KET Jahrestreffen, Bad Honnef, 17.-19.11.2022

Report from astroparticle physics

Uli Katz, Univ. Erlangen-Nürnberg Chair, Comittee for Astroparticle Physics (KAT) 18 November 2022

KAT and astroparticle news

What happened recently

- APPEC Town Meeting in Berlin (June 2022), mid-term update APPEC Roadmap
- **Deutsches Zentrum für Astrophysik**: Endorsed September 2022
- **KAT elections** (October 2022)
- ErUM-Pro for astroparticle physics and ground-based astronomy
 - Strategy talks with BMBF in May 2022 (new: common strategy document RDS+KAT)
 - Call for proposals mid-October 2022
 - Deadline 15 November 2022
 - New funding period 7/2023-6/2026
- Upcoming: Wissenschaftsjahr 2023 "Universum"

Deutsches Zentrum für Astrophysik

Astro . Tellchen . Physik

https://www.deutscheszentrumastrophysik.de/

Mission Zentrum Forschung & Transfer Netzwerk Aktuelles

Wir haben es geschafft: Das Deutsche Zentrum für Astrophysik - Forschung. Technologie. Digitalisierung. (DZA) kommt in die sächsische Lausitz. Hier geht's zu der Pressemitteilung:

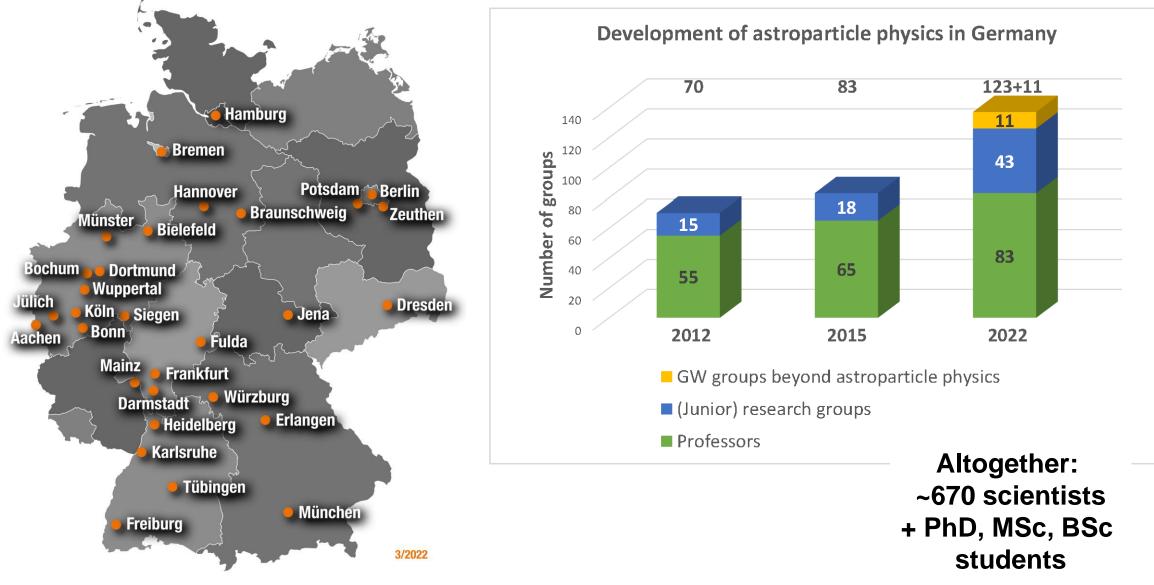
Deutsches Zentrum für Astrophysik

https://www.deutscheszentrumastrophysik.de/

- New national research centre in Lusatia/Saxonia
- Objectives:

•

- Astrophysics research (initial focus: Radio astronomy, gravitational waves)
- Data and computing, green IT (e.g. for SKA data)
- Technology centre (with low-seismic lab)
- Asymptotically 170 M€ / year
- Founding director: Günther Hasinger
- Opening of ~5 new professorships expected soon


Mission Zentrum Forschung & Transfer Netzwerk Aktuelles

Wir haben es geschafft: Das Deutsche Zentrum für Astrophysik - Forschung. Technologie. Digitalisierung. (DZA) kommt in die sächsische Lausitz. Hier geht's zu der Pressemitteilung: . Komitee für

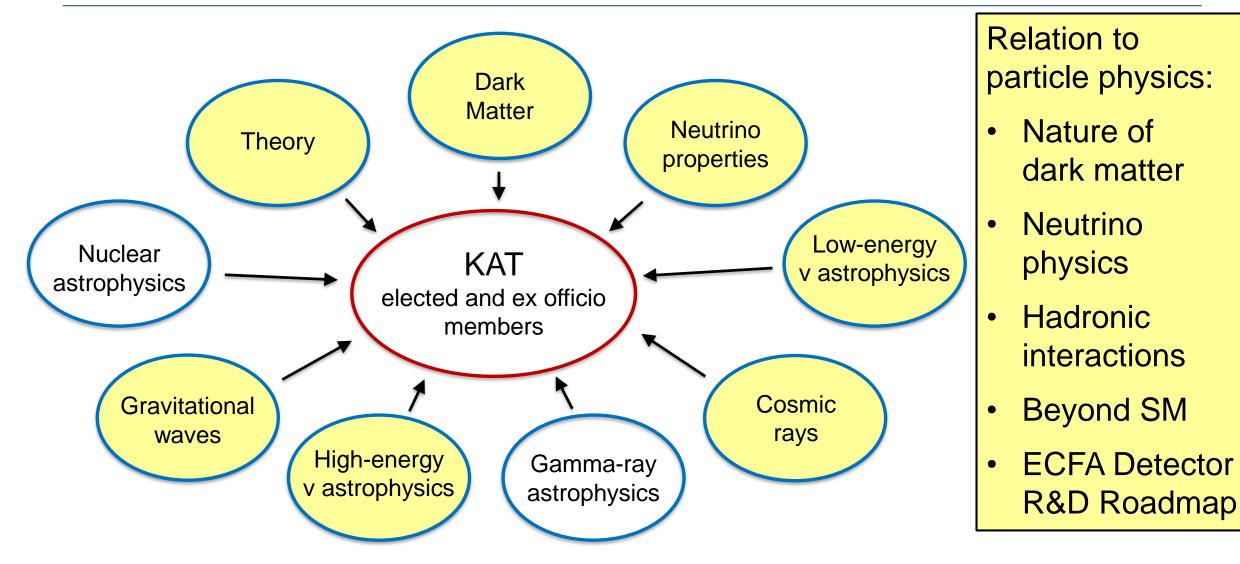
chen.Physik

Astroparticle physics in Germany

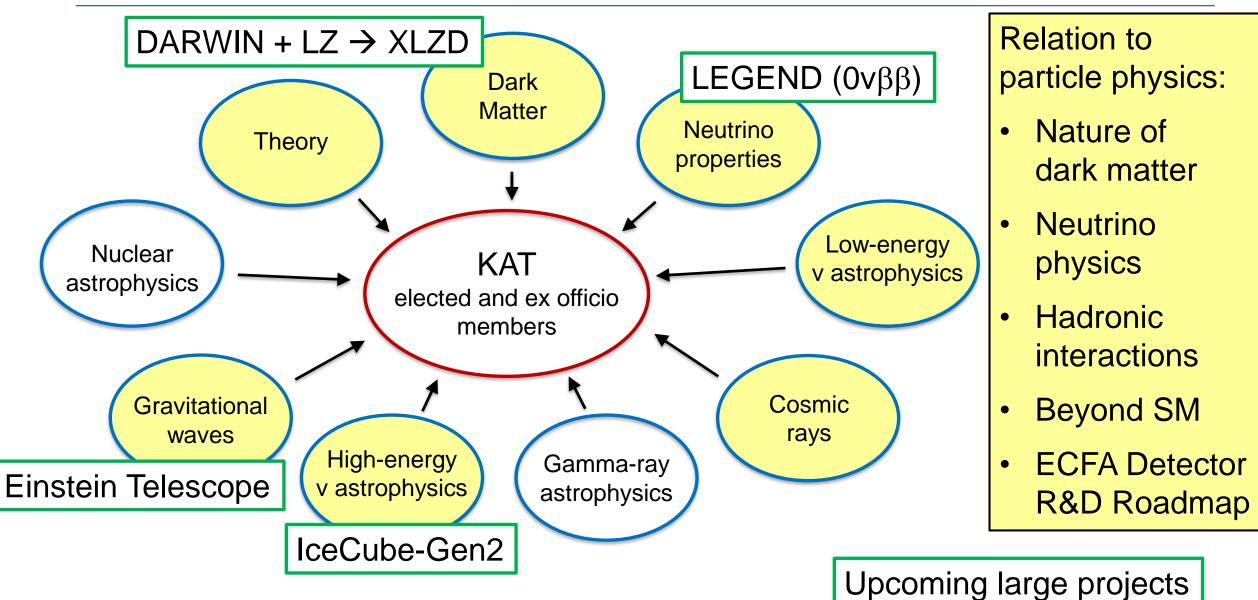
KET Jahrestreffen, Bad Honnef, Nov. 2022

Thematic constituencies; newly elected members and deputies in red:

Constituency	Elected	Deputy
Dark Matter	Manfred Lindner → Manfred Lindner	Federica Petricca → Federica Petricca
Neutrino properties	Kathrin Valerius → Kathrin Valerius	Stefan Schönert → Stefan Schönert
Low-energy v astrophysics	Achim Stahl → Achim Stahl	Michael Wurm → Michael Wurm
Cosmic rays	Andreas Haungs (Dep.) → Markus Roth	Martin Erdmann → Michael Schmelling
Gamma-ray astronomy	Stefan Funk → Stefan Funk	Jim Hinton → David Berge
High-energy v astrophysics	Uli Katz (Chair) → Uli Katz	Elisa Resconi → Marek Kowalski
Nuclear astrophysics	Roland Diehl → Uwe Oberlack	Camilla Hanson → Daniel Bemmerer
Gravitational waves	Karsten Danzmann → Michèle Heurs	Harald Lück → Harald Lück
Theory	Thomas Schwetz-Mangold \rightarrow Walter Winter	Martin Pohl → Michael Klasen


- Election of chair and deputy chair on 1 Dec 2022 (KAT strategy meeting, Bad Honnef)
- Ex officio members not changed
- KAT "ambassadors" to other committees to be named/confirmed soon.

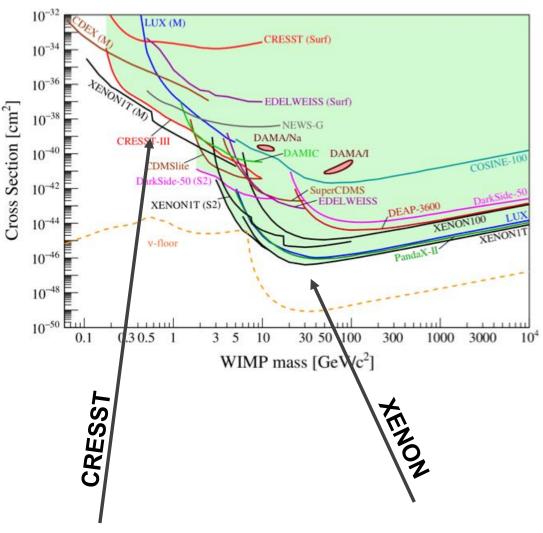
Some links between astroparticle and particle physics


Astroparticle physics in Germany

Astroparticle physics in Germany

Dark Matter

Main projects


- XENON (XENON100 \rightarrow XENON1T \rightarrow XENONnT)
- DARWIN → XLZD
- CRESST

Major results

- XENON1T
 - Leading limits: generic WIMPs, other searches
 - Interesting excess (ca. 3σ) at low recoil energy
- CRESST
 - Lowest thresholds for nuclear recoils
 - Leading sensitivity to low-mass dark matter

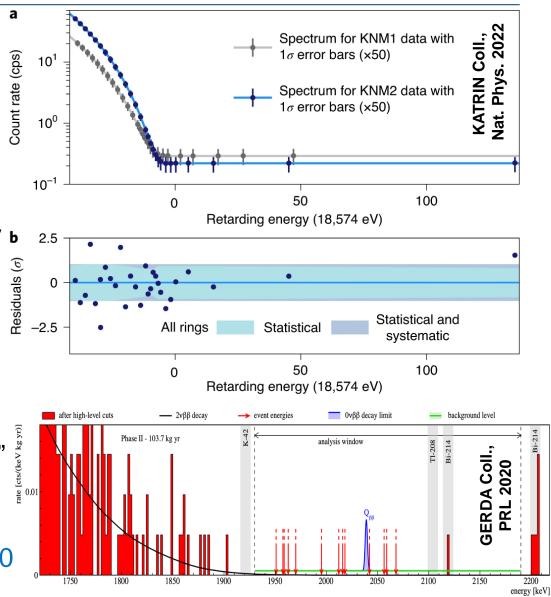
Future plans

- DARWIN+LZ \rightarrow XLZD
 - Operation of XENONnT, design of XLZD
 - First XLZD data ca. 2027
- Upgrade to CRESST-III: 300 channels

KET Jahrestreffen, Bad Honnef, Nov. 2022

Neutrino properties

Main projects


- **KATRIN**: direct neutrino-mass measurement
- GERDA, LEGEND: search for $0\nu\beta\beta$ decay
- Coherent scattering and NSI search: ongoing (CONUS) and in prep. (NUCLEUS)

Major results

- First direct sub-eV neutrino mass limit: m, <0.8 eV
- Physics analyses beyond the neutrino mass
- First background-free search for $0\nu\beta\beta$ decays
- First $T_{1/2}$ sensitivity beyond 10²⁶ yr

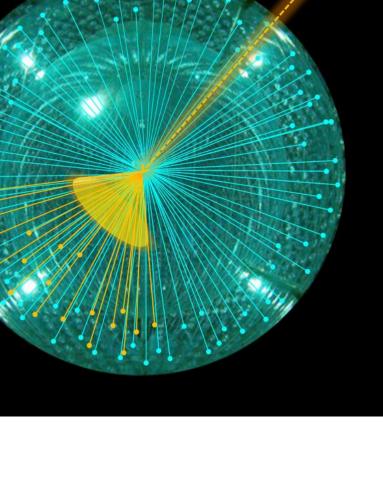
Future plans

- Exploit full KATRIN sensitivity of 0.2 eV
- 2024+: full-spectrum detector upgrade "TRISTAN"
- LEGEND-200 @ LNGS start data taking 2022
- LEGEND-1000: successful DOE Review 2021
- R&D towards: Project-8, ECHo-100k, CONUS-100

12

Low-energy neutrino astrophysics

Main projects


- Borexino: spectroscopy of solar v's
- JUNO: reactor neutrino oscillations and observatory for astrophysical sources (currently under construction)

Major results of Borexino

- First direct measurement of solar CNO v's
- First directional measurement of sub-MeV solar v's in a liquid-scintillator detector

Future plans

- Determination of neutrino mass ordering and first observation of diffuse supernova v background in JUNO
- R&D on hybrid Cherenkov-scintillation detectors (THEIA)

Cosmic rays

Main projects

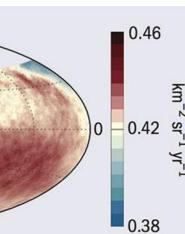
- Pierre Auger Observatory (Argentina): 3000 km², largest cosmic ray experiment
- AugerPrime:
 Add scintillators and radio antennas (by 2024)

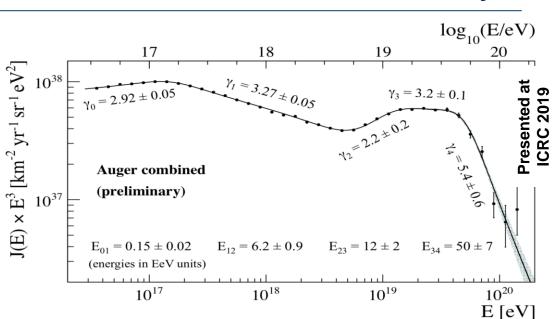
Major results

- Cosmic ray spectrum 10¹⁶–10²⁰ eV, new features
- Arrival direction distribution shows anisotropy
- p-p and p-Air cross sections at EeV
- Heavy composition at highest energies

Future plans

KET Jahrestreffen, Bad Honnef, Nov. 2022


- Calibration/operation of AugerPrime until 2030+
- R&D for next generation observatory (GCOS)
- Community effort for CORSIKA8 (significant overlap with LHC forward physics)



360

Auger Coll.

Science 2017

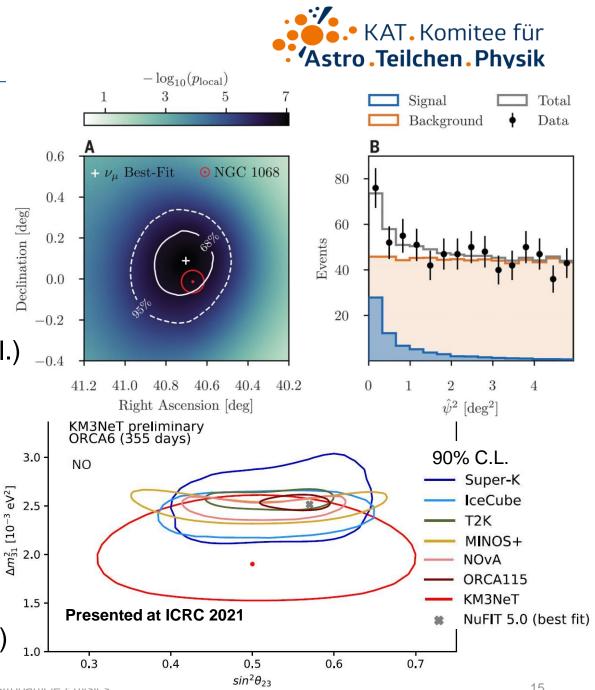
90

-90

High-energy neutrino astrophysics

Main projects

Neutrino astronomy and neutrino physics with


- IceCube (South Pole)
- KM3NeT (Mediterranean Sea)

Major results

- Discovery of cosmic v flux (10 TeV ... 10 PeV)
- First evidence for source association(s): TXS 0506+056 (blazar), NGC 1068 (Seyfert gal.)
- Competitive v oscillation measurements

Future plans

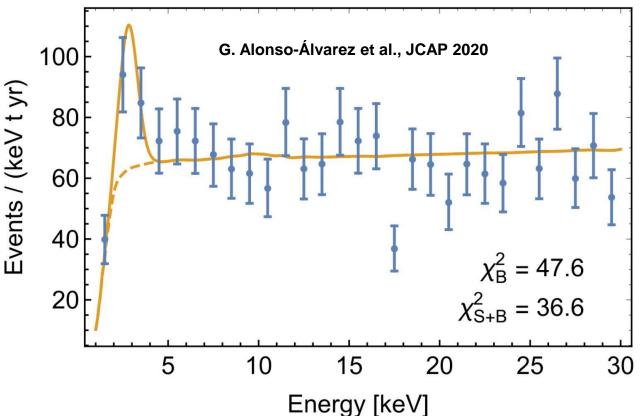
- IceCube Upgrade (constr. 2025/26) \rightarrow v oscil.
- IceCube-Gen2: Extended detector + surface array + radio detector (constr. 2026-33) \rightarrow v astronomy
- KM3NeT: Complete construction of • ARCA (2027, \rightarrow v astronomy) and **ORCA** (2026, \rightarrow v oscillation, v mass hierarchy)

U. Katz: Asuoparuote Errysius

Theory

Rich landscape in astroparticle theory,

~30 PIs all over Germany


Topics

- Multi-messenger astronomy
- UHE cosmic rays and cosmogenic v (simulations and predictions)
- Gravitational wave signatures
- Dark matter, axion, ALP theory and phenomenology
- Neutrino physics

Links to particle physics

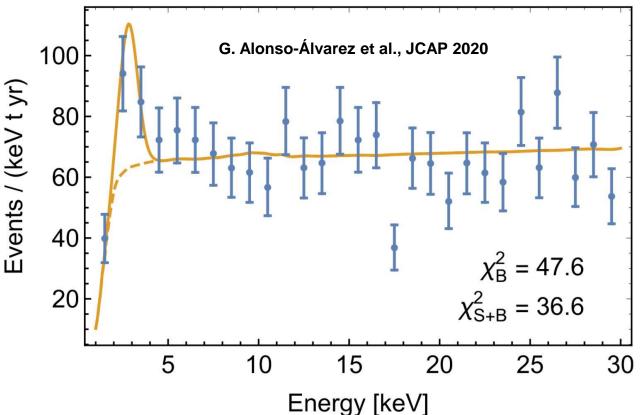
- BSM searches at colliders
- Top-down model building
- Use of HEP tools and methods (e.g. Monte Carlo codes & tuning)

Hidden Photon Dark Matter in the Light of XENON1T data and stellar cooling

Theory

Rich landscape in astroparticle theory,

~30 PIs all over Germany


Topics

- Multi-messenger astronomy
- UHE cosmic rays and cosmogenic ν (simulations and predictions)
- Gravitational wave signatures
- Dark matter, axion, ALP theory and phenomenology
- Neutrino physics

Links to particle physics

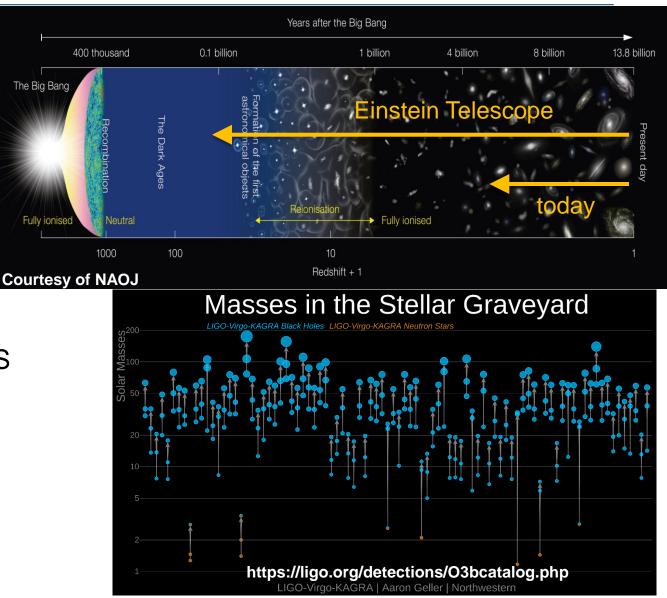
- BSM searches at colliders
- Top-down model building
- Use of HEP tools and methods (e.g. Monte Carlo codes & tuning)

Hidden Photon Dark Matter in the Light of XENON1T data and stellar cooling

Meanwhile: XENONnT has shown that anomaly has been caused by tritium background

Gravitational waves

Main projects


- Running: Advanced LIGO + VIRGO, KAGRA, GEO600
- Preparatory work towards Einstein Telescope (ET), LISA (space)

Major results

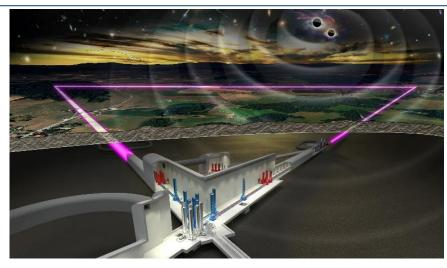
- 90 validated GW detections so far (mostly BH-BH-mergers, some BH-NS, two binary NS (BNS))
- First multi-messenger observation: GW and electromagnetic emission of BNS

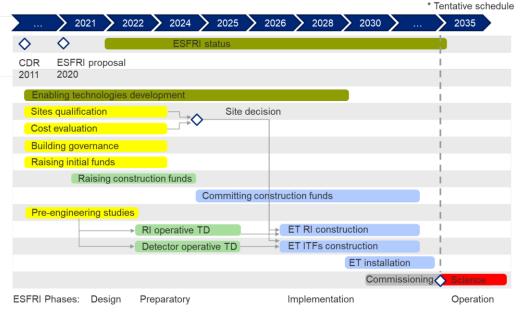
Future plans

- Upgrade existing GW Detectors
- O4 run (1 year) starting late spring 2023
- ET and LISA data mid-late 2030s

The Einstein Telescope

Large project (> 1G€)


- A possible significant German contribution is beyond the capabilities of astroparticle physics alone (regular funding, HR)
- Included in ESFRI Roadmap since 2021


Relation to DZA

- Technology development
- Investigation of granite stock in Lusatia as a possible ET site

Ongoing:

- Sites qualification \rightarrow site selection
- Cost evaluation
- Pre-engineering studies
- Formal collaboration founded in June 2022, governance building ongoing

