Improving Beam-Based Regulation for Continuous-Wave Linear Accelerators with a Disturbance Model-Based Design

A. Maalberg^{1,2} M. Kuntzsch¹ K. Zenker¹ E. Petlenkov²

¹Helmholtz-Zentrum Dresden-Rossendorf Department Radiation Source ELBE

²Tallinn University of Technology Department of Computer Systems

11th MT ARD ST3 Meeting 2023 in Dresden-Rossendorf

Member of the Helmholtz Association Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de

Outline

1 Introduction

- Motivation
- Scope

2 Beam-Based Regulation

- Proportional Beam-Based Regulator
- Disturbance Model-Based Design

3 Summary

Conclusions and Future Work

Outline

IntroductionMotivation

Scope

2 Beam-Based Regulation

Proportional Beam-Based Regulator

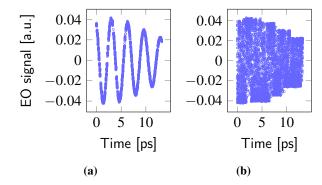
Disturbance Model-Based Design

B Summary

Conclusions and Future Work

Temporal stability of time-resolved experiments

Time-resolved experiments rely on a tight synchronization between a pump source, which is typically an optical laser, and a source that generates the probes, i.e. the accelerator-based light source.



(a) and (b) show TELBE data under different levels of sync
(b) is artificially distorted by a laser system on experimental side

Outline

Introduction Motivation Scope

2 Beam-Based Regulation

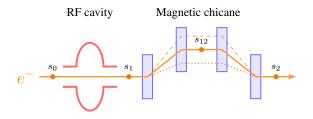
Proportional Beam-Based Regulator

Disturbance Model-Based Design

B Summary

Conclusions and Future Work

Bunch compression



- Besides compression, this technology delays or advances an electron bunch w.r.t. some target position in a beamline
- Energy received by the bunch in the cavity defines the subsequent path taken through the chicane
- This side-effect can be used to regulate the bunch arrival time

Required system components

According to the transfer maps of the RF cavity and magnetic chicane

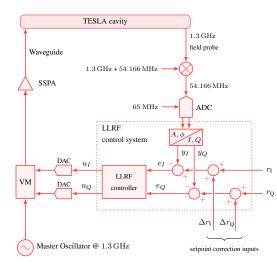
$$\Delta \delta = \frac{eA}{E_0} \cos \phi, \tag{1}$$

$$\Delta \tau = \frac{1}{\nu} R_{56} \Delta \delta, \qquad (2)$$

Energy change in (1) requires an actuator to modulate the RF field amplitude A and phase \u03c6

Arrival time au in (2) needs to be diagnosed by a sensor

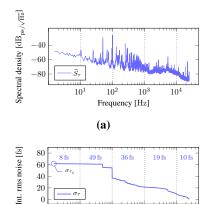
The actuator: low-level RF control system



Parameter	Value
SRF cavity bandwidth	100 Hz
LLRF bandwidth LLRF gain margin	35 kHz 12 dB

The sensor: bunch arrival time monitor (BAM)

Continuous-wave mode enables the analysis of high-resolution frequency spectra



 10^{2}

(b)

Frequency [Hz]

 10^{3}

 10^{4}

 σ_1

 10^{1}

0

• S_{τ} shows the frequency content of τ • σ_{τ} is backwards integrated rms noise

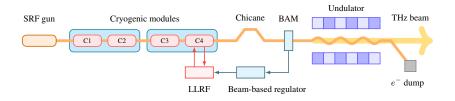
$$\sigma_{\tau} = \sqrt{\int_{f_1}^{f_2} \left[\widetilde{S}(f)\right]^2 df}$$
(3)

• σ_{τ_i} equals 62 fs rms

Member of the Helmholt:

Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://ww

THz beamline of the linear accelerator ELBE



- Electron bunches emitted by SRF gun with 50 kHz repetition rate
- Bunch charge of 225 pC enables BAM resolution of 4 fs rms
- The beamline operates in continuous-wave mode
- A single regulation stage is installed into the THz beamline

Outline

1 Introduction

- Motivation
- Scope

2 Beam-Based Regulation

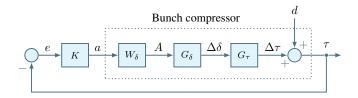
Proportional Beam-Based Regulator

Disturbance Model-Based Design

B Summary

Conclusions and Future Work

Design of a proportional beam-based regulator



Then let disturbance d be a unit step

and let regulator K be an inverse of the bunch compressor plant, i.e.

$$K = \gamma G_{BC}^{-1}, \tag{4}$$

where

$$G_{BC} = G_{\tau} G_{\delta} W_{\delta} = \frac{1}{v} R_{56} \cdot \frac{eA}{E_0} \cos \phi \cdot \frac{1}{100},$$
 (5)

and where γ is an additional gain to adjust the regulator performance.

Means for analytical performance evaluation

The final value theorem shows the final value of e(t), i.e. the error of a closed-loop system, as t approaches infinity.

Final value theorem

Given the assumption that disturbance d is a unit step, the theorem is

$$e\left(\infty\right) = \frac{1}{1 + \lim_{s \to 0} L\left(s\right)},$$

But from (4)

$$\lim_{s \to 0} L(s) = \lim_{s \to 0} G_{BC} K = G_{BC} K = \gamma G_{BC} G_{BC}^{-1} = \gamma,$$
(7)

SO

$$e\left(\infty\right)=\frac{1}{1+\gamma}.$$

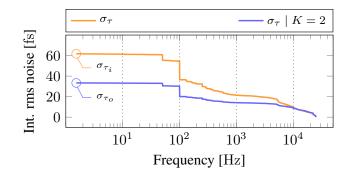
(8) HZDR

(6)

Member of the Helmholtz Association

Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de

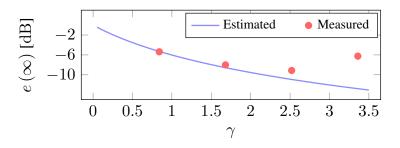
Means for machine performance evaluation



Then, $e(\infty)$ can be redefined as

$$e\left(\infty\right) = \frac{\sigma_{\tau_o}}{\sigma_{\tau_i}}.$$
(9)

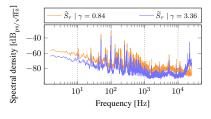
Evaluation of proportional regulator



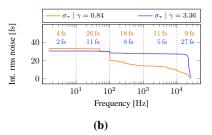
Increasing γ on the real machine, i.e. $K = \begin{bmatrix} 2 & 4 & 6 & 8 \end{bmatrix}^T$,

- Does not reduce $e(\infty)$ according to the analytical estimation in (8)
- Causes (9) to substantially deviate

Worst-case performance: strong oscillations

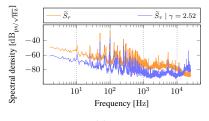


(a)

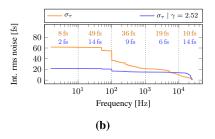


- (a) Proportional regulator affects all frequency range
- (a) A pronounced plant oscillation is triggered above 10 kHz
- (b) This results in a large integration step above 10 kHz
- (b) Compared to a less aggressive regulator, this step almost completely negates the applied regulation effort

Optimal performance: moderate oscillations



(a)



- (a) Setting $\gamma = 2.52$ causes a moderate oscillation above 10 kHz
- (b) The set γ allows to suppress the integrated rms noise by a factor of 3, i.e. only 22 fs of rms noise remains out of 62 fs rms

Conclusions on proportional case

Proportional regulator is a constant with no bandwidth defined, so

- It becomes part of LLRF dynamics and shares its stability margins
- Increasing γ consumes the gain margin of LLRF
- This triggers unwanted plant oscillations in high-frequency range

Is it possible to improve this system and decouple from LLRF?

Outline

1 Introduction

- Motivation
- Scope

2 Beam-Based Regulation

- Proportional Beam-Based Regulator
- Disturbance Model-Based Design

3 Summary

Conclusions and Future Work

Disturbance modeling parameters

Bandwidth

- The majority of noise resides below 1 kHz
- Decoupling from LLRF dynamics is important
- Select one order of magnitude less than LLRF, i.e. < 3.5 kHz

Magnitude

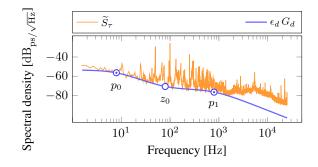
Draw a parallel between the size of signal τ expressed as (3) and the \mathcal{H}_2 norm of a system expressed as

$$\|G\|_{2} \triangleq \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^{2} d\omega}, \qquad (10)$$

Member of the Helmholtz Association

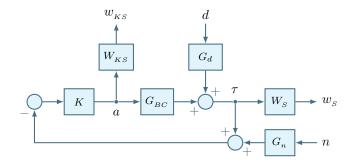
Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de

Filtered frequency content



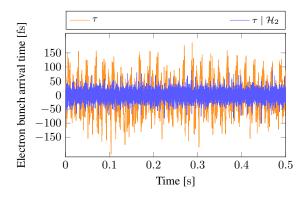
- G_d filters theoretical white noise into the frequency content of S_{τ}
- G_d is defined in terms of s-domain poles p and zeros z
- G_d matches the frequency content up to 1.5 kHz
- \mathcal{H}_2 norm of G_d corresponds to σ_{τ_i}

\mathcal{H}_2 regulation method



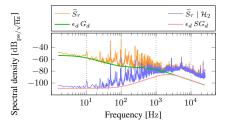
- \mathcal{H}_2 method tries to minimize the \mathcal{H}_2 norm of a transfer function from d to τ
- K is now a dynamical 4th-order \mathcal{H}_2 regulator
- Due to decoupling, the plant G_{BC} is still a constant

\mathcal{H}_2 performance: time domain

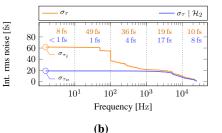


Large slow fluctuations disappear, whereas small fast ones stayNatural outcome for a bandwidth-limited regulator

\mathcal{H}_2 performance: frequency domain



(a)



- (a) In frequency domain, machine data shows correspondence with the model
- (b) Integrated rms noise data show suppression below 20 fs, i.e. from σ_{τi} = 62 fs rms down to σ_{τo} = 19 fs rms
- (b) High-frequency range is left intact

Outline

1 Introduction

- Motivation
- Scope

2 Beam-Based Regulation

- Proportional Beam-Based Regulator
- Disturbance Model-Based Design

3 Summary

Conclusions and Future Work

Conclusion and thesis of this work

A single regulation stage, which is installed in a continuous-wave linear accelerator and features a disturbance model-based beam-based regulator, has a potential to outperform a commonly used proportional regulator, without compromising the accelerator stability.

Future work

- Regulation of high-frequency noise, i.e. above 3.5 kHz
- Regulation of electron bunch compression
- Elimination of slow drifts

Reference

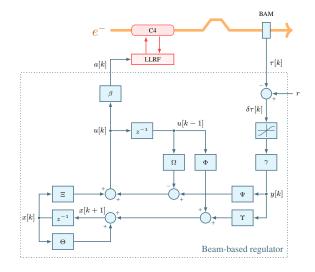
A. Maalberg, M. Kuntzsch, K. Zenker and E. Petlenkov, "Regulation of electron bunch arrival time for a continuous-wave linac: Exploring the application of the \mathcal{H}_2 mixed-sensitivity problem," *Phys. Rev. Accel. Beams*, accepted for publication.

Thank you for your attention!

Backup slides

Member of the Helmholtz Association Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de

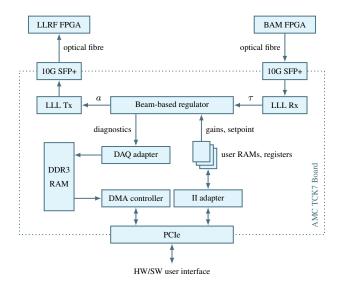
Cascaded loops with regulator matrices



Member of the Helmholtz Association

Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de

MTCA hardware environment

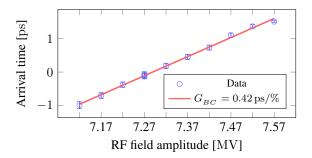


Member of the Helmholtz Association

Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de

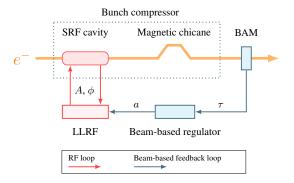
Measuring beam response matrix

- Evaluation of (5) with machine parameters does not match reality
- So measure beam response matrix on the real machine



RF field amplitude setpoint A = 7.27 MV changed by steps of 50 kV

Beam-based feedback and cascaded loops



Beam-based feedback introduces cascaded loops into the system

- RF becomes the inner loop, beam-based feedback the outer loop
- Regulator uses the inner loop to regulate au by manipulating A

Transfer maps of bunch compressor

Transfer map of RF cavity

$$z(s_1) = z(s_0),$$
 (11)

$$\delta(s_1) = \delta(s_0) + \frac{eA}{E_0} \cos\left(\frac{\omega}{c}z(s_0) + \phi\right), \qquad (12)$$

Transfer map of magnetic chicane

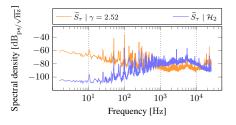
$$z(s_2) = z(s_1) + R_{56} \,\delta(s_1) \,, \tag{13}$$

$$\boldsymbol{\delta}(s_2) = \boldsymbol{\delta}(s_1), \tag{14}$$

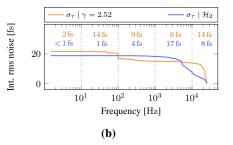
Member of the Helmholtz Association

Andrei Maalberg | Helmholtz-Zentrum Dresden-Rossendorf | http://www.hzdr.de

Proportional vs. \mathcal{H}_2 in frequency domain



(a)



- (a) shows different behaviors of the two regulators depending on the frequency range
- (b) elaborates this difference by displaying band-limited amounts of integrated rms noise

