GBP Main Meeting Ptarmigan LMA Simulations

K Fleck - 21/09/2022

Ptarmigan LMA simulations Simulation parameters

- Laser
 - $\lambda = 0.8 \,\mu\text{m}$
 - $\tau_{FWHM} = 30 \, \mathrm{fs}$
 - $E_I = 1.2 \, \text{J}$
 - Linear polarisation

- Electrons
 - $1.5 \times 10^9 e^{-1}$
 - 16.5 GeV
 - $\Theta_{rms} = 8.672 \,\mu rad$
 - $r_h = 5.0 \,\mu m$
- Radiation reaction = on, pair production = off

Ptarmigan LMA simulations Simulation processing

Nominal ξ	Number of entries processed (1e8)	Number of entries in 10 BX (1e8)	Number of BXs processed
0.5	9.22	9.22	10.0
1.0	28.91	28.91	10.0
2.0	15.35	62.23	2.47
3.0	14.79	75.99	1.95
5.0	5.87	76.01	0.77
7.0	14.05	68.13	2.06
10.0	15.35	58.31	2.63

Ptarmigan LMA simulations Laser intensity at creation

 N_{γ} / BX

Ptarmigan LMA simulations Laser intensity at creation

Functional form of fit taken from <u>Blackburn et. al. 2020</u>

Ptarmigan LMA simulations Laser intensity at creation with energy

Ptarmigan LMA simulations Compton harmonics for IPWs

General case $\nu k \cdot p$ $\omega' =$ $(p + \nu k) \cdot n'$

$$\nu = \frac{k' \cdot p}{k \cdot p'} = \frac{k^{'-} + p^{'-} - k^{'-}}{k^{-}}$$

Infinite plane wave case

$$\nu \to \nu_n = n - \frac{\xi^2}{4\eta} \frac{s}{1 - s}$$
$$\omega'(n) = \frac{n\omega e^{2\zeta}}{1 + 2n\frac{\omega}{m}e^{\zeta} + \xi}$$

 $\zeta = \operatorname{arccosh} \gamma$

Ptarmigan LMA simulations Laser intensity at creation with energy with harmonics

Same plots as slide 6 but with first, second and third IPW harmonics

overlayed

Ptarmigan LMA simulations Energy spectra

Ptarmigan LMA simulations Spatial distribution at creation

Ptarmigan LMA simulations Spatial distribution at profiler

Projection taken at z = 11.5 m downstream of IP

Ptarmigan LMA simulations Energy weighted radiation profile

ξ = 10.0

Ptarmigan LMA simulations Inference of laser intensity

• Inference of laser intensity follows <u>Blackburn et. al. 2020</u>

$$\xi = g(\rho) \,\xi_{inf} = \xi_{inf} \sqrt{\frac{1+8\rho^2}{1+4\rho^2}} \quad \rho = \xi_{inf}^2 = 4\sqrt{2} \langle \gamma_i \rangle \langle \gamma_f \rangle (\sigma_{\parallel}^2 - \sigma_{\perp}^2)$$

- Variance of angular profiles constructed using different methods: •
 - Variance of data
 - Variance of Gaussian fit
 - Variance of approximation to Cauchy fit (see slides 15-17)
 - Approximation of variance assuming a Gaussian FWHM
- Fittings are performed on a central region of width 0.06 mrad

$$=\frac{r_b}{w_0}$$

Ptarmigan LMA simulations Inference of laser intensity

reasonable based on slide 4

Reconstruction needs more work - alright for low xi but completely off for larger xi

Additional slides

Extra **Approximation of Cauchy distribution**

Standard Cauchy distribution is given as

$$X \sim \text{Cauchy}(0,1) \Rightarrow f_X(x) = \frac{1}{\pi}$$

• A first order approximation to this is a triangle function of the form

$$g(x) = \begin{cases} \frac{1}{a} \left(1 - \frac{|x|}{a} \right) & \text{for } - a \\ 0 & \text{elsewb} \end{cases}$$

- *a* is determined by the requirements of the approximation; two are considered here:
 - Peak values of distributions coincide $\Rightarrow a = \pi$
 - Function must pass through FWHM points $\Rightarrow a = 2$

Extra Triangular distribution

• The second moment of a distribution is defined as

$$m_2 = \mathbb{E}_X[X^2] = \int_{\mathbb{R}} dx \, x^2 f_X(x)$$

• Using $f_X(x) = g(x)$ from previous slide

$$m_2 = \frac{a^2}{6} \text{ if } a > 0$$

• Hence, the RMS for each value of *a* is:

$$\operatorname{rms} = \frac{\pi}{\sqrt{6}} \text{ for } a = \pi$$
$$\operatorname{rms} = \sqrt{\frac{2}{3}} \text{ for } a = 2$$

Extra **General triangular distribution**

• For a Cauchy distribution with general width parameter γ , the PDF is

$$X \sim \text{Cauchy}(0,\gamma) \Rightarrow f_X(x) = \frac{1}{\pi\gamma} \frac{1}{1 + \left(\frac{x}{\gamma}\right)^2}$$

• Triangular approximation can be obtained by the substitution $x \to \frac{x}{\gamma}$ or equivalently $a \to \gamma a$:

$$g(x) = \begin{cases} \frac{1}{a\gamma} \left(1 - \frac{|x|}{a\gamma} \right) & \text{for } -a\gamma \le x \le a\gamma \\ 0 & \text{elsewhere} \end{cases}$$

• Hence, the second moments are given by $m_2 = \frac{a^2 \gamma^2}{6}$ so

• rms =
$$\frac{\pi\gamma}{\sqrt{6}} \approx 1.283 \,\gamma$$
 for $a = \pi$

• rms =
$$\gamma \sqrt{\frac{2}{3}} \approx 0.816 \gamma$$
 for $a = 2$