Non-perturbative input in the Parton Branching Evolution

L. Keersmaekers, F. Hautmann, A. Lelek, M. Mendizabal

September 29, 2022

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}}{\pi\mu'^{2}} \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z) \tilde{\mathcal{A}}_{b}(\frac{x}{z},k_{\perp}+(1-z)\mu_{\perp},\mu'^{2}) \end{split}$$

• AO condition: $q_{\perp}^2 = (1-z)^2 \mu'^2$

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}}{\pi\mu'^{2}} \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2}-\mu'^{2}) \Theta(\mu'^{2}-\mu_{0}^{2}) \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z) \tilde{\mathcal{A}}_{b}(\frac{x}{z},k_{\perp}+(1-z)\mu_{\perp},\mu'^{2}) \end{split}$$

• AO condition: $q_{\perp}^2 = (1-z)^2 \mu'^2$

 Resolution scale z_M: resolvable z < z_M and non-resolvable z > z_M branchings

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}}{\pi\mu'^{2}} \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2}-\mu'^{2}) \Theta(\mu'^{2}-\mu_{0}^{2}) \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z) \tilde{\mathcal{A}}_{b}(\frac{x}{z},k_{\perp}+(1-z)\mu_{\perp},\mu'^{2}) \end{split}$$

• AO condition: $q_{\perp}^2 = (1-z)^2 \mu'^2$

 Resolution scale z_M: resolvable z < z_M and non-resolvable z > z_M branchings

- Fixed z_M (set1/set2)
- Dynamical $z_M = 1 q_0/\mu'$ q_0 smallest emitted transverse momentum

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}}{\pi\mu'^{2}} \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z) \tilde{\mathcal{A}}_{b}(\frac{x}{z},k_{\perp}+(1-z)\mu_{\perp},\mu'^{2}) \end{split}$$

• AO condition: $q_{\perp}^2 = (1-z)^2 \mu'^2$

 Resolution scale z_M: resolvable z < z_M and non-resolvable z > z_M branchings

- Fixed z_M (set1/set2)
- Dynamical $z_M = 1 q_0/\mu'$ q_0 smallest emitted transverse momentum
- Implicit in $P^R_{ab}(z)$ and $\Delta_a(\mu^2)$: $\alpha_s(\mu')$ (set1)/ $\alpha_s(q_{\perp})$ (set2)

The non-perturbative input

• Starting distribution:

$$\widetilde{\mathcal{A}}_a(x,k_{\perp,0},\mu_0^2) = \widetilde{f}_a(x,\mu_0^2)\cdot rac{1}{q_s^2\pi}\exp\left(-rac{k_{\perp,0}^2}{q_s^2}
ight)$$

The non-perturbative input

• Starting distribution:

$$\widetilde{A}_{a}(x,k_{\perp,0},\mu_{0}^{2}) = \widetilde{f}_{a}(x,\mu_{0}^{2}) \cdot \frac{1}{q_{s}^{2}\pi} \exp\left(-\frac{k_{\perp,0}^{2}}{q_{s}^{2}}\right)$$

Collinear starting distribution $\tilde{f}_a(x, \mu_0^2)$ not focus of this talk Study influence of intrinsic $k_{\perp,0}$, distributed according to a Gaussian with width q_s

The non-perturbative input

• Starting distribution:

$$\widetilde{A}_{a}(x,k_{\perp,0},\mu_{0}^{2}) = \widetilde{f}_{a}(x,\mu_{0}^{2}) \cdot \frac{1}{q_{s}^{2}\pi} \exp\left(-\frac{k_{\perp,0}^{2}}{q_{s}^{2}}\right)$$

Collinear starting distribution $\tilde{f}_a(x, \mu_0^2)$ not focus of this talk Study influence of intrinsic $k_{\perp,0}$, distributed according to a Gaussian with width q_s

• Resolution scale z_M Dynamical $z_M = 1 - q_0/\mu'$

TMD with dynamical resolution scale

TMD with dynamical $z_M \rightarrow$ bump around $k_\perp = q_0 = 1$ GeV

Single emission evolution

Single emission evolution

Standard PB: $\mathbf{k} = \mathbf{k}_0 - \sum_{i=1}^n \mathbf{q}_i$ PB last step: toy model with $\mathbf{k} = \mathbf{k}_0 - \mathbf{q}_n$ aluon, x = 0.01, μ = 100 GeV $q_{\perp} > q_0 \rightarrow$ part from evolution 10³ ×A(x,k,μ) starts to accumulate around q_0 102 Only one branching \rightarrow large bump 10 Vector sum \rightarrow with multiple branchings we can reach $k_{\perp} < q_0$ 10 \rightarrow smooth out bump 10-2 MDplotter 2.2.0 10-3 10-4

10-

10

k_t [GeV]

10²

10

Single emission evolution

Standard PB: $\mathbf{k} = \mathbf{k}_0 - \sum_{i=1}^n \mathbf{q}_i$ PB last step: toy model with $\mathbf{k} = \mathbf{k}_0 - \mathbf{q}_n$ gluon, x = 0.01, µ = 100 GeV $q_{\perp} > q_0 \rightarrow$ part from evolution 10³ ×A(x,k,μ) starts to accumulate around q_0 102 Only one branching \rightarrow large bump 10 Vector sum \rightarrow with multiple branchings we can reach $k_{\perp} < q_0$ 10 \rightarrow smooth out bump 10-2 10-3 Often not enough branchings to

10-4

10

10

Often not enough branchings to completely smooth out, small bump left over

(Not visible here because of log-scale)

MDplotter 2.2.0

k, [GeV

 10^{2}

10

Different values of q_0

$$q_s = 0.5 \,\, {
m GeV}$$

Bump smoother with small values of q_0 :

- q_⊥ > q₀, with smaller q₀ more branchings are allowed
- More overlap between peak of intrinsic k_⊥ and peak around q₀

Different values of q_s

$$q_0 = 1 \,\, {
m GeV}$$

- Smoother with q_s close to q₀ (more overlap peaks)
- Almost no effect on
 k_⊥-tail (from +-2 GeV on)

Different values of q_s

 $q_0=1\,\,{
m GeV}$

- Smoother with *q_s* close to *q*₀ (more overlap peaks)
- Almost no effect on k_⊥-tail (from +-2 GeV on)

Vector sum $\mathbf{k} = \mathbf{k}_0 - \sum_{i=1}^n \mathbf{q}_i$: Random angle between intrinsic $k_{\perp,0}$ and part from evolution \rightarrow only small influence from $k_{\perp,0}$ especially when k_{\perp} from evolution is smooth

Different values of q_s

 $q_0 = 1 \,\, {
m GeV}$

- Smoother with q_s close to q₀ (more overlap peaks)
- Almost no effect on k_⊥-tail (from +-2 GeV on)

Vector sum $\mathbf{k} = \mathbf{k}_0 - \sum_{i=1}^n \mathbf{q}_i$: Random angle between intrinsic $k_{\perp,0}$ and part from evolution \rightarrow only small influence from $k_{\perp,0}$ especially when k_{\perp} from evolution is smooth

Since k_{\perp} -tail unaffected and $f_a = \int dk_{\perp}^2 A_a$ independent of q_s , total amount of partons below 2GeV unaffected by q_s

Contributions from partons with or without branchings

At small x: mostly partons that had branchings

At large x: mostly partons that have not branched

Dominated in whole x-region by partons that had branchings

Effects from intrinsic k_{\perp} at small k_{\perp} can be important in a large region of x

Intrinsic k_{\perp} important in TMD distribution for $k_{\perp} < 2$ GeV, but total amount of partons with $k_{\perp} < 2$ GeV constant:

- Effects of intrinsic k_⊥ in p_⊥-data might be difficult to see when bin sizes are larger than 2 GeV
- We think data will be most sensitive to intrinsic k_{\perp} in small p_{\perp} region:

Only contributions from two partons with

- $k_{\perp,1}$ and $k_{\perp,2}$ both small
- $k_{\perp,1} \approx k_{\perp,2}$ AND $\phi \approx 180^{\circ}$

Drell Yan with $q_0=1$

DY at LHC (Atlas), right: fine binning (temporary result)

With $q_s=0.25$ GeV (blue left, green right) we can see the effect of q_s at DY spectrum at LHC Differences between $q_s=0.5$ and $q_s=0.75$ are small

Largest differences at small $p_{\perp} <$ 4 GeV, but also differences at higher $p_{\perp} \sim$ 20 GeV

With $q_0=0.5$ more branchings \rightarrow less sensitivity to q_s

differences with finer binning

Low mass DY

Set of parameters

MC/Data

A set of parameters might describe one experiment best, but might describe another experiment worse

 \Rightarrow Further studies needed for best parameters

 $p_T^{\ell \ell}$

4

- The distribution at low k_⊥ comes from both intrinsic k_⊥ and the effect of multiple branchings in the evolution
- Intrinsic k_{\perp} affects only small k_{\perp} -region (below 2 GeV)
- In certain cases, low p_⊥-region of DY at LHC can have some sensitivity to intrinsic k_⊥, but more sensitivity in low mass DY
- Further studies needed for values of q_0 , q_s