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Introduction

Lattice QCD measurements of (g− 2)µ, fK/fπ , gA,
√
t0, . . . now achieve ∼ 1% precision

To go beyond this accuracy, QCD with mu = md may not be sufficent

Common approaches to include QED

• simulate QCD+QED in a Monte Carlo

• expand in α ≈ 1/137 and (mR
u −mR

d )/ΛQCD ∼ 1%

…electro-quenched simulations are expected to have an O(10%) accuracy for the leading elec-
tromagnetic effects. This suppression is in principle rather weak and results obtained from
electro-quenched simulations might feature uncontrolled systematic errors

–FLAG2021

1Borsanyi:2020mff; Bushnaq:2022aam; CSSM:2019jmq; Aoki:2012st; PhysRevLett.109.072002.
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Introduction

Lattice QCD measurements of (g− 2)µ, fK/fπ , gA,
√
t0, . . . now achieve ∼ 1% precision

To go beyond this accuracy, QCD with mu = md may not be sufficent

Common approaches to include QED

• simulate QCD+QED in a Monte Carlo
requires generation of new gauge configurations

• expand in α ≈ 1/137 and (mR
u −mR

d )/ΛQCD ∼ 1%
increases number and complexity of measurements

…electro-quenched simulations are expected to have an O(10%) accuracy for the leading elec-
tromagnetic effects. This suppression is in principle rather weak and results obtained from
electro-quenched simulations might feature uncontrolled systematic errors

–FLAG2021

1Borsanyi:2020mff; Bushnaq:2022aam; CSSM:2019jmq; Aoki:2012st; PhysRevLett.109.072002.
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RM123 method

Expanding the path integral S = SQCD + ie
∫
JµAµ in e =

√
4πα

〈O〉 = 〈O〉
∣∣∣
e=0

+ 1
2
e2

[
∂
∂e

∂
∂e

〈O〉
]
e=0

+ . . .

the leading corrections are correlators

∂
∂e

∂
∂e

〈O〉 = (−i)2
∫
x,y

〈Jµ(x)Aµ(x)Jν(y)Aν(y)O〉conn

with two insertions of the electromagnetic current

Jµ = 2
3
ūγµu− 1

3
d̄γµd− 1

3
s̄γµs,

E.g. corrections to the spectrum, we need the insertion with a two-point function

O =

∫
d3xφπ(x)φ

†
π(0)

from which we can extract mπ+ etc.

2deDivitiis:2011eh; deDivitiis:2013xla.
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Leading-order Wick contractions

The fields contract within the currents (W1,2), or with fields in the operator O (W3,4)

W1

O

W2

O

W3

O

W4

O

e.g. W1,2 are expressed in terms of the photon propagator Gµν (in fixed gauge)

W1,2 = −a8
∑
x,y

Hµν
1,2(x, y)G

µν(x− y).

where H1,2 are the traces of quark propagators Sf = D−1
f

Hµν
1 (x, y) =

∑
f,g QfQg tr{γµSf (x, x)} tr{γνSg(y, y)},

Hµν
2 (x, y) = −

∑
f Q2

f tr{γµSf (x, y)γνSf (y, x)}

Omitting W1,2,3 is equivalent to setting e = 0 in the fermion determinant

4 / 27
Unquenched QCD+QED

�



Relation to the LO HVP

The propagator traces H1,2 are similar to the ones which define the LO HVP

e.g. for g − 2 in the time-momentum representation

aLO,HVP
µ =

(α

π

)2
∫

d4xK(x0,mµ)〈Hii
1 (x, 0) +Hii

2 (x, 0)〉

Replace photon propagator G(x) ∼ x−2 (small x) −→ kernel K ∼ x4
0 (small x0)

Good methods exist for evaluating the disconnected traces H1

3Bernecker:2011gh.
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Outline

1 Disconnected contribution to HVP
Analysis of the variance
Numerical experiments
Extensions for single flavour and Nf = 1 + 1 + 1

2 Disconnected contributions to IB
Analysis of the variance
Numerical experiments
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Analysis of the disconnected contribution to LO HVP

The disconnected diagram H1 factorizes

Hµν
1 (x, y) = Tµ(x)T ν(y),

Tµ(x) =
∑

f Qf tr{γµSf (x, x)}

and so does its variance which parameterizes the std. error = σ/
√

Ncfg

σ2
H(x, y) = 〈H2

1 〉 − 〈H1〉2

≈ σ2
T σ2

T when |x− y| � m−1
π

Consider the contribution of a single light flavour, e.g. f = u with Qu = 1

The variance of Tf (x) can be re-expressed in terms of local operators

σ2
Tf

= 〈V uu
µ (0)V dd

µ (0)〉 ∼ a−6

so is dominated by short-distance fluctuations as a → 0

4Giusti:2019kff.
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Translation averaging (and its approximations)
Suppose we compute the translation-average over L3

T̄µ
f (x0) =

a3

L3

∑
~x

Tµ
f (x)

then its variance is suppressed by the spatial volume

σ2
T̄f

=
a3

L3

[
σ2
Tf

+
∑
~x6=~0

〈V uu
µ (x)V dd

µ (0)〉conn.
]
∼

a3

L3
a−6 ∼ a−3

However, we can only compute estimators like the Hutchinson trace

T̄ µ
f (x) =

1

Nsrc

Nsrc∑
i=1

η†i (x){Sfηi}(x)

which introduce additional variance due to the fluctuations of η

σ2
T̄f

= σ2
T̄f

+ σ2
s

= “gauge noise” +
1

Nsrc
× “random field noise”
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Numerical experiment

10−5

10−4

10−3

10−2

10−1

100

101

1 10 100 1000

σ
2
·(
L
a
)3

Ns

S

P

Tjk

Ak

Vk

Nf = 2 O(a)-improved Wilson fermions mπ = 270MeV mπL = 4.3

Using gaussian auxiliary fields, the total variance is

σ2
T̄f

=
a3

L3

∑
~x

[
〈V uu

µ (x)V dd
µ (0)〉+

1

Nsrc
〈Pud(x)Pdu(0)〉

]
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Including Nf = 2 + 1 u,d, s flavours

With mu = md and Qu = 2
3
, Qd = Qs = − 1

3
in the current Jµ∑

f=u,d,s
QfSf = 1

3
{Sud − Ss}

Using the identity Sud − Ss = (ms −mud)SudSs

1. the variance is suppressed comapared to the single flavour

σ2
T̄

∼ (mud −ms)
2a−1 as a → 0

2. there are two independent estimators for the difference

Θµ(x) =
1
3
(ms −mud)

1

Nsrc

Nsrc∑
i=1

η†i (x)γµ{SudSsηi}(x),

Tµ(x) = 1
3
(ms −mud)

1

Nsrc

Nsrc∑
i=1

{η†i Ss}(x)γµ{Sudηi}(x)

where the cyclicity of the trace is used in the second “split-even” estimator

5ETM:2008zte.
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Numerical experiment with Nf = 2 + 1 u,d, s flavours

10−5

10−4

10−3

10−2

10−1

100

1 10 100 1000

σ
2
·(
L
a
)3

Ns

Vk
standard

split-even
gauge variance

Observations

1. the total variance is suppressed w.r.t. sin-
gle flavour, as expected

2. the gauge noise ≪ random field noise
as before

3. the split-even estimator has much smaller
random field noise

The additional contribution from the auxiliary fields

σ2
Θ̄

= σ2
T̄
−

(ms −mud)
2

L3

1

Nsrc
a11

∑
x,y,z

〈Pud(x)Sds(y)P sc(z)Scu(0)〉

σ2
T̄ = σ2

T̄
−

(ms −mud)
2

L3

1

Nsrc
a11

∑
x,~y,z

〈Pud(x)V ds
µ (0, ~y)P sc(z)V cu

µ (0)〉
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Numerical experiment with Nf = 2 + 1 u,d, s flavours
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−
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Nf = 2 + 1 contribution to aLO,HVP
µ

Excellent signal for the disconnected contribution to aLO,HVP
µ up to ∼ 2.5 fm

-1

0
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5

0 5 10 15 20 25 30

x0/a

a3Crs
V V × 106

split-even

0

200

400

600

800

0 0.5 1 1.5 2 2.5 3

xc0 (fm)

aHVP
µ,< (xc0)× 1010

Gconn
u,d

Gdisc
u,d,s ×−100

Factor O(100) reduction in the cost compared to the standard estimator

Using Nsrc ∼ O(1000) average we compute the correlator with full translation averaging
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Extensions for single flavour

10−4

10−3

10−2
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100
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2
·(
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)3

Ns

Vk
standard

FS1
FS2

An improved estimator for a single flavour can
be built by splitting, e.g.

Sud = (Sud − Ss) + (Ss − Sc) + Sc

The hopping parameter expansion is efficient
for mq & mc

Using probing vectors the first few terms can
also be computed exactly

A factor O(10− 20) reduction in the cost after accounting for the additional inversions
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Outline

1 Disconnected contribution to HVP
Analysis of the variance
Numerical experiments
Extensions for single flavour and Nf = 1 + 1 + 1

2 Disconnected contributions to IB
Analysis of the variance
Numerical experiments
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QCD+QED with charged sea quarks

W1

O

W2

O

W3

O O

These diagrams are to be evaluated in the Nf = 2 + 1 theory

Physical predictions from QCD+QED require all diagrams including mass insertions

In the following we assume the photon in Feynman gauge and QEDL prescription

G̃µν(k̂) =
δµν

k̂2
and 0 when k̂ = 0.

Ignore pathologies in this formulation due to non-locality.

6Hayakawa:2008an.
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QCD+QED with charged sea quarks

O O O O
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Analysis of the variance of W1 contribution

The leading corrections are defined by fully-connected correlators

∂
∂e

∂
∂e

〈O〉
∣∣∣
e=0

= 〈OW1〉conn + . . .

= 〈OW1〉 − 〈O〉〈W1〉+ . . .

Assuming the fields to be gaussian, the variance factorizes

σ2
OW1

≈ σ2
Oσ2

W1
+ 〈OW1〉2conn

≈ σ2
Oσ2

W1
,

where we assume the variance is larger than the signal 〈OW1〉conn

For a single flavour, the variance is dominated by the short-distance contribution

σ2
W1

∼ a12 〈AµAνAρAσV
uu
µ V dd

ν V u′u′
ρ V d′d′

σ 〉︸ ︷︷ ︸
a−16

∼ a−4 as a → 0

and similarly for W2
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Translation averaging

To implement full translation averaging, we need to introduce stochastic estimators for

Hµν
1 (x, y) =

∑
f,g

QfQg tr{γµSf (x, x)} tr{γνSg(y, y)},

Hµν
2 (x, y) = −

∑
f

Q2
f tr{γµSf (x, y)γνS

f (y, x)}

W1

W2

which determine W1,2 by the convolution with photon propagator Gµν

W1,2 = −a8
∑
x,y

Hµν
1,2(x, y)G

µν(x− y).

Compute the convolution exactly and avoid stochastic photon fields

17 / 27
Unquenched QCD+QED

�



W1,3 quark-line disconnected

W1 and W3 contain the same trace T (x) that appeared in the LO HVP

Including Nf = 2 + 1 flavours the variance

σ2
W1

∼ (ms −mud)
4

W1

W3

O
Use the split-even estimator Tµ(x)

W1 ≈ a8
∑
x

Tµ(x)
(∑

y

Gµν(x− y)Tν(y)
)

where the convolution a4
∑

y Gµν(x− y)Tν(y) can be computed in Fourier space

Leading extra contribution to variance scales like 1/N2
s

σ2
W1

= σ2
W1

+
1

N2
s
σ2

s,2 +
1

Ns
σ2

s,1
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Numerical set-up

L/a T/a mπ mπL a Ncfg

24 64 340 MeV 4.9 0.12 fm 50

Table: C1 Ensemble

QCD configurations generated by the RBC/UKQCD configuration
• Nf = 2 + 1 domain-wall fermions  chiral regularization
• local discretization of the current

The identity

Sud − Ss = (ms −mud)SudSs

holds for the approximation to the overlap operator used here.

7RBC:2014ntl.
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Numerical experiments W1 1

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

1 10 100 1000

σ
2

Ns

Wuds
1 (split-even)

1/N2
s

• Scaling with 1/N2
src

• Saturation of gauge variance with Nsrc ∼ O(100) inversions
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Numerical experiments W1 2

−0.01

−0.005

0

0.005

0.01

0 5 10 15 20 25 30

x0/a

e2

2 ∂
2
emπ+ (MeV)

Wuds
1

Correction to charged pion mass due to W1

e2

2
∂2
em

2
π+ = 0.0004(0.0005) MeV
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W2 quark-line connected

x x+ r

No cancellation of the divergence σ2
W2

∼ a−4

Need translation averaging for short-distance contribution r ∼ 0

Compute the all-to-all propagator

Sf (x, x+ r) =
1

Nsrc

Nsrc∑
i=1

{Sfηi}(x)η†i (x+ r)

to create a stochastic estimator

Hµν
2 (r) = a4

∑
x

∑
f

Q2
f tr{γµSf (x, x+ r)γνSf (x+ r, x)}

Introduces a (mild) signal-to-noise ratio problem in r

 restrict to |r| ≤ R

8deDivitiis:1996qx.
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W2 quark-line connected

For the remainder |r| > R, NX randomly selected point sources Xn

H̄µν
2 (r) =

L4

NX

NX∑
n=1

Hµν
2 (Xn, Xn + r)

so that the total is split between short- and long-distance

W2 = a4
∑

|r|≤R

Hµν
2 (r)Gµν(r) + a4

∑
r>R

H̄µν
2 (r)Gµν(r)

Efficient for small r as σ2
H2

∼ 1
N2

src

Efficient at large r with no signal-to-noise ratio problem
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Numerical experiments W2 1
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σ
2

|r|/a

a4
∑

xH2(x, r)G(r)

H2, Ns = 2

H2, NX = 1

H2, Ns = ∞

Choose R/a ∼ 4 so variance is dominated by short-distance contribution

Using naïve scaling, approach gauge noise with
• short-distance piece with Nsrc ∼ O(1000) stochastic sources
• long-distance piece with NX ∼ O(100) point sources
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Numerical experiments W2 2

10−2

10−1

100

101

102

103

104

105

106

1 10 100 1000

σ
2

Ninv

W2, R/a = 4∫
r≤R H2G∫
r>R H̄2G

R = 0, Ns = ∞

Good scaling of short-distance contribution allows us to approach gauge noise

Long-distance piece under control with moderate cost

Factor ∼ 104 larger variance than W1
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Conclusions

O

Analysis of the variance helps us construct good estimators
 can substantially reduce cost of translation averaging

For sea-quark electric charge contributions
• W1,3 good precision of uds contribution + split-even estimator

• W2 variance dominated by short distances σ2
W2

∼ a−4

 split into short- and long-distance contributions

W1,3 are independent of the observable! Worth investing

Next include mass insertions, include corrections close to physical point…
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