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Feynman–Hellmann (FH) papers:

● ‘A Lattice Study of the Glue in the Nucleon’
arXiv:1205.6410 (PLB)

● ‘A Feynman-Hellmann approach to the spin structure of hadrons’
arXiv:1405.3019 (PRD)

● ‘A novel approach to nonperturbative renormalization of singlet and nonsinglet
lattice operators’
arXiv:1410.3078 (PLB)

● ‘Disconnected contributions to the spin of the nucleon’
arXiv:1508.06856 (PRD)

● ‘Electromagnetic form factors at large momenta from lattice QCD’
arXiv:1702.01513 (PRD)

● ‘Nucleon structure functions from lattice operator product expansion’
arXiv:1703.01153 (PRL)

● ‘Lattice QCD evaluation of the Compton amplitude employing the
Feynman-Hellmann theorem’
arXiv:2007.01523 (PRD)

● ‘Generalized parton distributions from the off-forward Compton amplitude in
lattice QCD’
arXiv:2110.11532 (PRD)

● ‘Moments and power corrections of longitudinal and transverse proton structure
functions from lattice QCD’
arXiv:2209.04141

+ Various (Lattice) conferences
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Motivation:

Need computation of non-perturbative matrix elements (MEs):

⟨H ′∣Ô ∣H⟩

General structure

● H ∼ ψψ (meson) or H ∼ ψψψ (baryon)

● Ô ∼ ψγψ ∼ J or Ô ∼ FF or even more complicated Ô ∼ JJ

Usual approach: determine ME via 3-point correlation functions

This talk revolves around an alternative approach using 2-point
correlation functions in particular:

Generalisation of Feynman–Hellmann approach to determination of
(nucleon) MEs from strictly degenerate energy states to near-degenerate

or ‘quasi-degenerate’ energy states

● This talk: explanation of the above statement / theory / numerical
tests (mainly) for transition matrix elements (eg Σ→ N) + . . .
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Contents

● Feynman–Hellmann approach via transfer matrix to computation of
2-pt correlation functions
● Quasi-degenerate states
● Dyson expansion
● Reduction to a Generalised EigenVector Problem (GEVP)

● Inclusion of spin

● Examples
● Scattering and decay (or transition) matrix elements, eg N → N and

Σ→ N
● Sketches of avoided energy levels

● Numerical tests/results for transition matrix elements and scattering

● Valence versus sea components
● Disconnected contributions

● Conclusions

HEALTH WARNING: This is a rather technical Lattice talk
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Feynman–Hellmann (FH) — some Mathematical Details

Hamiltonian formalism: regard Euclidean time (at least) as continuous

Consider the 2-point nucleon correlation function

CλB′B(t) = λ⟨0∣ ˆ̃B ′(0; p⃗′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sink∶mom op

Ŝ(q⃗)t ˆ̄B(0, 0⃗)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

Source∶ spatial

∣0⟩λ

where Ŝ is the q⃗-dependent transfer matrix

Ŝ(q⃗) = e−Ĥ(q⃗)

and in the presence of a perturbation [λα = ∣λα∣ζα with phase ζα = ±1,±i ]

Ĥ(q⃗) = Ĥ0 −∑
α

λα
ˆ̃Oα(q⃗)

where [At leading order can drop α index]

ˆ̃O(q⃗) = ∫
x⃗
(Ô(x⃗)e i q⃗⋅x⃗ + Ô†(x⃗)e−i q⃗⋅x⃗)
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Physical situation (quasi-degenerate energies):

● Quasi-degenerate states:

Ĥ0∣Br(p⃗r)⟩ = EBr (p⃗r)∣Br(p⃗r)⟩ r = 1 , . . . ,dS

where

EBr (p⃗r) = Ē + εr r = 1 , . . . ,dS

● Well separated from higher energy states:

Ĥ0∣X(p⃗X )⟩ = EX (p⃗X )∣X(p⃗X )⟩ EX ≫ Ē

● Quasi-degenerate states taken as lowest energy
states

● We have already applied this method to
degenerate states, now generalise approach

S
1

d
S
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Now insert two complete sets of unperturbed states ∣X⟩ →
∣X⟩

√

⟨X ∣X⟩
, ∣0⟩ → ∣0⟩

⨋
X(p⃗X )

∣X (p⃗X ))⟩ ⟨X (p⃗X )∣

≡ ∑
r

∣Br(p⃗r)⟩⟨Br(p⃗r)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

of interest

+⨋
EX≫Ē

∣X (p⃗X )⟩ ⟨X (p⃗X )∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

higher states

= 1̂

before and after Ŝ t to give

CλB′B(t) =

⨋
X(p⃗X )

⨋
Y (p⃗Y )

λ⟨0∣ ˆ̃B ′(p⃗′)∣X (p⃗X )⟩ ⟨X (p⃗X )∣Ŝλ(q⃗)t ∣Y (p⃗Y )⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

need

⟨Y (p⃗Y )∣ ˆ̄B(0⃗)∣0⟩λ

Time dependent perturbation theory via the Dyson Series
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Dyson expansion – iterate identity

e−(Ĥ0−λα
ˆ̃
Oα)t = e−Ĥ0t + λα ∫

t

0
dt′ e−Ĥ0(t−t

′
) ˆ̃Oα e−(Ĥ0−�

��HHHλβ
ˆ̃
Oβ )t

′

● O(λ2) gives Compton like amplitudes ∼ ⟨. . . ∣OαOβ ∣ . . .⟩ – not considered here

● Consider 4 possible pieces separately:

⟨Br ∣e−(Ĥ0−λ
ˆ̃
O)t ∣Bs⟩ = e−Ē t (δrs + tDrs +O(2))

⟨Br ∣e−(Ĥ0−λ
ˆ̃
O)t ∣Y ⟩ = e−Ē t ⎛

⎝
λ
⟨Br ∣ ˆ̃O∣Y ⟩
EY − EBr

+O(2)
⎞
⎠
+ more

damped

. . . = . . .
This gives

CλB′B(t) = ∑
rs
λ⟨0∣ ˆ̃B ′(p⃗ ′)∣Br (p⃗r )⟩λ ⟨Br ∣e−(Ĥ0−λ

ˆ̃
O)t ∣Bs⟩ λ⟨Bs(p⃗s)∣ ˆ̄B(0⃗)∣0⟩λ

with

∣Bs(p⃗s)⟩λ = ∣Bs(p⃗s)⟩ + λ⨋
EY≫Ē

∣Y (p⃗Y )⟩
⟨Y (p⃗Y )∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩

EY − EBs

Drs = −εr δrs + λ⟨Br (p⃗r )∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩

[So a factorisation where any unwanted ∣Y ⟩ states have been absorbed into time indept renormalisation of wavefunction.]
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● Drs ∶

Drs = −εrδrs + λ ⟨Br(p⃗r)∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ars

As dS × dS is a dimensional Hermitian matrix:

Drs =
dS

∑
i=1

µ(i)e(i)r e(i)∗s µ, er eigenvalues/eigenvectors

with (completeness)

dS

∑
i=1

e(i)r e(i)∗s = δrs
dS

∑
r=1

e(i)∗r e(j)r = δij

● Re-write

δrs + tDrs =
dS

∑
i=1

e(i)r [1 + tµ(i)]e(i)∗s

● Re-exponentiate
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This gives finally:

CλB′B(t) =
dS

∑
i=1

A
(i)
λB′B e−E

(i)
λ

t

Perturbed energies:

E
(i)
λ = Ē − µ(i)

Amplitude

A
(i)
λB′B = w

(i)
B′ w̄

(i)
B

with

w
(i)
B′ =

ds

∑
r=1

ZB′

r e(i)r w̄
(i)
B =

ds

∑
s=1

Z̄B
s e(i)∗s

where the wavefunctions or overlaps are [p⃗ ′ → p⃗r ]

ZB′

r = λ⟨0∣ ˆ̃B ′(p⃗′)∣Br(p⃗r)⟩λ Z̄B
s = λ⟨Bs(p⃗s)∣ ˆ̄B(0⃗)∣0⟩λ

● So problem is now reduced to a GEVP to determine eigenvalues E
(i)
λ

● GEVP eigenvectors should follow pattern of e⃗(i)
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Relation between momenta

● For the matrix elements have

[Ô(x⃗) = e−i
ˆ⃗p⋅x⃗ Ô(0⃗) ei

ˆ⃗p⋅x⃗ ]

⟨B(p⃗r)∣ ˆ̃O(q⃗)∣B(p⃗s)⟩
= ⟨Br(p⃗r)∣Ô(0⃗)∣Bs(p⃗s)⟩ δp⃗r ,p⃗s+q⃗ + ⟨B(p⃗r)∣Ô†(0⃗)∣B(p⃗s)⟩ δp⃗r ,p⃗s−q⃗

● So matrix elements step up or down in q⃗ /= 0⃗

p⃗r = p⃗s + q⃗ or p⃗r = p⃗s − q⃗

[Momentum conservation]

● Diagonal matrix elements vanish
So quasi-degenerate states have to mix
[ie must consider degenerate perturbation theory]

S
1

d
S
  

                        

                

● Each step up or down corresponds to another order in λ

(Dyson expansion)

So (eg) O(λ2) gives Compton like amplitudes ∼ ⟨. . . ∣OαOβ ∣ . . .⟩
Step up step down now possible: p⃗ → p⃗ ± q⃗ → p⃗ relevant for DIS

Incorporation of spin – postpone
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Quasi–degenerate baryon energy states I

● Flavour diagonal matrix elements – N scattering

O(x⃗) ∼ (ūγu)(x⃗) − (d̄γd)(x⃗)

● dS = 2-dimensional space: r , s = 1, 2

∣B1(p⃗1)⟩ = ∣N(p⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB1
(p⃗1)≡EN(p⃗)=Ē+ε1

∣B2(p⃗2)⟩ = ∣N(p⃗ + q⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB2
(p⃗2)≡EN(p⃗+q⃗)=Ē+ε2

⟨Br(p⃗r)∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩ = ( 0 a∗

a 0
)
rs

where

a = ⟨B2(p⃗2)∣Ô(0⃗)∣B1(p⃗1)⟩ ≡ ⟨N(p⃗ + q⃗)∣Ô(0⃗)∣N(p⃗)⟩
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Quasi–degenerate baryon energy states II

● Flavour transition matrix elements – (eg) Σ(sdd) → N(udd) decay

O(x⃗) ∼ (ūγs)(x⃗)

● dS = 2-dimensional space: r , s = 1, 2

∣B1(p⃗1)⟩ = ∣Σ(p⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB1
(p⃗1)≡EΣ(p⃗)=Ē+ε1

∣B2(p⃗2)⟩ = ∣N(p⃗ + q⃗)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EB2
(p⃗2)≡EN(p⃗+q⃗)=Ē+ε2

⟨Br(p⃗r)∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩ = ( 0 a∗

a 0
)
rs

where

a = ⟨B2(p⃗2)∣Ô(0⃗)∣B1(p⃗1)⟩ ≡ ⟨N(p⃗ + q⃗)∣Ô(0⃗)∣Σ(p⃗)⟩

● ie similar structure to N scattering case
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Diagonalising Drs ∶ [p⃗1 ≡ p⃗, p⃗2 ≡ p⃗ + q⃗; Er = Ē + εr ]

Drs = −εrδrs + λ⟨Br(p⃗r)∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩ = ( −ε1 a∗

a −ε2
)
rs

1) Eigenvalues µ±: [quadratic equation]

Giving energies

E
(±)
λ = Ē − µ±

= 1

2
(EN(p⃗ + q⃗) + EN/Σ(p⃗)) ∓ 1

2
∆Eλ(p⃗, q⃗)

with

∆Eλ = E
(−)
λ − E

(+)
λ

and

∆Eλ =
√

(EN(p⃗ + q⃗) − EN/Σ(p⃗))2 + 4λ2 ∣⟨N(p⃗ + q⃗)∣Ô(0⃗)∣N/Σ(p⃗)⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣a∣2
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Degenerate energy states – N scattering

eg 1-dimensional (exaggerated) sketch: [λ2∣a∣2 = const., q = 1]

−1.25 −1 −0.75 −0.5 −0.25 0 0.25

p

E
N
(p+1)E

N
(p)

→

−1.25 −1 −0.75 −0.5 −0.25 0 0.25

p

E
λ

(−)

E
λ

(+)

● Focus on degeneracy at: EN(p) = EN(p + q) at p = −q/2
[Similarly when EN (p) = EN (p − q) at p = q/2]

● Free case → Interacting case: avoided energy levels

● Sketch curves based on previously derived formulae: E (+), E (−)



Introduction FH Examples Sketches Spin Results Conclusions

Quasi–degenerate energy states – Σ→ N decay

eg 1-dimensional (exaggerated) sketch: [λ2∣a∣2 = const., q = 1]

−1.25 −1 −0.75 −0.5 −0.25 0

p

E
N
(p+1)     .E

Σ
(p)

→

−1.25 −1 −0.75 −0.5 −0.25 0 0.25

p

E
λ

(−)

E
λ

(+)

● Free case → Interacting case: avoided energy levels

● Sketch based on previous formulae
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Diagonalising Drs ∶

Drs = −εrδrs + λ⟨Br(p⃗r)∣ ˆ̃O(q⃗)∣Bs(p⃗s)⟩ = ( −ε1 a∗

a −ε2
)
rs

2) Eigenvectors e
(±)
r :

e(±)r = N(±) (
λ∣a∣
κ±

a
∣a∣

)
r

● κ± = 1
2
(EN/Σ − EN) ± 1

2
∆E

● N(±) normalisation factor

● a/∣a∣ = ζa possible phase of a: ±1, ±i
ie phase of matrix element contained in eigenvectors.

● Components related: e
(−)
2 = −e(+)1 a/∣a∣ and e

(+)
2 = e

(−)
1 a/∣a∣
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Quasi–degenerate eigenvectors – Σ→ N decay

e⃗(±) = ( e
(±)
1

e
(±)
2

)

eg 1-dimensional sketch: [λ2∣a∣2 = const., ζa = 1, q = 1]

−1.25 −1 −0.75 −0.5 −0.25 0 0.25

p

0

1

e
1

(−)2
=e

2

(+)2

e
1

(+)2
=e

2

(−)2 →

−1.25 −1 −0.75 −0.5 −0.25 0 0.25

p

0

1

e
1

(−)2
=e

2

(+)2

e
1

(+)2
=e

2

(−)2

● Free case → Interacting case: change of state

● Sketch based on previous formulae
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Incorporating the spin index

● ∣Br(p⃗r)⟩ → ∣Br(p⃗r , σr)⟩, σr = ±1 spin index

● D matrix doubled in size: σr r = +1,−1, . . . + dS ,−dS ie 2dS × 2dS
● Energy states corresponding to ∣Br(p⃗r , σr)⟩, σ = ± are degenerate

[Kramers degeneracy] so still have dS eigenvalues: E
(i)
λ

Cλ rs(t)

≡ ∑
αβ

∑
σrσs

Γβα λ⟨0∣ ˆ̃Brα(p⃗r)∣Br(p⃗r , σr)⟩λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Zr u
(r)
α (p⃗r ,σr )+...

×

⟨Br(p⃗r , σr)∣e−(Ĥ0−λ ˆ̃O)t ∣Bs(p⃗s , σs)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δσrσs δrs+t Dσr r,σs s
´ ¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¶

−εr δrσr ,σs s+λaσr r,σs s

× λ⟨Bs(p⃗s , σs)∣ ˆ̄Bsβ(0⃗)∣0⟩λ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z̄s ū
(s)
β
(p⃗s ,σs)+...

aσr r ,σs s = ⟨Br(p⃗r , σr)∣ ˆ̃O(q⃗)∣Bs(p⃗s , σs)⟩



Introduction FH Examples Sketches Spin Results Conclusions

Choice of Γ

With (eg) Γunpol = (1 + γ4)/2 and ū(r)(p⃗r , σr)Γunpolu(s)(p⃗s , σs) ∝ δσr ,σs

spin sums reduce D to previous dS × dS matrix

Dr ,s = −εrδr ,s + λars ars =
1

2
(a+r ,+s + a−r ,−s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
average

Similarly:
Γ Drs

Γunpol = (1 + γ4)/2 −εrδrs + λ 1
2
(a+r ,+s + a−r ,−s)

Γpol
3 = (1 + γ4)/2 × (1 ± iγ5γ3) −εrδrs ± λ 1

2
(a+r ,+s − a−r ,−s)

Γpol
± = (1 + γ4)/2 × iγ5(γ1 ± iγ2) −εrδrs + λa±r ,∓s

Explicit form factor decomposition of matrix element shows that different
spin components of matrix elements related to each other:

a−r ,−s = ηa∗+r ,+s a−r ,+s = −ηa∗+r ,−s [η = ±]

So practically pick out either a+r ,+s or a+r ,−s (spin-flip)
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Explicit check for previous dS = 2 case:

Dσr r ,σs s = −εrδrσr ,σs s + λaσr r ,σs s

● Dσr r,σs s : (2 × 2) × (2 × 2) dimensional matrix

● Upshot from previous examples

aσr r,σs s = ( 0 a∗

a 0
)
σr r,σs s

a → ( a++ a+−
a−+ a−−

)

● Giving

∆Eλ =
√

(EN(p⃗ + q⃗) − EN/Σ(p⃗))2 + 4λ2 ∣det a∣2

where

∣det a∣2 = ∣⟨N(p⃗ + q⃗,+)∣Ô(0⃗)∣N/Σ(p⃗,+)⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣a++ ∣2

+ ∣⟨N(p⃗ + q⃗,+)∣Ô(0⃗)∣N/Σ(p⃗,−)⟩∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣a+− ∣2

Contains previous cases
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Test: Transition matrix elements Σ− → n decay:

● Clover-Wilson: Nf = 2 + 1-flavours, isospin limit Σ(sdd) → N(udd)
● Presently only considered V4, p⃗ = 0⃗

Q2 = −(MΣ − EN(q⃗))2 + q⃗2

● 323 × 64 lattice size, O(500) configs, a = 0.074 fm, Mπ ∼ 330 MeV
● Momentum choices: [q⃗2 ≡ q2

2 + twisting]

run # q⃗ 2 Q2 [GeV2]
1 0.0 -0.0095
2 0.019 0.0048
3 0.0096 0.062
4 0.025 0.017
5 0.041 0.29
6 0.049 0.35

● Matrix element:

⟨N(q⃗,+)∣ūγ4s ∣Σ(0⃗,+)⟩rel
=

√
2MΣ(EN(q⃗) +MN)

×(f ΣN
1 (Q2) + EN(q⃗) −MN

MN +MΣ
f ΣN
2 (Q2) + EN(q⃗) −MΣ

MN +MΣ
f ΣN
3 (Q2))
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Transition matrix elements for Σ(sdd) → N(udd) [Σ− → n decay]:

S = Sg + ∫
x
(ū, s̄)( Du −λT ′

−λT ′ Ds
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

( u
s

) + ∫
x
d̄ Dd d

● Nf = 2 + 1 flavours

● T (x , y ; q⃗) = γ e i q⃗⋅x⃗ δx,y [T ′ = γ5T †γ5]

● [Γunpol]

Cλ rs(t) = ( CλΣΣ(t) CλΣN(t)
CλNΣ(t) CλNN(t) )

rs

● Generalised EigenVector Problem [GEVP]
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Transition matrix elements for Σ(sdd) → N(udd) [Σ− → n decay]:

●

Cλ rs(t) = ( CλΣΣ(t) CλΣN(t)
CλNΣ(t) CλNN(t) )

rs

● Propagators

( Guu Gus

Gsu Gss
) = ( (M−1)uu (M−1)us

(M−1)su (M−1)ss
)

● To avoid inverting full M matrix expand M in 2 × 2 blocks to
O(λ4) [Need several inversions]

G (uu) = (1 − λ2D−1
u T D−1

s T ′)−1D−1
u

G (ss) = (1 − λ2D−1
s T ′D−1

u T )−1D−1
s

and
G (us) = λD−1

u T G (ss)

G (su) = λD−1
s T ′G (uu)

● Potential advantage: range of λ values available
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Effective plots
● Diagonalise the correlation

matrix (GEVP)

Cλ rs(t) = ( CλΣΣ(t) CλΣN(t)
CλNΣ(t) CλNN(t)

)
rs

Gives two eigenvectors
and eigenvalues

● Use the eigenvectors to
project out two correlation
functions

C (i)λ (t) = v (i) †Cλ(t)u(i) i = ±

● Take the ratio of the two
correlators

Rλ(t) =
C (−)λ (t)
C (+)λ (t)

t≫0∝ e−∆Eλt

● Run #5, O(λ4), λ = 0.025:

0 5 10 15 20
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(∆
E
λ
) e

ff

O(λ4)

● (∆Eλ)eff = − ln R(t+1)
R(t)
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λ Convergence
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● Using O(λ) – O(λ4) terms

● LH plot: Run #1; RH plot: Run #5

● 0 ∼< λ ∼< 0.04
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Fits: Run#1 – #6 [O(λ4) results]
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● Fit: ∆Eλ =
√

(EN(q⃗) −MΣ)2 + 4λ2 ∣⟨N(q⃗,+)∣ūγ4s ∣Σ(0⃗,+)⟩∣2

● Pre-determine EN(q⃗) −MΣ, so one parameter fit
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Avoided energy level crossing

0.00 0.01 0.02 0.03 0.04 0.05
~q 2
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Nucleon
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~q 2
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E

State 1 (λ = 0.025)

State 2 (λ = 0.025)

● LH plot: Free case Σ (triangle) and N (squares) energy states as a
function of q⃗2

● RH plot: The mixed states E (+)λ (crosses) and E (−)λ (stars)

● Avoided energy level crossing
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State mixing

e⃗(±) = ( e
(±)
1

e
(±)
2

)

0.00 0.02 0.04
~q 2

0.0

0.2

0.4

0.6

0.8

1.0

|e(−
)

i
|2

|e(−)
1 |2

|e(−)
2 |2

0.00 0.02 0.04
~q 2

0.0
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0.6

0.8

1.0

|Z
v

(−
)

i
|2

|Z v
(−)
1 |2

|Z v
(−)
2 |2

● LH plot: Eigenvectors known (from EN , MΣ, a++)

● RH plot: cf GEVP: v (i)r ∝ e(i)r so also track e(i)r

● Components flip between states
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Conventional three-point function results – run #5 comparison [similiar Q2]

● Same number of gauge configs (∼ 500)

● Both Σ→ N and opposite 3-point functions used

● τ operator point insertion

3 source-sink tsep = 10, 13, 16 used [∼ 0.74, 0.96, 1.18 fm]

● Fit ansatz includes an excited state

● Need to extrapolate
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Comparison of results
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Elastic nucleon scattering I

● p′ = p + q; Q2 = −q2

⟨N(p⃗′)∣Jµ(q⃗)∣N(p⃗)⟩ =

uN(p⃗′) [γµF1(Q2) + σµν
qν

2MN
F2(Q2)]uN(p⃗)

● Jµ = 2
3
ūγµu − 1

3
d̄γµd

● Sachs form factors

GE(Q2) = F1(Q2) − Q2

(2MN)2
F2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

(q=p’-p)γ

p p’

e

e’
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Elastic nucleon scattering II

● Choose Breit frame geometry (electron bounces from nucleon):

● ie p⃗′ ≡ p⃗ + q⃗ = −p⃗ as a trivial solution of EN(p⃗ + q⃗) = EN(p⃗)
● Degenerate (not quasi-degenerate):

∆Eλ =
√

((((
((((

((hhhhhhhhhh(EN(p⃗ + q⃗) − EN(p⃗))2 + 4λ2 ∣⟨N(p⃗ + q⃗)∣Ĵµ(0⃗)∣N(p⃗)⟩∣
2

● This gives

∆Eλ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λMN

EN
GE µ = 4

λ (e⃗z×q⃗)i
EN

GM µ = i

● Choose q⃗ 2 so large range Q 2
∼< 7 GeV2
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Results
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● LH: GE , GM also compared to
variational 3-point (on same
configs)

● RH: As for LH together with
JLAB experimental results
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A potential problem

● Presently all results for the valence sector, as just considered
correlation functions

● Including quark-line-disconnected matrix elements
● Expensive: Need purpose generated configurations with determinant

also containing the λ term
● (H)MC problem: for probability definition need real determinant so

fermion matrix must also be γ5-Hermitian (as well as Hermitian)

Ô⇒ λV , λA imaginary [λS , λP , λT real]

so Eλ develops an imaginary part for O ∼ V ,A
● Have investigated this for axial current (and spin) and seen that this

occurs (and can be measured) but is noisy (usual problem)

● Possible solution: expand Greens function (in λ) as before and take
λ as imaginary

● For valence sector doesn’t matter
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Conclusions

● FH approach is a viable alternative to conventional method of 3-pt
correlation functions for computing matrix elements

● FH approach only requires 2-pt correlation functions

● FH approach now generalised to decays

● With quasi-degenerate theory, don’t need to tune for degenerate
energies as before – in principle can re-use propagators for other
decay/transition processes
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