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Parton Branching equations

Parton branching equations for TMDs:
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@ AO condition: g3 = (1 — z)?u”
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Parton Branching equations

Parton branching equations for TMDs:
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@ AO condition: g3 = (1 — z)?u”

@ Resolution scale zy: resolvable z < zy and non-resolvable z > zy
branchings
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Parton Branching equations

Parton branching equations for TMDs:

d,uLA

2 2 72 2
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Aa(x, ki, p1®) = Da(u®)Aa(x, ks i) +Z/
X / dsz,(z)Ab(;, ki 4+ (1 —2)ps,u?)

@ AO condition: g3 = (1 — z)?u”
@ Resolution scale zy: resolvable z < zy and non-resolvable z > zy
branchings
o Fixed zp (setl/set2)
o Dynamical zyy =1 — qo/1
go smallest emitted transverse momentum
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Parton Branching equations

Parton branching equations for TMDs:

- d M1 A )
2 Z 2 2 2 2
Aa(x, ki, ) = A, HA (x, ko, l"o + / w2 AL e(ﬂ — w)O(p" — pp)x

x [ dplz )Ab(;,kw(lfzm,u”)

@ AO condition: g3 = (1 — z)?u”
@ Resolution scale zy: resolvable z < zy and non-resolvable z > zy
branchings
o Fixed zp (setl/set2)
o Dynamical zyy =1 — qo/1
go smallest emitted transverse momentum

@ Implicit in P (z) and A,(1?): as(p) (setl)/as(qL) (set2)
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The non-perturbative input

@ Starting distribution:

S S

~ z 1 kT o
Aa(x: k1o 13) = Fa(x, 1) - 5 exp (— 2
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The non-perturbative input

@ Starting distribution:
q > 1 k?
Aol k1o pB) = Tl ) = exp (‘m)

Collinear starting distribution ,(x, 113) not focus of this talk
Study influence of intrinsic k| o, distributed according to a
Gaussian with width
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The non-perturbative input

@ Starting distribution:
q > 1 k?
Aol k1o pB) = Tl ) = exp (‘m)

Collinear starting distribution ,(x, 113) not focus of this talk
Study influence of intrinsic k| o, distributed according to a
Gaussian with width

@ Resolution scale zy
Dynamical zyy =1 — g0 /1
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TMD with dynamical resolution scale

down, x=0.001, =100 GeV
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TMD with dynamical zy; — bump around k; = gog=1 GeV
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Single emission evolution

Standard PB: k =ko — Y7 ; q;

PB last step: toy model with k = ko — q,
gluon, x = 0.01, u = 100 GeV

gL > qo — part from evolution  _ ¢, — |
= E PB
starts to accumualate around qo % el MR CToo
. < E
Only one branching— large bump = ;[

T R TR TR T AT ANRRTIT MRMPRIE:

TMDplotter 2.2.0
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k [GeV]
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Single emission evolution

Standard PB: k =ko — Y7 ; q;

PB last step: toy model with k = ko — q,
gluon, x = 0.01, u = 100 GeV

gL > qo — part from evolution  _ ¢, R :
= E PB
starts to accumualate around qo % el MR CToo
Onl branchi large b LR
y one branching— large bump b

Vector sum — with multiple
branchings we can reach k; < qo
— smooth out bump
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Single emission evolution

Standard PB: k =ko — Y7 ; q;

PB last step: toy model with k = ko — q,
. gluon, x = 0.01, u = 100 GeV
g1 > qo — part from evolution e

starts to accumualate around gq
Only one branching— large bump 10

Q
2

Q
R
[T

T T T
PB

PB last step

MRW-CT10nlo

Vector sum — with multiple
branchings we can reach k; < qo
— smooth out bump

Often not enough branchings to
completely smooth out, small
5 Cov vl covnnl L L Lo
bump left over %o i 10 107
k, [GeV]
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TMDplotter 2.2.0
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(Not visible here because of log-scale)
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Different values of qq

gluon, x=0.001, ©=100 GeV
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gs = 0.5 GeV

Bump smoother with
small values of qo:

® qi > qo, with smaller
go more branchings
are allowed

@ More overlap between
peak of intrinsic k|
and peak around qq
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Different values of gs

do = 1 GeV

gluon, x=0.001, u=100 GeV
o .

i

T T
GeV

@ Smoother with gs close to
qo (more overlap peaks)
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Different values of gs

xA(x,k¢, 1)
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do = 1 GeV

@ Smoother with gs close to

qo (more overlap peaks)

Almost no effect on
k, -tail (from +-2 GeV on)

Vector sum

k=ko -3 i, ai:

Random angle between
intrinsic k| o and part from
evolution — only small
influence from k| o
especially when k; from
evolution is smooth
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Different values of gs

do = 1 GeV

gluon, x=0.001, =100 GeV/
T
3 GeV
eV
oV

@ Smoother with gs close to
qo (more overlap peaks)

xA(x,k¢, 1)

Almost no effect on
k, -tail (from +-2 GeV on)

0.6

0.5

]

0.4

Vector sum

ARNRARRS RARR AR A RAR R Y

0.3 . n ,
0.2 -t k B kO B Zi:l ql.
o E- Random angle between
0 ol 37 intrinsic k| o and part from
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evolution is smooth

Since k| -tail unaffected and £, = fdkiAa independent of gs,
total amount of partons below 2GeV unaffected by gs
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Different values of g, at low scales

gluon, x=0.001, p=3 GeV gluon, x=0.001, =10 GeV
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Contributions from partons with or without branchings

Low k, region k= 2GeV
gluon, p = 100 GeV, k( =0.1GeV gluon, p =100 GeV, kl =2GeV
2 SR A R ‘i 2 F . T T 5
X" 05 Partons witthout branchings — X" 05 ———— Partons without branchings —
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At small x: mostly partons that had Dominated in whole x-region by
branchings

artons that had branchings
At large x: mostly partons that have P &

not branched
Effects from intrinsic k| at small k; can be important in a large

region of x
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Effects of gs on data

Intrinsic k| important in TMD distribution for k; < 2 GeV, but
total amount of partons with k; < 2 GeV constant:
o Effects of intrinsic k; in p,-data might be difficult to see
when bin sizes are larger than 2 GeV
@ We think data will be most sensitive to intrinsic k; in small

p.L region:
Only contributions from two partons with

e ki1 and ki > both small
o ki1~ ki AND ¢ ~ 180°
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Drell Yan with gp=1

Colours do not correspond on both figures

Z — ee, dressed level, 66 GeV < my; < 116 GeV, |yy| < 2.4 DY production at /s = 8 TeV
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DY at LHC (Atlas), right: fine binning (temporary result)

With gs=0.25 GeV (blue left, green right) we can see the effect of
gs at DY spectrum at LHC
Differences between gs=0.5 and gs=0.75 are small

Largest differences at small p; < 4 GeV, but also differences at
higher p; ~20 GeV
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Drell Yan with go=0.5

With gg=0.5 more branchings — less sensitivity to gs

Z — ee, dressed level, 66 GeV < my; < 116 GeV, |yy| < 2.4 DY production at /s = 8 TeV
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We need higher statistics to see whether we can find some
differences with finer binning
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Low mass DY
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Low mass DY more sensitive to gs:
Small binnings and less branchings
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Set of parameters

PHENIX: Drell-Yan /5 = 200 GeV, 1.2 < |y| < 22
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go =1 GeV, gs = 0.35 GeV (below green)
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= Further studies needed for best parameters
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Conclusions

@ The distribution at low k; comes from both intrinsic k; and
the effect of multiple branchings in the evolution

e Intrinsic k, affects only small k| -region (below 2 GeV)

@ In certain cases, low p, -region of DY at LHC can have some
sensitivity to intrinsic k,, but more sensitivity in low mass DY

@ Further studies needed for values of qg, gs
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