NNLL resummation with PB using the effective soft-gluon coupling & $$N_{\rm f}$$ studies

Cascade developer meeting

Mees van Kampen, Lissa Keersmaekers, Ola Lelek

September 29, 2022

The CSS approach

[Nuclear Physics B250 (1985) 199-224]

Well-established formalism that provides an analytical expression for inclusive processes:

$$h_1(p_1) + h_2(p_2) \rightarrow F(M, \boldsymbol{q}_{\perp}^2) + X$$

The differential cross section is given by:

$$\frac{d\sigma}{dQ^2 dy d\boldsymbol{q}_{\perp}^2} = \left[\frac{d\sigma^{(\text{res.})}}{dQ^2 dy d\boldsymbol{q}_{\perp}^2}\right]_{q_T \ll Q} + \left[\frac{d\sigma^{(\text{fin.})}}{dQ^2 dy d\boldsymbol{q}_{\perp}^2}\right]_{q_T \gg Q} \\
= \int d^2 \boldsymbol{b} e^{i\boldsymbol{b}\cdot\boldsymbol{q}_{\perp}} \frac{\sigma^{(0)}(Q^2)}{s} H(\alpha_s(Q^2)) \sum_{a,b} \mathcal{F}_{a/A}(\boldsymbol{b}; Q, \xi_a, \mu) \mathcal{F}_{b/B}(\boldsymbol{b}; Q, \xi_b, \mu) \\
+ Y(\boldsymbol{q}_{\perp}; Q, x_a, x_b)$$

TMDs from CSS are factorized:

$$\mathcal{F}_{q/i} \sim f_{q/i} \otimes C_{jq} \otimes \sqrt{S}$$

- parton distributions:
- o coefficient functions:
- Sudakov form factor:

 $f_{q/i}(x, b_0/b)$ $C_{iq}(\alpha_s(b_0/b), z)$

$$\sqrt{S(Q,b)}$$

Schematic representation of factorized TMDs of low- q_T contribution to σ [Catani, de Florian, Grazzini arXiv:0008184v2]

The CSS approach - Sudakov

- Soft-gluon resummation by coefficient functions C_{ab} and Sudakov form factor \sqrt{S}
- Perturbative part
- Non-negligible non-perturbative part S_{NP}

$$\sqrt{S(Q,b)} = \exp\left\{-\frac{1}{2}\int_{b_0/b}^{Q^2} \frac{d\mu^2}{\mu^2} \left[\ln\frac{Q^2}{\mu^2}A_a(\alpha_s(\mu^2)) + B_a(\alpha_s(\mu^2))\right]\right\} \times S_{NP}(b)$$

Perturbatively calculable coefficients:

$$\begin{split} A_{a}(\alpha_{s}) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n} A_{a}^{(n)}, \\ B_{a}(\alpha_{s}) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n} B_{a}^{(n)}, \\ C_{ab}(\alpha_{s}, z) &= \delta_{ab}\delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n} C_{ab}^{(n)}(z), \\ H(\alpha_{s}) &= 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n} H^{(n)} \end{split}$$

The Parton Branching (PB) method

PB evolution equation for TMDs $\tilde{A}_a(x, k_t^2, \mu^2)$ can be solved iteratively with the Monte Carlo method:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{t}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{t,0}^{2},\mu_{0}^{2}) + \\ &+ \sum_{b} \left[\int \frac{d^{2}\mu'}{\pi\mu'^{2}} \int_{x}^{z_{M}(\mu')} dz \Theta(\mu^{2}-\mu'^{2}) \Theta(\mu'^{2}-\mu_{0}^{2}) \right. \\ &\times \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu'^{2})} P_{ab}^{(R)}(\alpha_{s}(q_{\perp}),z) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z},\underbrace{k_{t,b}-q_{t,c}}_{k_{t,a}},\mu'^{2}\right) \right] \end{split}$$

JHEP 01 (2018) 070 [arXiv:1708.03279]

$$\begin{array}{c|ccc} x_ap^+, k_{l,a} & a \\ \\ z = x_a/x_b & c & q_{l,c} \rightarrow \mu \\ \\ x_bp^+, k_{l,b} & b \end{array}$$

Kinematics in each branching governed by momentum conservation: $k_{t,b} = k_{t,a} + q_{t,c}$

DGLAP splitting functions:

$$\begin{split} P_{ab}(\alpha_s, z) &= d_a(\alpha_s)\delta_{ab}\delta(1-z) + \frac{k_a(\alpha_s)\delta_{ab}}{(1-z)_+} + R_{ab}(\alpha_s, z) \\ P_{ab}^{(R)}(\alpha_s, z) &= \frac{k_a(\alpha_s)\delta_{ab}}{1-z} + R_{ab}(\alpha_s, z) \quad \text{resolvable emission probability} \end{split}$$

Sudakov form factor (non-resolvable / no-emission probability):

$$\Delta_{a}^{(PB)}(\mu,\mu_{0}) = \exp\left\{-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}(\mu')}dz \ z \ P_{ba}^{(R)}(\alpha_{s}(q_{t}),z)\right\}$$

The Parton Branching (PB) method

Angular ordering condition: $q_t^2 = (1 - z)^2 \mu'^2$

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{t}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{t,0}^{2},\mu_{0}^{2}) + \\ &+ \sum_{b} \int \frac{d^{2}\mu'}{\pi\mu'^{2}} \int_{x}^{1-\frac{q_{0}}{\mu'}} dz \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu'^{2})} \\ &\times P_{ab}^{(R)} \Big(\alpha_{s}((1-z)\mu'),z \Big) \tilde{\mathcal{A}}_{b} \left(\frac{x}{z}, k_{t,b} - (1-z)\mu',\mu'^{2} \right) \end{split}$$

- Sum over all transverse momenta: $k_t = k_{t,0} \sum_i q_{t,i}$
- Intrinsic k_t in non-perturbative part: Ã_a(x, k_{t,0}, μ₀)
 e.g. collinear with Gaussian f_a(x, μ₀)e^{-k_t²/2σ²} → f_a(x, μ₀) and σ fitted to data

PB implemented in the Monte Carlo event generator CASCADE3 [arXiv:2101.10221]:

- associate k_t to partons in the hard process according to the TMD
- for exclusive observables: perform backward evolution with TMD parton shower (unfolding the TMD)

Analytical comparison CSS and PB: logarithmic accuracy

CSS Sudakov (with scale $\mu = q_t$):

$$S(Q^2, b^2) = \exp\left(-\int_{1/b^2}^{Q^2} \frac{dq_t^2}{q_t^2} \left[\ln\left(\frac{Q^2}{q_t^2}\right) A_a(\alpha_s(q_t^2)) + B_a(\alpha_s(q_t^2)) \right] \right)$$

PB Sudakov (*twice in the cross section*!) rewritten with angular ordering and virtual splitting functions:

$$\Delta_{a}^{(PB)}(Q^2, q_0^2) = \exp\left(-\int_{q_0^2}^{Q^2} \frac{dq_t^2}{q_t^2} \left[\frac{1}{2}\ln\left(\frac{Q^2}{q_t^2}\right)k_a(\alpha_s(q_t^2)) - d_a(\alpha_s(q_t^2))\right]\right)$$

Logarithmic accuracy	Terms	Single log	Double log	
Leading log (LL)	$\alpha_s^n \ln^{n+1}(Q^2/q_t^2)$		$A_a^{(1)} = k_a^{(0)}$	\checkmark
Next-to- leading log (NLL)	$lpha_s^n \ln^n (Q^2/q_t^2)$	$B_a^{(1)} = -2d_a^{(0)}$	$A_a^{(2)} = k_a^{(1)}$	\checkmark
Next-to-next-to- leading log (NNLL)	$lpha_s^n \ln^{n-1}(Q^2/q_t^2)$	$B_q^{(2)} = -2d_q^{(1)} + 16\pi C_F \beta_0(\zeta_2 - 1)$ \downarrow Resummation scheme dependence	$A_q^{(3)} = k_q^{(2)} + 2\beta_0 C_F d_2^{q*} $ $\downarrow \qquad \qquad$	√ ×
oft-gluon effective coupling: Banfi et al. [arXiv:1807.11487] & $*d_2^q = C_F C_A \left(\frac{808}{27} - 28\zeta_3\right) - \frac{112}{27} C_F N_f$				

Catani et al. [arXiv:1904.10365] Mees van Kampen

So

Single logarithmic part

$$B_q^{(2)} - (-2) \cdot d_q^{(1)} = 16\pi C_F \beta_0(\zeta_2 - 1)$$

- In PB, we use universal splitting functions P_{ab}. These are independent of any scheme choice. So d_q⁽¹⁾ is fixed.
- In CSS, certain perturbative coefficients can mix via renormalization group transformations:

$$\frac{\partial \ln H^F(\alpha_s(\mu^2))}{\partial \ln \mu^2} = \gamma_H(\alpha_s(\mu^2))$$
$$H^F(\alpha_s(c_1Q^2)) = \exp\left\{\int_{c_0/b^2}^{c_1Q^2} \frac{d\mu^2}{\mu^2} \gamma_H(\alpha_s(\mu^2))\right\} H^F(\alpha_s(c_0/b^2)).$$

• Parts of H can mix with the B in the Sudakov with a different resummation scheme

$$B^{F}(\alpha_{s}(\mu^{2})) = B(\alpha_{s}(\mu^{2})) - \left(-\beta_{0}\alpha_{s}^{2} - \beta_{1}\alpha_{s}^{3} + \mathcal{O}(\alpha_{s}^{4})\right) \left(\frac{H^{F(1)}}{\pi} + \frac{2\alpha_{s}}{\pi^{2}}H^{F(2)} + \mathcal{O}(\alpha_{s}^{2})\right).$$

The difference we found is equal to the first term of this expansion of γ_H , the term with α_s^2

Double logarithmic part

$$A_i^{(3)} - k_i^{(2)} = C_i(\beta_0 \pi) \left[C_A \left(\frac{808}{27} - 28\zeta_3 \right) - N_f \frac{112}{27} \right]$$

- K part from splitting functions is *cusp anomalous dimension*, in other words: *soft-gluon coupling*
- Intensity of soft-gluon radiation is $C_i \alpha_s / \pi$. To get NLL, replace it by:

$$C_{i}\frac{\alpha_{s}}{\pi} \to \mathcal{A}_{i}^{CMW}(\alpha_{s}(q_{T}^{2})) = C_{i}\frac{\alpha_{s}(q_{T}^{2})}{\pi}\left(1 + \frac{\alpha_{s}(q_{T}^{2})}{2\pi}K\right)$$

• To go to NNLL (or higher), use the effective soft-gluon coupling:

$$\alpha_s^{\text{eff}} = \alpha_s \left(1 + \sum_n \left(\frac{\alpha_s}{2\pi} \right)^n K^{(n)} \right).$$

Banfi et al. [arXiv:1807.11487] & Catani et al. [arXiv:1904.10365]

- $A_i^{(3)}$ of CSS is obtained by taking n = 2 and multiplication with C_i/π
- NNLL resummation in PB? implement the effective coupling up to n = 2 in TMD evolution

Implementation effective soft-gluon coupling in TMD evolution

A start has been made in the implementation of α_s^{eff} into UPDFEVOLV.

Use within:

- $\Delta_a(\mu^2, \mu_0^2, \alpha_s^{eff})$
- $P^{(R)}_{ab}(z, \alpha^{eff}_s)$

We have already NLO splitting functions (so k_1 is there) and the CMW coupling for NLL resummation. Only need for $K^{(2)}$!

In the code:

$$\alpha_s \to \alpha_s \cdot \left(1 + \alpha_s^2 K^{(2)}\right)$$

with

$$\begin{split} \mathcal{K}^{(2)} = & C_A^2 \left(\frac{245}{24} - \frac{67}{9} \zeta_2 + \frac{11}{6} \zeta_3 + \frac{11}{5} \zeta_2^2 \right) + C_F N_f \left(-\frac{55}{24} + 2\zeta_3 \right) \\ & + C_A N_f \left(-\frac{209}{108} + \frac{10}{9} \zeta_2 - \frac{7}{3} \zeta_3 \right) - \frac{1}{27} N_f^2 + \frac{\pi \beta_0}{2} \left(C_A \left(\frac{808}{27} - 28\zeta_3 \right) - \frac{224}{54} N_f \right). \end{split}$$

Open question: what should N_f be? It depends on the evolution scale μ' . However: $\alpha_s(q_t)!$

First numerical results: TMDs

test: PB TMD test1: α_s^{eff} in Sudakov test2: α_s^{eff} in Sudakov and splitting functions

First numerical results: iTMDs

- The number of active flavors N_f depends on a certain scale.
- Branching scale μ' or the emitted transverse momentum q_T

 N_f appears in the evolution in:

- Splitting function $P_{ab}(\alpha_s, z, N_f)$
- $\alpha_s(N_f)$ (and later also $K^{(2)}(N_f)$)

 \rightarrow we investigated the numerical effect on (i)TMDs of varying the scale of N_f in the following scenarios, without implementation of the effective soft-gluon coupling:

- Standard evolution: $P_{ab}(\alpha_s(q_T), N_f(\mu')), \alpha_s(N_f(q_T))$
- q_T in all functions where N_f appears

Number of active flavors N_f - gluon distribution

Number of active flavors N_f - charm distribution

Number of active flavors N_f - bottom distribution

Efforts have been put in the systematical comparison of the PB and CSS approaches to Sudakov resummation for DY p_T spectra.

- PB and CSS Sudakov form factors coincide at LL and NLL
- Differences at NNLL tracked down to **resummation scheme dependence** (single log) and **effective soft-gluon coupling** (double log)

Open issues and future steps:

- Number of light quarks N_f in $K^{(2)}$ not the same as in calculation α_s
- Numerical comparison with CSS; e.g. generate DY p_T spectrum with MC@NLO+CASCADE3. For this, integrated TMDs are necessary.

Inclusive Z boson p_T spectrum @LHC using reSolve

RESOLVE [Coradeschi, Cridge arXiv:1711.02083] provides a numerical implementation of CSS

- Resummation $d\sigma^{(\text{res.})}/dp_T^2 dQ^2 dy$ up to NNLL
- No matching with finite Y-terms yet (no NLO for Z+0)

Z boson p_T spectrum at $\sqrt{s} = 8$ TeV

Estimation of theoretical uncertainties

CSS:

- μ_{S} resummation/matching scale
- μ_R variation mostly influences small p_T
- μ_F variation both at small and large p_T
- 9-point scale variation
 - Vary μ_R and μ_F with factor 2 and 1/2 (9 combinations)
 - Constraint $1/2 \le \mu_R/\mu_F \le 2$ (leaves 7 combinations)
 - Vary μ_s factor 2 and 1/2 with central value of μ_R , μ_F

PB

- Scale variations: μ_F , μ_R (9-point)
- Matching scale not varied yet
- TMD variations included but small uncertainties in LHC region around M_7

dơ/dp^{ff} [pb GeV− 8

10

1.3

 $Z \rightarrow ee$, dressed level, 66 GeV $\leq m_{\ell\ell} < 116$ GeV, $|y_{\ell\ell}| < 2.4$

- Data

Comparisons of theoretical uncertainty bands with different resummation approaches by LHC electroweak working group: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/EWWG1

Parameterization of non-perturbative physics

Gaussian smearing factor in $\ensuremath{\operatorname{RESOLVE}}$ for non-perturbative physics:

$$S_{NP} = \exp\left(-g_{NP}b^2\right)$$

Commonly g^{NP} [0.5 – 2.5]

In the PB method intrinsic k_t :

$$ilde{\mathcal{A}}_{s}(x,k_{t,0},\mu_{0})\sim f_{s}(x,\mu_{0})e^{-rac{k_{t}^{2}}{2\sigma^{2}}} \quad (\sigma\sim 350~{
m MeV})$$

- subject to (perturbative) evolution!
- describe effects in a few GeV range

Width of PB Gaussian is small compared to the one used in reSolve and also compared to parton shower event generators.

$$\int e^{-k_t^2/2\sigma^2} e^{ik_t b} dk_t \sim e^{-b^2\sigma^2/4}$$

$$ightarrow \sigma \sim 350 \text{ MeV} \Leftrightarrow g_i^{NP} \sim 0.03$$

Z boson ϕ^* distribution with PB

Rewrite PB Sudakov

PB Sudakov:

$$\Delta_{a}^{(PB)}(\mu,\mu_{0}) = \exp\left\{-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{(R)}(\alpha_{s}(a(z)\mu'),z)\right\}.$$

Real part of the splitting functions:

$$P_{ab}^{(R)}(\alpha_s, z) = K_{ab}(\alpha_s) \frac{1}{1-z} + R_{ab}(\alpha_s, z)$$

Virtual part of the splitting functions:

$$P_{ab}^{(V)}(\alpha_s, z) = \delta_{ab} \frac{k_a(\alpha_s)}{(1-z)_+} + \delta(1-z) \delta_{ab} d_a(\alpha_s)$$

Use:

- angular ordering condition: $q_t = (1 z)\mu'$ and
- virtual splitting functions:

• momentum sum rule:

$$P_{ab}^{(R)} = P_{ab} - P_{ab}^{(V)}$$
 and
 $\sum_{b} \int_{0}^{1} dz \ z \ P_{ab}(z, \mu'^{2}) = 0$

$$\Delta_{\mathsf{a}}^{(PB)}(Q^2, q_0^2) \simeq \exp\left\{-\int_{q_0^2}^{Q^2} \frac{dq_t^2}{q_t^2} \left[\frac{1}{2}\ln\left(\frac{\mu^2}{q_t^2}\right)k_{\mathsf{a}}(\alpha_s(q_t^2)) - d_{\mathsf{a}}(\alpha_s(q_t^2))\right]\right\}$$

[de Florian, Grazzini; Phys.Rev.Lett. 85 (2000) 4678-4681] [Hautmann et al.; JHEP 01 (2018) 070]

• LL':

$$A_q^{(1)} = C_F,$$
 $k_q^{(0)} = 2C_F$

• NLL':

$$A_q^{(2)} = \frac{1}{2} C_F C_A \left(\frac{67}{18} - \frac{\pi^2}{6} \right) - \frac{5}{18} N_F C_F \qquad B_q^{(1)} = -\frac{3}{2} C_F$$
$$k_q^{(1)} = 2 C_F C_A \left(\frac{67}{18} - \frac{\pi^2}{6} \right) - \frac{10}{9} N_F C_F \qquad d_q^{(0)} = \frac{3}{2} C_F$$

Scale variations reSolve

