Pseudoscalar pole contributions to HLbL at the physical point

Gurtej Kanwar (University of Bern)

In collaboration with Sebastian Burri, Marcus Petschlies, Urs Wenger + ETMC

CSCS

UNIVERSITÄT BERN

HU Berlin / DESY Zeuthen Lattice Seminar | Nov 14, 2022

Anomalous magnetic moment of the muon

Precision physics, sensitive to BSM effects.

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

Leading order QED Schwinger term in 1948...

$$a_{\ell} = \frac{\alpha}{2\pi}$$

- Heavier flavors more sensitive to new physics effects
- Tau too short-lived, muon is the next-best option

[Jegerlehner & Nyffeler 0902.3360] [Bennett+ Phys. Rev. D 73 (2006) 072003]

Larmor precession Million Events per 149.2n 10 Storage Ring $\omega_a = a_\mu \, {eB \over m}$ **10**⁻¹ **10**⁻² 10⁻³ 20 40 60 80 Time modulo 100µs [µs]

2 / 40

Tensions in a_{μ}

Combined 4.2 σ tension

 $\Delta a_{\mu} = 279(76) \times 10^{-11}$

Expt: BNL E821 + Fermilab E989

- Current err ~ 60×10^{-11}

- Expected err ~ 15×10^{-11}

Theory: Perturbative + pheno + latt

- HVP err ~
$$40 \times 10^{-11}$$

HLbL err ~ 20×10^{-11} At the order
E989 projected

[g-2 WP, Phys. Rep. 887 (2020)]

3 / 40

Hadronic contributions to a_{μ}

 $O(\alpha^3)$ HVP-NLO -98.3(7)

HLbL-LO 90(17) All a_{μ} values $\times 10^{-11}$

HLbL decomposition

 $F_{\gamma^* \to \pi\pi}$ "VFF" well-determined experimentally V

Partial waves for $\gamma^*\gamma^* \rightarrow \pi\pi$ required

Result is small and well-constrained

[Colangelo+ JHEP 1409, 091 (2014)] [Colangelo+ PLB 738, 6 (2014)] [Colangelo+ JHEP 1509, 074 (2015)]

 $F_{P \to \gamma^* \gamma}$ singly-virtual "TFF" experimentally accessible

 $F_{P \rightarrow \gamma^* \gamma^*}$ doubly-virtual "TFF" ~unconstrained

+ ...

HLbL decomposition

 $F_{\gamma^* \to \pi\pi}$ "VFF" well-determined experimentally

Partial waves for $\gamma^* \gamma^* \rightarrow \pi \pi$ required

Result is small and well-constrained

[Colangelo+ JHEP 1409, 091 (2014)] [Colangelo+ PLB 738, 6 (2014)] [Colangelo+ JHEP 1509, 074 (2015)]

THIS TALK

5 / 40

Pole contributions to HLbL

Muon g-2 contribution $a_{\mu}^{P-\text{pole}}$

$$a_{\mu}^{P-\text{pole},(1)} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\cos\theta w_{1}(Q_{1}) \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\cos\theta w_{1}(Q_{2}) \int_{-1}^{1$$

- $Q_1, Q_2, \cos \theta$
- $F_{P\gamma\gamma}(-Q_{2}^{2},0)$
- $(Q_1, Q_2, \cos\theta)$
- $(Q_1 \oplus Q_2)^2, 0)$

Muon g-2 contribution $a_{\mu}^{P-\text{pole}}$

$$a_{\mu}^{P-\text{pole},(1)} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\cos\theta w_{1}(Q_{1}) \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\cos\theta w_{1}(Q_{2}) \int_{-1}^{1$$

P-pole,(2)

Weight functions for π^0

[Nyffeler PRD 94, 053006 (2016)]

Weight functions for η

Weight functions for η'

Peaked at low Q_1^2, Q_2^2 , but somewhat broader spread

10/40

Relevant momenta and relative contribs

	Λ [GeV]	$\pi^0 [LMD+V]$	π^0 [VMD]	η [VMD]	$\eta' [VMD]$
	0.25	14.4 (22.9%)	14.4 (25.2%)	1.8 (12.1%)	1.0 (7.9%)
	0.5	36.8(58.5%)	36.6(64.2%)	6.9(47.5%)	4.5(36.1%)
	0.75	48.5 (77.1%)	47.7 (83.8%)	10.7 (73.4%)	7.8(62.5%)
	1.0	54.1 (86.0%)	52.6 (92.3%)	12.6 (86.6%)	9.9(79.1%)
	1.5	58.8 (93.4%)	55.8 (97.8%)	14.0 (96.1%)	11.7 (93.1%)
Integral	2.0	60.5 (96.2%)	56.5 (99.2%)	14.3 (98.6%)	12.2 (97.4%)
saturates — around here	5.0	62.5 (99.4%)	56.9 (99.9%)	14.5~(100%)	12.5 (99.9%)
	20.0	62.9~(100%)	57.0~(100%)	14.5~(100%)	12.5~(100%)

[Nyffeler PRD 94, 053006 (2016)]

 $a_{\mu}^{P-\text{pole}}$ (models) integrating up to $Q_1, Q_2 \leq \Lambda$

11/40

Pseudoscalar TFFs

 $P \in \{\pi^0, \eta, \eta'\}$ $p = (\sqrt{m_P^2 + \mathbf{p}^2}, \mathbf{p})$

Singly-virtual, spacelike: $F_{P \to \gamma^* \gamma} = F_{P \gamma \gamma}(-Q^2, 0)$ Doubly-virtual, spacelike: $F_{P \to \gamma^* \gamma^*} = F_{P \gamma \gamma}(-Q_1^2, -Q_2^2)$

$$\begin{aligned} \gamma(\gamma) \\ \varphi_1 &= (\omega_1, \mathbf{q}_1) \\ &= F_{P\gamma\gamma}(q_1^2, q_2^2) \\ \gamma^{(*)} \\ \varphi_2 &= (\omega_2, \mathbf{q}_2) \end{aligned}$$

(*)

TFF kinematics

Related to decay to 2γ

$$\Gamma(P \to \gamma \gamma) = \left(\frac{\pi \alpha^2 M_P^3}{4}\right) |F_{P\gamma\gamma}(0,0)|$$

Large- Q^2 limits from pQCD

$$F_{P\gamma\gamma}(-Q^2,0)
ightarrow rac{2F_P}{Q^2}$$
 (Brodsky-Lepage $F_{P\gamma\gamma}(-Q^2,-Q^2)
ightarrow rac{2F_P}{3Q^2}$ (OPE)

TFF data: singly virtual π^0

[H. J. Behrend+ (CELLO), Z. Phys. C49, 401 (1991)] [B. Aubert+ (BABAR), PRD 80, 052002 (2009)] [P. del Amo Sanchez+ (BABAR), PRD 84, 052001 (2011)] [S. Uehara+ (Belle), PRD 86, 092007 (2012)] [J. Gronberg+ (CLEO), PRD 57, 33 (1998)]

TFF data: singly virtual η

[H. J. Behrend+ (CELLO), Z. Phys. C49, 401 (1991)] [B. Aubert+ (BABAR), PRD 80, 052002 (2009)] [P. del Amo Sanchez+ (BABAR), PRD 84, 052001 (2011)] [J. Gronberg+ (CLEO), PRD 57, 33 (1998)]

Note: Singly virtual for η' is very similar.

TFF data: doubly virtual

[J. P. Lees+ (BABAR), PRD 98, 112002 (2018)] Figure from [g-2 WP, Phys. Rep. 887 (2020)]

Lattice can fill in the gaps

Experimentally, $F_{P \to \gamma^* \gamma}$ is easy, $F_{P \to \gamma^* \gamma^*}$ is hard (small cross sections).

On the lattice, $F_{P \to \gamma^* \gamma}$ is hard, $F_{P \to \gamma^* \gamma^*}$ is easier (coming up).

From the lattice, we can provide complementary results.

Related approaches

Other PS-pole lattice calculations

- Alternate discretization
- Chiral extrapolation \bullet

Direct HLbL lattice calculations

Precision currently lower than ulletdata-driven results

[Chao+ Eur.Phys.J.C 81 (2021) 7] [Blum+ Phys.Rev.Lett. 118, 022005 (2017)] [Asmussen+ 1801.04238] [Blum+ Phys.Rev.Lett. 124, 132002 (2020)]

Dispersive η, η' -pole

[Holz+ Eur. Phys. J. C 81,1002 (2021)] [Holz+ Eur. Phys. J. C 82, 434 (2022)]

Low-energy contribs accessible in IV channel ($q^2 \lesssim 1.0 \,{
m GeV^2}$)

[Gérardin+ PoS(LATTICE2021)592, 2112.08101] [Gérardin+ Phys.Rev.D 94 (2016) 7] [Gérardin+ Phys.Rev.D 100 (2019) 3] [Gérardin+ 2211.04159]

18/40

Computing the TFFs

Lattice calculation of $F_{P\gamma\gamma}$

Euclidean time current-current matrix element 1.

$$\tilde{A}_{\mu\nu}(\tau) = \sum_{\mathbf{X}} e^{-i\mathbf{q}_{1}\cdot\mathbf{X}} \left\langle 0 \left| j_{\mu}(\tau;\mathbf{X}) j_{\nu}(0;\mathbf{x}) \right| \right\rangle \right\rangle$$
Note: renormalized

using precisely known Z_A , Z_V

2. Laplace transform

$$\epsilon^{\mu\nu\rho\sigma}q_{1\rho}q_{2\sigma}F_{P\gamma\gamma}(q_1^2,q_2^2) = -i^{n_0} \int_{-\infty}^{\infty} d\tau \ e^{\omega_1\tau} \ \tilde{A}_{\mu\nu}(\tau)$$

where $\mathbf{q}_2 = \mathbf{p} - \mathbf{q}_1$ by momentum conservation

 $\mathbf{0}) | P(\mathbf{p}) |$

currents

Matrix element from 3-pt function

Interpolating operators For π^0 ordinary local interpolator is sufficient: $O_{\pi^0} =$

For η , η' , mixing in principle requires diagonalizing between $\mathcal{O}_{n^8} = i\bar{\psi}\lambda^8\gamma_5\psi$

to separate η' from the correlator ground state (the η)

- Analysis for η proceeds with \mathcal{O}_{n^8}
- Noise reduction & GEVP required for future exploration of η'

$$= i\bar{\psi}\lambda^3\gamma_5\psi$$

Note: λ^{i} are $SU(3)_{f}$ generators (Gellmann basis)

and
$$\mathcal{O}_{\eta^0} = i\bar{\psi}\gamma_5\psi$$

Wick contractions: π^0 isospin rotation

Isospin symmetry* allows removing P-disconnected diagrams:

* $O(a^2)$ isospin breaking with twisted mass is part of continuum extrapolation

Remaining V-disconnected diagrams are included, but numerically small:

Wick contractions: n diagrams

All diagrams required even in isospin limit.

but expected to be subleading.

[Gérardin+ 2211.04159]

Tail fitting and integration

• Exponentially growing noise in the tails of $\tilde{A}_{\mu\nu}(\tau)$ - Probed in the Laplace transform $\int_{-\infty}^{\infty} d\tau e^{\omega_1 \tau} \tilde{A}_{\mu\nu}(\tau)$

Tail fitting and integration

- Exponentially growing noise in the tails of $\tilde{A}_{\mu
 u}(au)$
 - Probed in the Laplace transform $\int_{0}^{\infty} d\tau e^{\omega_{1}\tau} \tilde{A}_{\mu\nu}(\tau)$

- To handle this...
 - Fit Vector Meson Dominance (VMD) or Lowest Meson Dominance (LMD) models to the tails
 - Integrate data in peak ($|\tau| < \tau_c$) Integrate model in tails ($|\tau| > \tau_c$)

VMD & LMD

$$F_{P\gamma\gamma}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(q_1^2 - M_V^2)(q_2^2 - M_V^2)}$$

and

 $F_{P\gamma\gamma}^{\text{VMD}}(q_1^2, q_2^2) = F_{P\gamma\gamma}^{\text{LMD}}(q_1^2, q_2^2) \big|_{\beta=0}$

According to VMD, $M_V = M_{\rho}$, but left as a free fit parameter in this work

26/40

Extrapolating in (q_1^2, q_2^2) **plane**

Finite volume momenta \mathbf{q}_1 , \mathbf{p} , arbitrary ω_1

- Parabolic "orbits" of (q_1^2, q_2^2) accessible
- Singly virtual coverage ($\mathbf{p} \neq 0$ & larger m_P help!)

Extrapolating in (q_1^2, q_2^2) **plane**

Finite volume momenta \mathbf{q}_1 , \mathbf{p} , arbitrary ω_1

- Parabolic "orbits" of (q_1^2, q_2^2) accessible
- Singly virtual coverage ($\mathbf{p} \neq 0$ & larger m_P help!)

Extrapolating in (q_1^2, q_2^2) **plane**

Finite volume momenta \mathbf{q}_1 , \mathbf{p} , arbitrary ω_1

- Parabolic "orbits" of (q_1^2, q_2^2) accessible
- Singly virtual coverage ($\mathbf{p} \neq 0$ & larger m_P help!)

z-expansion for full (q_1^2, q_2^2) dependence

Results

Lattice details

Action: Nf = 2+1+1 twisted clover, Iwasaki gauge action, *physical point*

Pion analysis:

- Three lattice spacings
- Continuum extrapolation (preliminary)
- **Eta analysis:**
 - One lattice spacing (cB072.64, 0.08fm) 🔽
 - Runs for cC, cD in next allocation cycle

ensemble	$L^3 \cdot T/a^4$	m_{π} [MeV]	<i>a</i> [fm]	$a \cdot L_x$ [fm]	$m_{\pi}\cdot L_{\gamma}$
cB072.64	$64^{3} \cdot 128$	140.2	0.080	5.09	3.62
cC060.80	$80^{3} \cdot 160$	136.7	0.068	5.46	3.78
cD054.96	$96^{3} \cdot 192$	140.8	0.057	5.46	3.90

Eta' analysis:

- Found to be too noisy so far 🔔

π^0 TFF results

Shown for one choice of ensemble and analysis procedure.

Doubly virtual much more precise than singly virtual due to kinematics.

Muon g-2: π^0 pole

1. *z*-expansion fits to FF data per choice of tail model, tail fit window, tail cut τ_c

2. Integrated
$$a_{\mu}^{\pi^0-\text{pole}}$$
 per FF

- 3. Systematic error accounting:
 - AIC weighted model averaging
 [Borsanyi+ Science 347, 1452 (2015)]
 - Stability against other analysis choices $(z-exp fit ranges, t_{seq})$

Muon g-2: π^0 pole

Preliminary continuum limit:

 $a_{\mu}^{\pi^{0}-\text{pole}} = 55.3(1.9)_{\text{ctm}}(1.0)_{\text{ctm-syst}} \times 10^{-11}$

Constant vs linear in a^2 fits.

- Constant: underestimated error
- Linear: overfitting
- Preliminary result: weighted average, variation between fits as syst. err [Alexandrou+ (ETMC) 2104.13408]
- Likely too aggressive, will be refined

η TFF results

Statistical errors (dark band) dominate systematic errors (light outer band).

Singly virtual

Muon g-2: η **pole (0.08 fm)**

- Same model averaging procedure as for the pion
- Results found to be quite stable
- Statistical error also dominates g-2

Muon g-2: *n* pole (0.08 fm)

Preliminary 0.08fm (cB ens.): $a_{\mu,0.08\text{fm}}^{\eta-\text{pole}} = 13.2(5.2)_{\text{stat}}(1.3)_{\text{syst}} \times 10^{-11}$

- Largest $t_{seq} = 14$ used (conservative choice)
- Results consistent with previous work

[1] Masjuan, Sanchez-Puertas PRD95 (2017) 054026. [2] Eichmann+ PLB797 (2019) 134855.

[3] Khépani+ PRD101 (2020) 074021.

Currently η' **too noisy**

Preliminary measurements of $\tilde{A}(\tau)$ on coarsest ensemble:

37 / 40

Other observables: $b_P = -\frac{1}{\mathscr{F}(0,0)} \frac{\mathrm{d}}{\mathrm{d}Q^2} \mathscr{F}_{P\gamma^*\gamma}(0,-Q^2) \Big|_{\mathcal{C}}$

π^0 results (incl. continuum limit):

Continuum limit estimation, normal AIC, cD tmax < 22, cB double stat complete samplings, threshold 90% $b_{\pi} = 1.99(0.13)(0.28)[0.31] \,\mathrm{GeV^{-2}}$

η results (cB 0.08fm ens. only):

 $b_n^{0.08\text{fm}} = 1.185(0.361)_{\text{stat}}(0.157)_{\text{syst}}\text{GeV}^{-2}$

VS.

 $b_{\eta} = 1.92(0.04) \,\mathrm{GeV}^{-2}$ [1]

[1] Gan+ Phys. Rept. 945 (2022), 2007.00664

Summary

- 1. Unambiguous decomposition of terms of HLbL
 - Pseudoscalar-pole contribution significant uncertainty
- 2. Form factors are the key input
 - π^0 dispersively from expt data, η, η' not yet
 - Lattice especially important for doubly virtual
- 3. Comparable determination of $a_{\mu}^{\pi^0-\text{pole}}$ at physical point
- 4. Progress towards η TFF and $a_u^{\eta-\text{pole}}$
 - Continuum limit required

- 3. Noise reduction approaches for η' ?
- 4. Other terms in HLbL decomposition?

- 3. Noise reduction approaches for η' ?
- 4. Other terms in HLbL decomposition?

Backup slides

z-expansion

Conformal transformation:

$$z_{k} = \frac{\sqrt{t_{c} - Q_{k}^{2}} - \sqrt{t_{c} - t_{0}}}{\sqrt{t_{c} + Q_{k}^{2}} + \sqrt{t_{c} - t_{0}}} \qquad t_{0} \text{ ch}$$

$$k \in \{1, 2\}$$

Polynomial fit to cutoff order $N \in \{1,2\}$ used in this work.

Multiplicative factor to match B-L and OPE asymptotics:

$$P(Q_1^2, Q_2^2) = 1 + \frac{Q_1^2 + Q_2^2}{M_V^2}$$

- $4m_{\pi}^2$ given by 2π threshold
- hosen to minimize $|z_k|$ over range of interest

Other terms in HLbL decomposition

Contribution

 π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering subtotal

- scalars tensors
 - axial vectors
- u,d,s-loops / short-distance
 - $c ext{-loop}$

total

[Colangelo+ Snowmass White Paper, 2203.15810]

Renormalization factors Z_V and Z_A

Ward identities in [Alexandrou+ 2206.15084].

ensemble	Z_V	Z_A	
cB211.072.64	0.706378(16)	0.74284(23)	
cB211.072.96	0.706402(15)	0.74274(20)	
cC211.060.80	0.725405(13)	0.75841(16)	
cD211.054.96	0.744105(11)	0.77394(10)	

Determined extremely precisely using a hadronic method based on the lattice

AIC averaging

- Information Criterion (AIC).
- Procedure with modified AIC from [Sz. Borsanyi et al., Nature, 593(7857) 51–55, (2021) and refs. therein] can be used to estimate the systematic errors.

AIC ~ exp
$$\left[-\frac{1}{2}\left(\chi^2 + 2n_{par} - n_{data}\right)\right]$$

- Normalize weights, i.e. $\sum_i w_i = 1$.
- Build cumulative distribution function (CDF)

$$P(y;\lambda) = \int_{-\infty}^{y} dy' \sum_{i} w_{i} N(y';m_{i},\sigma_{i}\sqrt{\lambda}).$$

• Average analysis results, weighted e.g. with reduced χ^2 or Akaike

 Median of CDF defines central percentiles, i.e.

$$\sigma_{\text{total}}^2 \equiv \left[\frac{1}{2}\left(y_{84} - y_{16}\right)\right]^2 \equiv \sigma_{\text{stat}}^2 + \sigma_{\text{sys}}^2,$$

with $P(y_{16}; 1) = 0.16$ and $P(y_{84}; 1) = 0.84$. • Rescaling each σ_i^2 by λ increases σ_{stat}^2 by the same factor, i.e.

$$\lambda\sigma_{\rm stat}^2+\sigma_{\rm sys}^2\equiv$$

with $P(\tilde{y}_{16}; \lambda) = 0.16$ and $P(\tilde{y}_{84}; \lambda) = 0.84$.

 Maximal effective sample size car correlation matrix R,

$$|R| = \sup\left\{\frac{1}{a^*R}\right\}$$

with
$$R_{ij} = \operatorname{cov}(X_i, X_j) / \sigma_{X_i} \sigma_{X_j} \in$$

[Slide credit: Sebastian Burri]

Median of CDF defines central value, total error given by 16% and 84%

$$\left[\frac{1}{2}\left(\tilde{y}_{84}-\tilde{y}_{16}\right)\right]^2\equiv\tilde{\sigma}_{\text{total}}^2,$$

Maximal effective sample size can be estimated by the magnitude of the

$$\overline{a}: a \in \mathbb{R}^n, \sum a_i = 1 \bigg\},$$

 $\in [-1,1], \ R_{ii} = 1.$

