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Temporal stability of time-resolved experiments

Time-resolved experiments rely on a tight synchronization between a
pump source, which is typically an optical laser, and a source that
generates the probes, i.e. the accelerator-based light source.
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m (a) and (b) show TELBE data under different levels of sync
m (b) is artificially distorted by a laser system on experimental side
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Bunch compression

RF cavity Magnetic chicane

m Besides compression, this technology delays or advances an electron
bunch w.r.t. some target position in a beamline

m Energy received by the bunch in the cavity defines the subsequent
path taken through the chicane

m This side-effect can be used to regulate the bunch arrival time




Required system components

According to the transfer maps of the RF cavity and magnetic chicane

eA

A = E—Ocosd), (1)
1

AT = *R56A5, (2)
v

m Energy change in (1) requires an actuator to modulate the RF field
amplitude A and phase ¢

m Arrival time 7 in (2) needs to be diagnosed by a sensor
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The actuator: low-level
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Parameter Value
SRF cavity bandwidth 100 Hz
LLRF bandwidth 35 kHz
LLRF gain margin 12dB




The sensor: bunch arrival time monitor (BAM)
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THz beamline of the linear accelerator ELBE

Undulator
SRF gun Cryogenic modules Chicane  BAM D:l:l:l:l:‘ THz beam

OGO --J
]

e~ dump

LLRF Beam-based regulator

m Electron bunches emitted by SRF gun with 50 kHz repetition rate
m Bunch charge of 225 pC enables BAM resolution of 4 fs rms

m The beamline operates in continuous-wave mode

m A single regulation stage is installed into the THz beamline
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Design of a proportional beam-based regulator

Bunch compressor

:e X LLE,W(; A Cs AS c. AT+O§

Then let disturbance d be a unit step
and let regulator K be an inverse of the bunch compressor plant, i.e.

K=vG,!, (4)
where
1 A 1

e
Gue =G GsWs = Rs - €080 oo (5)

and where ¥ is an additional gain to adjust the regulator performance.




Means for analytical performance evaluation

The final value theorem shows the final value of e(7), i.e. the error of a
closed-loop system, as r approaches infinity.

Final value theorem

Given the assumption that disturbance d is a unit step, the theorem is

1
o) =— 6
e() 1+ limL(s)’ (©)
s—0
But from (4)
}i—l;l(l)L(s) - }1—>m0 GBCK = GBCK = YGBCG;CI =7 (7)

SO
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Means for machine performance evaluation
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Then, e (o) can be redefined as
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Evaluation of proportional regulator

E Estimated ® Measured
_9l I
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Increasing y on the real machine, ie. K=[2 4 6 8 ]T,

m Does not reduce e (o) according to the analytical estimation in (8)

m Causes (9) to substantially deviate




Worst-case performance:
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strong oscillations

(a) Proportional regulator affects
all frequency range

(a) A pronounced plant oscillation
is triggered above 10 kHz

(b) This results in a large
integration step above 10 kHz

(b) Compared to a less aggressive
regulator, this step almost
completely negates the applied
regulation effort
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Optimal performance: moderate oscillations
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Conclusions on proportional case

Proportional regulator is a constant with no bandwidth defined, so

m |t becomes part of LLRF dynamics and shares its stability margins
m Increasing ¥ consumes the gain margin of LLRF

m This triggers unwanted plant oscillations in high-frequency range

Is it possible to improve this system and decouple from LLRF?
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Disturbance modeling parameters

Bandwidth

m The majority of noise resides below 1 kHz
m Decoupling from LLRF dynamics is important
m Select one order of magnitude less than LLRF, i.e. < 3.5kHz

Magnitude

Draw a parallel between the size of signal 7 expressed as (3) and
the H, norm of a system expressed as

61,2 | 5= [ I6G@)Pdo, (10)
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Filtered frequency content
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m G, filters theoretical white noise into the frequency content of Se
m G, is defined in terms of s-domain poles p and zeros z

m G, matches the frequency content up to 1.5 kHz

m > norm of G4 corresponds to o,
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‘H, regulation method

Ws d
Wks Ga
| l
—> K > Gpo —> t—»Ws—>’w5
+

T a + +l

O—T—_ G, |l«—n

m H, method tries to minimize the H> norm of a transfer function
fromdto T

m K is now a dynamical 4th-order H, regulator

m Due to decoupling, the plant G, is still a constant
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‘H, performance: time domain
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m Large slow fluctuations disappear, whereas small fast ones stay
m Natural outcome for a bandwidth-limited regulator
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‘H, performance: frequency domain
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Conclusion and thesis of this work

A single regulation stage, which is installed in a continuous-wave linear
accelerator and features a disturbance model-based beam-based
regulator, has a potential to outperform a commonly used proportional
regulator, without compromising the accelerator stability.
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Future work

m Regulation of high-frequency noise, i.e. above 3.5 kHz

m Regulation of electron bunch compression

m Elimination of slow drifts
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Thank you for your attention!
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Cascaded loops with regulator
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MTCA hardware environment
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Measuring beam response matrix

m Evaluation of (5) with machine parameters does not match reality

m So measure beam response matrix on the real machine
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RF field amplitude [MV]

m RF field amplitude setpoint A = 7.27 MV changed by steps of 50 kV




Beam-based feedback and cascaded loops

Bunch compressor

i SRF cavity Magnetic chicane
...... A¢
I ——
LLRF Beam-based regulator
RF loop Beam-based feedback loop

m Beam-based feedback introduces cascaded loops into the system
m RF becomes the inner loop, beam-based feedback - the outer loop

m Regulator uses the inner loop to regulate 7 by manipulating A

aalberg | Helmholtz-Zentrum D



Transfer maps of bunch compressor

Transfer map of RF cavity

Transfer map of magnetic chicane

z(s2) =z(s1) +Rs6 6 (51), (13)
O(s2)=01(s1), (14)




Proportional vs. H, in frequency domain
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