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Temporal stability of time-resolved experiments

Time-resolved experiments rely on a tight synchronization between a
pump source, which is typically an optical laser, and a source that
generates the probes, i.e. the accelerator-based light source.
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(a) and (b) show TELBE data under different levels of sync
(b) is artificially distorted by a laser system on experimental side
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Bunch compression

e−

Magnetic chicaneRF cavity

s0 s1

s12

s2

Besides compression, this technology delays or advances an electron
bunch w.r.t. some target position in a beamline

Energy received by the bunch in the cavity defines the subsequent
path taken through the chicane

This side-effect can be used to regulate the bunch arrival time

Page 5 Member of the Helmholtz Association
Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de



Required system components

According to the transfer maps of the RF cavity and magnetic chicane

∆δ =
eA
E0

cosφ , (1)

∆τ =
1
v

R56 ∆δ , (2)

Energy change in (1) requires an actuator to modulate the RF field
amplitude A and phase φ

Arrival time τ in (2) needs to be diagnosed by a sensor
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The actuator: low-level RF control system
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Parameter Value

SRF cavity bandwidth 100 Hz

LLRF bandwidth 35 kHz
LLRF gain margin 12 dB
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The sensor: bunch arrival time monitor (BAM)

Continuous-wave mode enables the analysis of high-resolution frequency
spectra
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S̃τ shows the frequency content of τ

στ is backwards integrated rms noise

στ =

√√√√√ f2∫
f1

[
S̃ (f )

]2
df (3)

στi equals 62 fs rms
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THz beamline of the linear accelerator ELBE

THz beam

e− dump

Undulator
BAMChicane

C4C3

LLRF Beam-based regulator

Cryogenic modules

C2C1

SRF gun

Electron bunches emitted by SRF gun with 50 kHz repetition rate
Bunch charge of 225 pC enables BAM resolution of 4 fs rms
The beamline operates in continuous-wave mode
A single regulation stage is installed into the THz beamline
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Design of a proportional beam-based regulator

K
e

Wδ
a

Gδ
A

Gτ
∆δ

+

∆τ

d

+ τ

−

Bunch compressor

Then let disturbance d be a unit step
and let regulator K be an inverse of the bunch compressor plant, i.e.

K = γ G−1
BC
, (4)

where

GBC = Gτ Gδ Wδ =
1
v

R56 ·
eA
E0

cosφ · 1
100

, (5)

and where γ is an additional gain to adjust the regulator performance.
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Means for analytical performance evaluation

The final value theorem shows the final value of e(t), i.e. the error of a
closed-loop system, as t approaches infinity.

Final value theorem
Given the assumption that disturbance d is a unit step, the theorem is

e(∞) =
1

1+ lim
s→0

L(s)
, (6)

But from (4)

lim
s→0

L(s) = lim
s→0

GBC K = GBC K = γ GBC G−1
BC

= γ, (7)

so

e(∞) =
1

1+ γ
. (8)
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Means for machine performance evaluation
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Then, e(∞) can be redefined as

e(∞) =
στo

στi

. (9)
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Evaluation of proportional regulator
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Increasing γ on the real machine, i.e. K =
[

2 4 6 8
]T ,

Does not reduce e(∞) according to the analytical estimation in (8)
Causes (9) to substantially deviate
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Worst-case performance: strong oscillations
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(a) Proportional regulator affects
all frequency range

(a) A pronounced plant oscillation
is triggered above 10 kHz

(b) This results in a large
integration step above 10 kHz

(b) Compared to a less aggressive
regulator, this step almost
completely negates the applied
regulation effort
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Optimal performance: moderate oscillations
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(a) Setting γ = 2.52 causes a
moderate oscillation above 10 kHz

(b) The set γ allows to suppress
the integrated rms noise by a
factor of 3, i.e. only 22 fs of rms
noise remains out of 62 fs rms
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Conclusions on proportional case

Proportional regulator is a constant with no bandwidth defined, so

It becomes part of LLRF dynamics and shares its stability margins
Increasing γ consumes the gain margin of LLRF
This triggers unwanted plant oscillations in high-frequency range

Is it possible to improve this system and decouple from LLRF?
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Disturbance modeling parameters

Bandwidth
The majority of noise resides below 1 kHz
Decoupling from LLRF dynamics is important
Select one order of magnitude less than LLRF, i.e. < 3.5 kHz

Magnitude
Draw a parallel between the size of signal τ expressed as (3) and
the H2 norm of a system expressed as

∥G∥2 ≜

√√√√ 1
2π

∞∫
−∞

|G(jω)|2 dω, (10)
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Filtered frequency content
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Gd filters theoretical white noise into the frequency content of S̃τ

Gd is defined in terms of s-domain poles p and zeros z
Gd matches the frequency content up to 1.5 kHz
H2 norm of Gd corresponds to στi
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H2 regulation method

K GBC
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H2 method tries to minimize the H2 norm of a transfer function
from d to τ

K is now a dynamical 4th-order H2 regulator

Due to decoupling, the plant GBC is still a constant
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H2 performance: time domain
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Large slow fluctuations disappear, whereas small fast ones stay
Natural outcome for a bandwidth-limited regulator
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H2 performance: frequency domain

101 102 103 104

−100

−80

−60

−40

Frequency [Hz]Sp
ec

tr
al

de
ns

ity
[d
B

p
s/

√
H
z
] S̃τ S̃τ | H2

ϵd Gd ϵd SGd

(a)

101 102 103 104
0

20
40
60
80

στi

στo

8 fs
< 1 fs

49 fs
1 fs

36 fs
4 fs

19 fs
17 fs

10 fs
8 fs

Frequency [Hz]

In
t.

rm
s

no
is

e
[f
s]

στ στ | H2

(b)

(a) In frequency domain,
machine data shows
correspondence with the model

(b) Integrated rms noise data
show suppression below 20 fs,
i.e. from στi = 62 fs rms down
to στo = 19 fs rms

(b) High-frequency range is left
intact
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Conclusion and thesis of this work

A single regulation stage, which is installed in a continuous-wave linear
accelerator and features a disturbance model-based beam-based
regulator, has a potential to outperform a commonly used proportional
regulator, without compromising the accelerator stability.
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Future work

Regulation of high-frequency noise, i.e. above 3.5 kHz
Regulation of electron bunch compression
Elimination of slow drifts

Page 26 Member of the Helmholtz Association
Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de



Reference

A. Maalberg, M. Kuntzsch, K. Zenker and E. Petlenkov,
“Regulation of electron bunch arrival time for a continuous-wave linac:
Exploring the application of the H2 mixed-sensitivity problem,”
Phys. Rev. Accel. Beams, accepted for publication.

Page 27 Member of the Helmholtz Association
Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de



Thank you for your attention!
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Cascaded loops with regulator matrices
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MTCA hardware environment
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Measuring beam response matrix

Evaluation of (5) with machine parameters does not match reality
So measure beam response matrix on the real machine
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Beam-based feedback and cascaded loops

e−

SRF cavity Magnetic chicane BAM

Bunch compressor

A, ϕ
a τ

LLRF Beam-based regulator

RF loop Beam-based feedback loop

Beam-based feedback introduces cascaded loops into the system

RF becomes the inner loop, beam-based feedback - the outer loop

Regulator uses the inner loop to regulate τ by manipulating A
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Transfer maps of bunch compressor

Transfer map of RF cavity

z(s1) = z(s0) , (11)

δ (s1) = δ (s0)+
eA
E0

cos
(

ω

c
z(s0)+φ

)
, (12)

Transfer map of magnetic chicane

z(s2) = z(s1)+R56 δ (s1) , (13)
δ (s2) = δ (s1) , (14)
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Proportional vs. H2 in frequency domain
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(a) shows different behaviors
of the two regulators depending
on the frequency range

(b) elaborates this difference
by displaying band-limited
amounts of integrated rms
noise
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