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Parton Branching equations

Parton branching equations for TMDs:

Ãa(x, k⊥, µ
2) = ∆a(µ

2)Ãa(x, k⊥, µ
2
0) +

∑
b

∫
d2µ⊥

πµ′2
∆a(µ
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∆a(µ′2)
Θ(µ2 − µ

′2)Θ(µ′2 − µ
2
0)×

×
∫ zM

x

dzPR
ab(z)Ãb(

x

z
, k⊥ + (1 − z)µ⊥, µ

′2)

AO condition: q2
⊥ = (1− z)2µ′2

Resolution scale zM : resolvable z < zM and non-resolvable z > zM
branchings

Fixed zM (set1/set2)
Dynamical zM = 1− q0/µ

′

q0 smallest emitted transverse momentum

Implicit in PR
ab(z) and ∆a(µ

2): αs(µ
′) (set1)/αs(q⊥) (set2)
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The non-perturbative input

Starting distribution:

Ãa(x , k⊥,0, µ
2
0) = f̃a(x , µ

2
0) ·

1

q2s π
exp

(
−
k2⊥,0

q2s

)

Collinear starting distribution f̃a(x , µ
2
0) not focus of this talk

Study influence of intrinsic k⊥,0, distributed according to a
Gaussian with width qs

Resolution scale zM
Dynamical zM = 1− q0/µ

′
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TMD with dynamical resolution scale
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Single emission evolution

Standard PB: k = k0 −
∑n

i=1 qi
PB last step: toy model with k = k0 − qn

q⊥ > q0 → part from evolution
starts to accumualate around q0
Only one branching→ large bump

Vector sum → with multiple
branchings we can reach k⊥ < q0
→ smooth out bump

Often not enough branchings to
completely smooth out, small
bump left over

(Not visible here because of log-scale)
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Different values of q0
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Different values of qs
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Almost no effect on
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Vector sum
k = k0 −

∑n
i=1 qi :

Random angle between
intrinsic k⊥,0 and part from
evolution → only small
influence from k⊥,0

especially when k⊥ from
evolution is smooth

Since k⊥-tail unaffected and fa =
∫
dk2⊥Aa independent of qs ,

total amount of partons below 2GeV unaffected by qs
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Different values of qs at low scales
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Contributions from partons with or without branchings

Low k⊥ region
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Effects of qs on data

Intrinsic k⊥ important in TMD distribution for k⊥ < 2 GeV, but
total amount of partons with k⊥ < 2 GeV constant:

Effects of intrinsic k⊥ in p⊥-data might be difficult to see
when bin sizes are larger than 2 GeV

We think data will be most sensitive to intrinsic k⊥ in small
p⊥ region:
Only contributions from two partons with

k⊥,1 and k⊥,2 both small
k⊥,1 ≈ k⊥,2 AND ϕ ≈ 180◦
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Drell Yan with q0=1

Colours do not correspond on both figures
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DY at LHC (Atlas), right: fine binning (temporary result)

With qs=0.25 GeV (blue left, green right) we can see the effect of
qs at DY spectrum at LHC
Differences between qs=0.5 and qs=0.75 are small

Largest differences at small p⊥ < 4 GeV, but also differences at
higher p⊥ ∼20 GeV
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Drell Yan with q0=0.5

With q0=0.5 more branchings → less sensitivity to qs
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12 / 15



Low mass DY
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Small binnings and less branchings
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Set of parameters

q0 = 1 GeV, qs = 0.35 GeV (below green)
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A set of parameters might describe one
experiment best, but might describe
another experiment worse

⇒ Further studies needed for best parameters
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Conclusions

The distribution at low k⊥ comes from both intrinsic k⊥ and
the effect of multiple branchings in the evolution

Intrinsic k⊥ affects only small k⊥-region (below 2 GeV)

In certain cases, low p⊥-region of DY at LHC can have some
sensitivity to intrinsic k⊥, but more sensitivity in low mass DY

Further studies needed for values of q0, qs
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