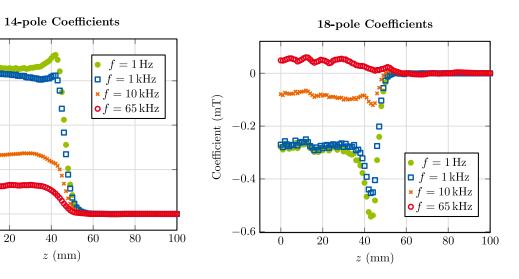
Simulation uses the same current for all frequencies ! Use homogenization to investigate losses up to 65 kHz

- Vary d = 0.2 0.5 mm, keep $\gamma \approx 0.91$ constant
- At low frequencies, the lamination thickness has strong influence on the losses
- At very high frequencies, the lamination thickness has no influence on the losses

LONGITUDINAL MULTIPOLE DISTRIBUTION


f (Hz)	Int. dipole (mT m)	Int. 14-pole (µT m)	Int. 18-pole (µT m)
1	11.6	316.4	-30.3
1000	10.7	300.4	-28.6
10000	7.6	229.0	-21.5
65000	5.0	150.3	-13.9

- Updated # turns & current:
- → Main coils: 65 turns, 15 A
- → Aux. coils: 27 turns, 15 A
- 65 kHz vs. 1 Hz:
 →Int. dipoles: -57 %
 →Int. 14-poles: -52 %
 →Int. 18-poles: -54 %


Dept. of Electrical Engineering and Information Technology | TEMF | Jan-Magnus Christmann

INCLUSION OF BEAM PIPE

f (Hz)	Int. dipole (mT m)	Int. 14-pole (µT m)	Int. 18-pole (µT m)
1	11.5	313.3	-30.6
1000	10.5	292.7	-28.1
10000	3.6	122.6	-8.3
65000	0.4	57.4	4.3

- General shape similar to model without beam pipe ٠
- 65 kHz vs. 1 Hz: •

.

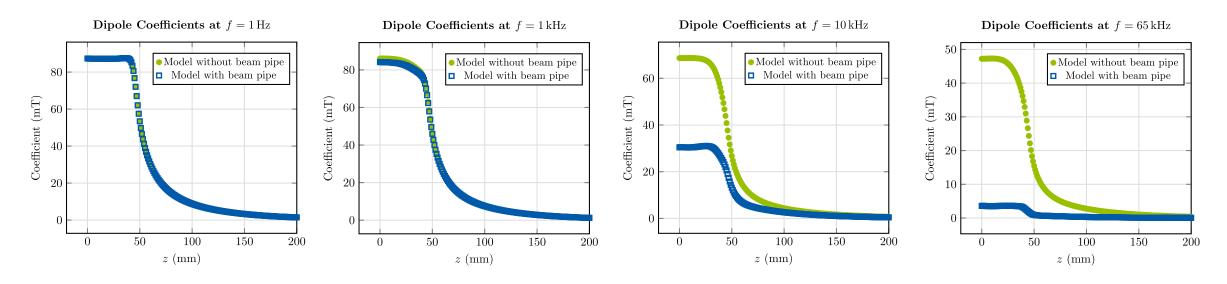
40

20

- →Int. dipoles: -97% (-57%)
- →Int. 14-poles: -82 % (-52 %)
- \rightarrow Int. 18-poles change sign (-54 %)

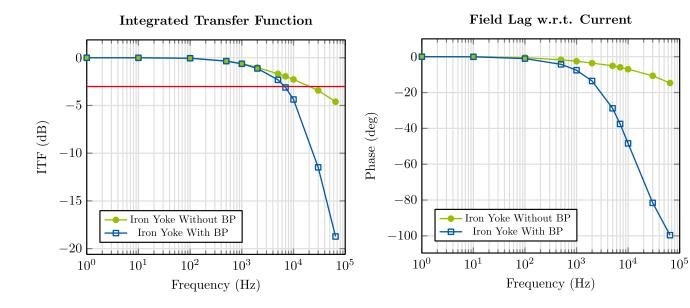
3

2


0

0

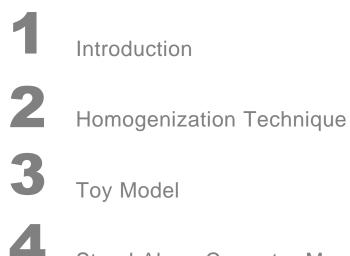
Coefficient (mT)


INCLUSION OF BEAM PIPE

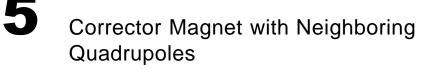
- Up to $f \approx 1 \text{ kHz}$: Only minor differences between the two models
- For f >> 1 kHz: Strong attenuation of dipole field due to eddy currents in beam pipe
- At higher frequencies, beam pipe leads to greater effective length of the magnet

INTEGRATED TRANSFER FUNCTION AND FIELD LAG

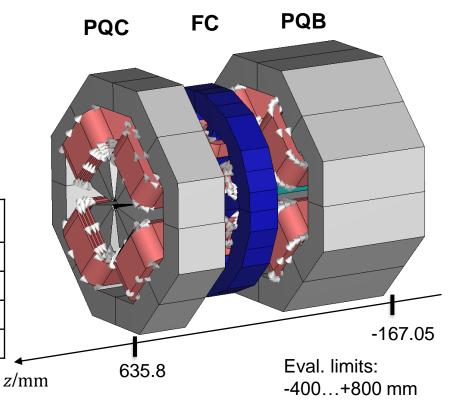
• Beam pipe is made out of 316 LN SS ($\sigma = 1.351 \cdot 10^6$, $\mu_r = 1.01$) and has an outer radius of 11 mm and a thickness of 1 mm


ITF(f) =	$\int_{l} B_1(z,f) \mathrm{d}z$
III ()) =	$\int_{I} B_1(z, f = 1 \text{Hz}) \mathrm{d}z$

Yoke material	3 dB bandwidth	Phase shift at bandwidth
Iron	7 kHz	38°
M-19 Steel	10 kHz	46°
1010 Steel	7 kHz	38°


Yoke material	Average relative permeability*	Conductivity (MS/m)
Iron	5690	10.4
M-19 Steel	4166	1.9
1010 Steel	2780	6.993

* Values are computed from results of static simulations with non-linear BH-curve

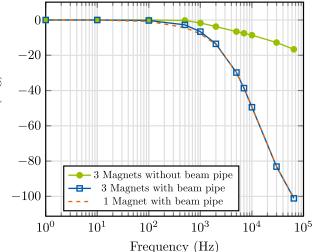


MODEL DESCRIPTION

- Corrector magnet (FC) with two neighboring quadrupole magnets (PQB & PQC)
- AC currents in corrector coils, DC currents in quadrupole coils
- All yokes are 1010 steel, PQB quadrupoles have Vacoflux-50 poles
- Quadrupole yokes are solid, corrector yoke is laminated
- Beam pipe made out of 316LN SS with outer radius of 11 mm and thickness of 1 mm
- Distance between corrector yoke and quadrupole yokes $\sim 11.5 \text{ cm}$

Material	Average Relative Permeability*	Conductivity (MS/m)	Coils	Ampere turns
1010 Steel (PQC)	1450	6.993	PQB	5728.1 At
1010 Steel (PQB)	1810	6.993	FC (main)	975 At
Vacoflux-50 (PQB)	5000	2.38	FC (aux.)	405 At
1010 Steel (FC)	2780	6.993	PQC	5659.5 At

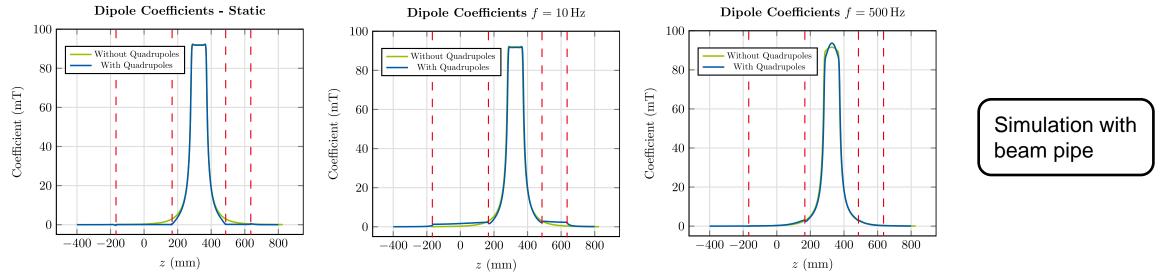
* Values are computed from results of static simulations with non-linear BH-curve



INTEGRATED TRANSFER FUNCTION AND FIELD LAG

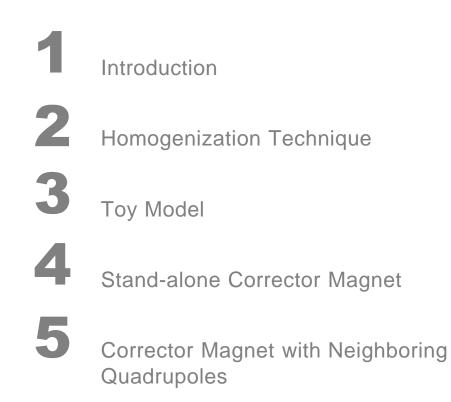
Integrated Transfer Function -20-5Phase (deg) ITF (dB) -40-60-15-80**B** 3 Magnets with beam pipe -1001 Magnet with beam pipe -20 10^{3} 10^{0} 10^{2} 10^{4} 10^{1} 10^{5} Frequency (Hz)

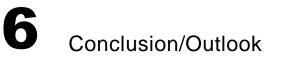
Field Lag w.r.t. Current



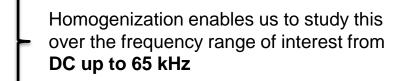
	Model without beam pipe	Model with beam pipe
3 dB bandwidth	20 kHz	7 kHz
Phase shift at bandwidth	11°	39°

- Very similar results as for the model without neighboring quadrupoles
- Main difference: at low frequencies, a ~0.5 dB peak is occurring in the ITF of the model with the neighboring quadrupoles




DIPOLE COEFFICIENTS ALONG THE AXIS

- At low frequencies ($f \le 100 \text{ Hz}$), we observe a parasitic dipole component inside the quadrupole magnets
- This dipole component is due to eddy currents induced in the quadrupole yokes by the AC corrector field
- → Peak in ITF at low frequencies
- \rightarrow Shift of the center of mass (~ 0.5 cm at most)



CONCLUSION/OUTLOOK

Validation of homogenization technique using toy model

- → Good approximation of multipoles and power losses
- → Simulation time reduced from several hours to a few minutes
- Application to corrector magnet model
 - Power losses for different lamination thicknesses
 - Longitudinal multipole distributions
 - Integrated transfer function and field lag
 - Cross-talk with neighboring magnets
- Ongoing investigations:
 - Simulations with different variations of the beam pipe and cooling channels
 - Approximate treatment of non-linear material properties

REFERENCES

REFERENCES

[1] PETRA IV Conceptual Design Report.

[2] K. Wille, *Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen*. Stuttgart, Germany: Teubner, 1992.

[3] P. Dular et al., "A 3-D Magnetic Vector Potential Formulation Taking Eddy Currents in Lamination Stacks Into Account," *IEEE Trans. Magn.*, vol. 39, no. 3, pp. 1424-1427, May 2003.

[4] L. Krähenbühl et al., "Homogenization of Lamination Stacks in Linear Magnetodynamics," *IEEE Trans. Magn.*, vol. 40, no. 2, pp. 912 - 915 Mar. 2004.

[5] H. De Gersem, S. Vanaverbeke, and G. Samaey, "Three-Dimensional-Two-Dimensional Coupled Model for Eddy Currents in Laminated Iron Cores," *IEEE. Trans. Magn.*, vol. 48, no. 2, pp.815 – 818, Feb. 2012.