Contribution ID: 27 Type: not specified

BELLE II: Analysis project

At the Belle II experiment, B meson decays can be studied with highest precision and in particular so called semi-leptonic decays where the B meson decays to a

hadron, a lepton and a neutrino. In this context, when the hadron contains an up quark (B \rightarrow Xu l nu), important Standard Model parameters can be measured.

However, this process is overwhelmed by the much more likely decay to a hadron containing a charm quark (B \rightarrow Xc l nu). Nowadays, most high energy physics

analyses make use of Machine Learning (ML) in order to improve the separation between signal and background. ML has already been used to distinguish $B \to Xu \, l$

nu events from $B \to Xc$ l nu events at Belle II. Various algorithms can be compared in order to choose the most performant one. We propose the student to develop

a ML classifier (typically a Neural Network) for the $B \to Xu$ l nu analysis and compare its performance with other classifiers already used. Prior knowledge of

ML is not required (but could obviously help).

Field

B1: Particle physics analysis (software-oriented)

DESY Place

Hamburg

DESY Division

FΗ

DESY Group

Belle II

Special Qualifications:

Author: MARTINOV, Tommy (BELLE (BELLE II Experiment))