Efficient simulations with electrically-charged sea-quarks at $O(\alpha)$

Eur. Phys. J. C79 586, PoS LATTICE2022 (2022) 013

Tim Harris

ETH zürich

Field Theory on the Lattice Seminar 28.11.2022, DESY Zeuthen/Humboldt Uni.

Introduction

Lattice QCD measurements of $(g-2)_{\mu}$, f_K/f_{π} , g_A , $\sqrt{t_0}$, ... now achieve $\sim 1\%$ precision

To go beyond this accuracy, QCD with $m_{
m u}=m_{
m d}$ may not be sufficent

Common approaches to include QED

- simulate QCD+QED in a Monte Carlo
- expand in lpha pprox 1/137 and $(m_{
 m u}^{
 m R}-m_{
 m d}^{
 m R})/\Lambda_{
 m QCD} \sim 1\%$

...electro-quenched simulations are expected to have an O(10%) accuracy for the leading electromagnetic effects. This suppression is in principle rather weak and results obtained from electro-quenched simulations might feature uncontrolled systematic errors -FLAG2021

¹Borsanyi:2020mff; Bushnaq:2022aam; CSSM:2019jmq; Aoki:2012st; PhysRevLett.109.072002.

Introduction

Lattice QCD measurements of $(g-2)_{\mu}$, f_K/f_{π} , $g_{
m A}$, $\sqrt{t_0}$, \dots now achieve $\sim 1\%$ precision

To go beyond this accuracy, QCD with $m_{
m u}=m_{
m d}$ may not be sufficent

Common approaches to include QED

simulate QCD+QED in a Monte Carlo

💰 requires generation of new gauge configurations

• expand in lpha pprox 1/137 and $(m_{
m u}^{
m R}-m_{
m d}^{
m R})/\Lambda_{
m QCD} \sim 1\%$

📚 increases number and complexity of measurements

...electro-quenched simulations are expected to have an O(10%) accuracy for the leading electromagnetic effects. This suppression is in principle rather weak and results obtained from electro-quenched simulations might feature uncontrolled systematic errors

-FLAG2021

¹Borsanyi:2020mff; Bushnaq:2022aam; CSSM:2019jmq; Aoki:2012st; PhysRevLett.109.072002.

RM123 method

Expanding the path integral $S=S_{
m QCD}+{
m i}e\int J_{\mu}A_{\mu}$ in $e=\sqrt{4\pilpha}$

$$\langle O \rangle = \langle O \rangle \Big|_{e=0} + \frac{1}{2}e^2 \Big[\frac{\partial}{\partial e} \frac{\partial}{\partial e} \langle O \rangle \Big]_{e=0} + \dots$$

the leading corrections are correlators

$$\frac{\partial}{\partial e}\frac{\partial}{\partial e}\langle O\rangle = (-\mathrm{i})^2 \int_{x,y} \langle J_{\mu}(x)A_{\mu}(x)J_{\nu}(y)A_{\nu}(y)O\rangle_{\mathrm{conn}}$$

with two insertions of the electromagnetic current

$$J_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s,$$

E.g. corrections to the spectrum, we need the insertion with a two-point function

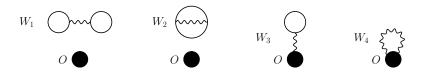
$$O = \int \mathrm{d}^3 x \, \phi_\pi(x) \phi_\pi^\dagger(0)$$

from which we can extract m_{π^+} etc.

²deDivitiis:2011eh; deDivitiis:2013xla.

Leading-order Wick contractions

The fields contract within the currents $(W_{1,2})$, or with fields in the operator $O(W_{3,4})$



e.g. $W_{1,2}$ are expressed in terms of the photon propagator $G^{\mu
u}$ (in fixed gauge)

$$W_{1,2} = -a^8 \sum_{x,y} H_{1,2}^{\mu\nu}(x,y) G^{\mu\nu}(x-y).$$

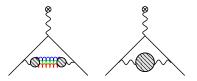
where $H_{1,2}$ are the traces of quark propagators $S^f = D_f^{-1}$

$$\begin{split} H_1^{\mu\nu}(x,y) &= \sum_{f,g} Q_f Q_g \operatorname{tr}\{\gamma_{\mu} S^f(x,x)\} \operatorname{tr}\{\gamma_{\nu} S^g(y,y)\},\\ H_2^{\mu\nu}(x,y) &= -\sum_f Q_f^2 \operatorname{tr}\{\gamma_{\mu} S^f(x,y) \gamma_{\nu} S^f(y,x)\} \end{split}$$

Omitting $W_{1,2,3}$ is equivalent to setting e = 0 in the fermion determinant

Relation to the LO HVP

The propagator traces $H_{1,2}$ are similar to the ones which define the LO HVP



e.g. for g-2 in the time-momentum representation

$$a_{\mu}^{\rm LO,HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int \mathrm{d}^4x \, K(x_0,m_{\mu}) \langle H_1^{ii}(x,0) + H_2^{ii}(x,0) \rangle$$

Replace photon propagator $G(x) \sim x^{-2}$ (small x) \longrightarrow kernel $K \sim x_0^4$ (small x_0)

 $\stackrel{\textbf{(2)}}{\boxminus}$ Good methods exist for evaluating the disconnected traces H_1

³Bernecker:2011gh.

Outline

Disconnected contribution to HVP

- Analysis of the variance
- Numerical experiments
- Extensions for single flavour and $N_{\rm f} = 1 + 1 + 1$

- 2 Disconnected contributions to IB
 - Analysis of the variance
 - Numerical experiments

Analysis of the disconnected contribution to LO HVP

The disconnected diagram H_1 factorizes

$$\begin{split} H_1^{\mu\nu}(x,y) &= T^\mu(x)T^\nu(y),\\ T^\mu(x) &= \sum_f Q_f \operatorname{tr}\{\gamma_\mu S^f(x,x)\} \end{split}$$

and so does its variance which parameterizes the std. error = $\sigma/\sqrt{N_{\rm cfg}}$

$$\begin{split} \sigma_{H}^{2}(x,y) &= \langle H_{1}^{2} \rangle - \langle H_{1} \rangle^{2} \\ &\approx \sigma_{T}^{2} \sigma_{T}^{2} \quad \text{when} \quad |x-y| \gg m_{\pi}^{-1} \end{split}$$

Consider the contribution of a single light flavour, e.g. $f=\mathrm{u}$ with $Q_\mathrm{u}=1$

The variance of $T_f(x)$ can be re-expressed in terms of local operators

$$\sigma_{T_f}^2 = \langle V_{\mu}^{\rm uu}(0) V_{\mu}^{\rm dd}(0) \rangle \sim a^{-6}$$

so is dominated by short-distance fluctuations as $a \rightarrow 0$

⁴Giusti:2019kff.

Translation averaging (and its approximations)

Suppose we compute the translation-average over L^3

$$\bar{T}_{f}^{\mu}(x_{0}) = \frac{a^{3}}{L^{3}} \sum_{\vec{x}} T_{f}^{\mu}(x)$$

then its variance is suppressed by the spatial volume

$$\sigma_{\bar{T}_{f}}^{2} = \frac{a^{3}}{L^{3}} \Big[\sigma_{T_{f}}^{2} + \sum_{\vec{x} \neq \vec{0}} \langle V_{\mu}^{\mathrm{uu}}(x) V_{\mu}^{\mathrm{dd}}(0) \rangle_{\mathrm{conn.}} \Big] \sim \frac{a^{3}}{L^{3}} a^{-6} \sim a^{-3}$$

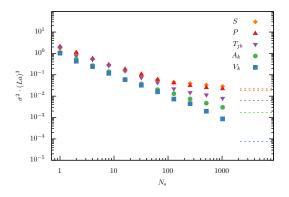
However, we can only compute estimators like the Hutchinson trace

$$\bar{\mathcal{T}}_f^{\mu}(x) = \frac{1}{N_{\rm src}} \sum_{i=1}^{N_{\rm src}} \eta_i^{\dagger}(x) \{S_f \eta_i\}(x)$$

which introduce additional variance due to the fluctuations of η

$$\begin{split} \sigma^2_{\tilde{\mathcal{T}}_f} &= \sigma^2_{\tilde{T}_f} + \sigma^2_{\rm s} \\ &= \text{``gauge noise''} + \frac{1}{N_{\rm src}} \times \text{``random field noise''} \end{split}$$

Numerical experiment



 $N_{
m f}=2~{
m O}(a)$ -improved Wilson fermions $m_{\pi}=270\,{
m MeV}~m_{\pi}L=4.3$

Using gaussian auxiliary fields, the total variance is

$$\sigma_{\tilde{\mathcal{T}}_{f}}^{2} = \frac{a^{3}}{L^{3}} \sum_{\vec{x}} \left[\langle V_{\mu}^{\mathrm{uu}}(x) V_{\mu}^{\mathrm{dd}}(0) \rangle + \frac{1}{N_{\mathrm{src}}} \langle P^{\mathrm{ud}}(x) P^{\mathrm{du}}(0) \rangle \right]$$

Including $N_{\rm f} = 2 + 1$ u, d, s flavours

With
$$m_u = m_d$$
 and $Q_u = \frac{2}{3}$, $Q_d = Q_s = -\frac{1}{3}$ in the current J_μ
$$\sum_{f=u,d,s} Q_f S_f = \frac{1}{3} \{S_{ud} - S_s\}$$

Using the identity $S_{\rm ud} - S_{\rm s} = (m_{\rm s} - m_{\rm ud})S_{\rm ud}S_{\rm s}$

1. the variance is suppressed comapared to the single flavour

$$\sigma_{\bar{T}}^2 \sim (m_{\rm ud} - m_{\rm s})^2 a^{-1}$$
 as $a \to 0$

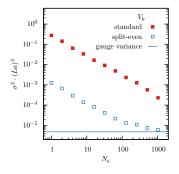
2. there are two independent estimators for the difference

$$\Theta_{\mu}(x) = \frac{1}{3}(m_{\rm s} - m_{\rm ud}) \frac{1}{N_{\rm src}} \sum_{i=1}^{N_{\rm src}} \eta_i^{\dagger}(x) \gamma_{\mu} \{S_{\rm ud} S_{\rm s} \eta_i\}(x),$$
$$\mathcal{T}_{\mu}(x) = \frac{1}{3}(m_{\rm s} - m_{\rm ud}) \frac{1}{N_{\rm src}} \sum_{i=1}^{N_{\rm src}} \{\eta_i^{\dagger} S_{\rm s}\}(x) \gamma_{\mu} \{S_{\rm ud} \eta_i\}(x)$$

where the cyclicity of the trace is used in the second "split-even" estimator

⁵FTM·2008zte

Numerical experiment with $N_{\rm f} = 2 + 1 \, {\rm u, d, s}$ flavours



Observations

1. the total variance is suppressed w.r.t. single flavour, as expected

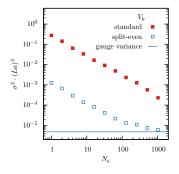
2. the gauge noise \lll random field noise as before

3. the split-even estimator has much smaller random field noise

The additional contribution from the auxiliary fields

$$\begin{split} \sigma_{\bar{\Theta}}^2 &= \sigma_{\bar{T}}^2 - \frac{(m_{\rm s} - m_{\rm ud})^2}{L^3} \frac{1}{N_{\rm src}} a^{11} \sum_{x,y,z} \langle P^{\rm ud}(x) S^{\rm ds}(y) P^{\rm sc}(z) S^{\rm cu}(0) \rangle \\ \sigma_{\bar{\mathcal{T}}}^2 &= \sigma_{\bar{T}}^2 - \frac{(m_{\rm s} - m_{\rm ud})^2}{L^3} \frac{1}{N_{\rm src}} a^{11} \sum_{x,\vec{y},z} \langle P^{\rm ud}(x) V_{\mu}^{\rm ds}(0,\vec{y}) P^{\rm sc}(z) V_{\mu}^{\rm cu}(0) \end{split}$$

Numerical experiment with $N_{\rm f} = 2 + 1 \, {\rm u, d, s}$ flavours



Observations

1. the total variance is suppressed w.r.t. single flavour, as expected

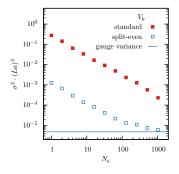
2. the gauge noise \lll random field noise as before

3. the split-even estimator has much smaller random field noise

The additional contribution from the auxiliary fields

$$\begin{split} \sigma_{\bar{\Theta}}^2 &= \sigma_{\bar{T}}^2 - \frac{(m_{\rm s} - m_{\rm ud})^2}{L^3} \frac{1}{N_{\rm src}} a^{11} \sum_{x,y,z} \langle P^{\rm ud}(x) S^{\rm ds}(y) P^{\rm sc}(z) S^{\rm cu}(0) \rangle \\ \sigma_{\bar{\mathcal{T}}}^2 &= \sigma_{\bar{T}}^2 - \frac{(m_{\rm s} - m_{\rm ud})^2}{L^3} \frac{1}{N_{\rm src}} a^{11} \sum_{x,\bar{y},z} \langle P^{\rm ud}(x) V_{\mu}^{\rm ds}(0,\bar{y}) P^{\rm sc}(z) V_{\mu}^{\rm cu}(0) \end{split}$$

Numerical experiment with $N_{\rm f} = 2 + 1 \, {\rm u, d, s}$ flavours



Observations

1. the total variance is suppressed w.r.t. single flavour, as expected

2. the gauge noise \lll random field noise as before

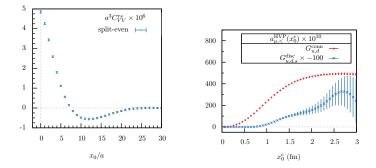
3. the split-even estimator has much smaller random field noise

The additional contribution from the auxiliary fields

$$\begin{split} \sigma_{\bar{\Theta}}^2 &= \sigma_{\bar{T}}^2 - \frac{(m_{\rm s} - m_{\rm ud})^2}{L^3} \frac{1}{N_{\rm src}} a^{11} \sum_{x,y,z} \langle P^{\rm ud}(x) S^{\rm ds}(y) P^{\rm sc}(z) S^{\rm cu}(0) \rangle \\ \sigma_{\bar{\mathcal{T}}}^2 &= \sigma_{\bar{T}}^2 - \frac{(m_{\rm s} - m_{\rm ud})^2}{L^3} \frac{1}{N_{\rm src}} a^{11} \sum_{x,\vec{y},z} \langle P^{\rm ud}(x) V_{\mu}^{\rm ds}(0,\vec{y}) P^{\rm sc}(z) V_{\mu}^{\rm cu}(0) \end{split}$$

$N_{ m f}=2+1$ contribution to $a_{\mu}^{ m LO,HVP}$

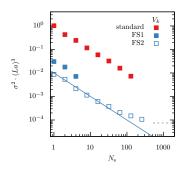
Excellent signal for the disconnected contribution to $a_{\mu}^{\rm LO,HVP}$ up to $\sim 2.5\,{\rm fm}$



Factor O(100) reduction in the cost compared to the standard estimator

Using $N_{\rm src} \sim O(1000)$ average we compute the correlator with full translation averaging

Extensions for single flavour



An improved estimator for a single flavour can be built by splitting, e.g.

$$S_{\rm ud} = (S_{\rm ud} - S_{\rm s}) + (S_{\rm s} - S_{\rm c}) + S_{\rm c}$$

The hopping parameter expansion is efficient for $m_{\rm q}\gtrsim m_{\rm c}$

Using probing vectors the first few terms can also be computed exactly

A factor O(10 - 20) reduction in the cost after accounting for the additional inversions

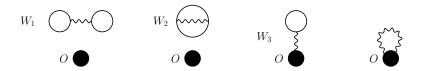
Outline

Disconnected contribution to HVP

- Analysis of the variance
- Numerical experiments
- Extensions for single flavour and $N_{\rm f} = 1 + 1 + 1$

- 2 Disconnected contributions to IB
 - Analysis of the variance
 - Numerical experiments

QCD+QED with charged sea quarks



These diagrams are to be evaluated in the $N_{\mathrm{f}}=2+1$ theory

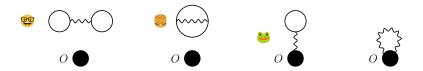
hleft Physical predictions from QCD+QED require all diagrams including mass insertions In the following we assume the photon in Feynman gauge and QED_L prescription

$$\widetilde{G}^{\mu
u}(\hat{k}) = rac{\delta_{\mu
u}}{\hat{k}^2} \quad ext{and} \quad 0 \quad ext{when} \quad \hat{oldsymbol{k}} = oldsymbol{0}.$$

🚹 Ignore pathologies in this formulation due to non-locality.

⁶Hayakawa:2008an.

QCD+QED with charged sea quarks



These diagrams are to be evaluated in the $N_{\rm f}=2+1$ theory

hleft Physical predictions from QCD+QED require all diagrams including mass insertions In the following we assume the photon in Feynman gauge and QED_L prescription

$$\widetilde{G}^{\mu
u}(\hat{k}) = rac{\delta_{\mu
u}}{\hat{k}^2} \quad ext{and} \quad 0 \quad ext{when} \quad \hat{oldsymbol{k}} = oldsymbol{0}.$$

🚹 Ignore pathologies in this formulation due to non-locality.

⁶Hayakawa:2008an.

Analysis of the variance of W_1 contribution

The leading corrections are defined by fully-connected correlators

$$\frac{\partial}{\partial e} \frac{\partial}{\partial e} \langle O \rangle \Big|_{e=0} = \langle OW_1 \rangle_{\text{conn}} + \dots$$
$$= \langle OW_1 \rangle - \langle O \rangle \langle W_1 \rangle + \dots$$

Assuming the fields to be gaussian, the variance factorizes

$$\begin{split} \sigma^2_{OW_1} &\approx \sigma^2_O \sigma^2_{W_1} + \langle OW_1 \rangle^2_{\rm conn} \\ &\approx \sigma^2_O \sigma^2_{W_1}, \end{split}$$

where we assume the variance is larger than the signal $\langle OW_1 \rangle_{\rm conn}$

For a single flavour, the variance is dominated by the short-distance contribution

$$\sigma_{W_1}^2 \sim a^{12} \underbrace{\langle A_\mu A_\nu A_\rho A_\sigma V_\mu^{uu} V_\nu^{dd} V_\rho^{u'u'} V_\sigma^{d'd'} \rangle}_{a^{-16}} \sim a^{-4} \quad \text{as} \quad a \to 0$$

and similarly for W_2

Translation averaging

To implement full translation averaging, we need to introduce stochastic estimators for

$$H_1^{\mu\nu}(x,y) = \sum_{f,g} Q_f Q_g \operatorname{tr}\{\gamma_{\mu} S^f(x,x)\} \operatorname{tr}\{\gamma_{\nu} S^g(y,y)\}, \qquad \qquad W_1 \qquad \qquad W_1 \qquad \qquad W_2 \qquad \qquad W_2$$

which determine $W_{1,2}$ by the convolution with photon propagator G^{μ}

$$W_{1,2} = -a^8 \sum_{x,y} H_{1,2}^{\mu\nu}(x,y) G^{\mu\nu}(x-y).$$

Compute the convolution exactly and avoid stochastic photon fields

$W_{1,3}$ quark-line disconnected

 W_1 and W_3 contain the same trace T(x) that appeared in the LO HVP

Including $N_{\rm f}=2+1$ flavours the variance

$$\sigma_{W_1}^2 \sim (m_{\rm s} - m_{\rm ud})^4$$

 W_1 W_3

Use the split-even estimator $\mathcal{T}_{\mu}(x)$

$$\mathcal{W}_1 \approx a^8 \sum_x \mathcal{T}_\mu(x) \Big(\sum_y G_{\mu\nu}(x-y) \mathcal{T}_\nu(y) \Big)$$

where the convolution $a^4\sum_y G_{\mu
u}(x-y)T_
u(y)$ can be computed in Fourier space

Leading extra contribution to variance scales like $1/N_{\rm s}^2$

$$\sigma_{W_1}^2 = \sigma_{W_1}^2 + \frac{1}{N_{\rm s}^2}\sigma_{{\rm s},2}^2 + \frac{1}{N_{\rm s}}\sigma_{{\rm s},1}^2$$

Unquenched QCD+QED 18 / 27

Numerical set-up

L/a	T/a	m_{π}	$m_{\pi}L$	a	$N_{\rm cfg}$
24	64	$340~{\rm MeV}$	4.9	$0.12~{\rm fm}$	50

Table: C1 Ensemble

QCD configurations generated by the RBC/UKQCD configuration

- $N_{\rm f}=2+1$ domain-wall fermions \rightsquigarrow chiral regularization
- local discretization of the current

😃 The identity

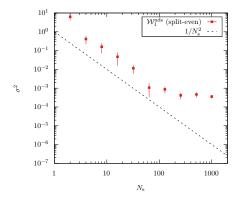
 $S_{\rm ud} - S_{\rm s} = (m_{\rm s} - m_{\rm ud})S_{\rm ud}S_{\rm s}$

holds for the approximation to the overlap operator used here.

7RBC:2014ntl.

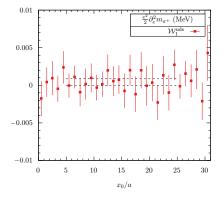
Unquenched QCD+QED

Numerical experiments W_1 1



- Scaling with $1/N_{\rm src}^2$
- Saturation of gauge variance with $N_{\rm src} \sim {\rm O}(100)$ inversions

Numerical experiments W_1 2



Correction to charged pion mass due to W_1

$$\frac{e^2}{2} \partial_e^2 m_{\pi^+}^2 = 0.0004 (0.0005)~{\rm MeV}$$

Unquenched QCD+QED

W_2 quark-line connected

$$x \quad \overbrace{\qquad \qquad } x + r$$

No cancellation of the divergence $\sigma_{W_2}^2 \sim a^{-4}$

Need translation averaging for short-distance contribution $r \sim 0$

Compute the all-to-all propagator

$$S^{f}(x, x+r) = \frac{1}{N_{\text{src}}} \sum_{i=1}^{N_{\text{src}}} \{S^{f} \eta_{i}\}(x) \eta_{i}^{\dagger}(x+r)$$

to create a stochastic estimator

$$\mathcal{H}_{2}^{\mu\nu}(r) = a^{4} \sum_{x} \sum_{f} Q_{f}^{2} \operatorname{tr}\{\gamma_{\mu} \mathcal{S}^{f}(x, x+r)\gamma_{\nu} \mathcal{S}^{f}(x+r, x)\}$$

🛠 Introduces a (mild) signal-to-noise ratio problem in r

 \rightsquigarrow restrict to $|r| \leq R$

⁸deDivitiis:1996ax.

W_2 quark-line connected

For the remainder |r| > R, N_X randomly selected point sources X_n

$$\bar{H}_{2}^{\mu\nu}(r) = \frac{L^4}{N_X} \sum_{n=1}^{N_X} H_2^{\mu\nu}(X_n, X_n + r)$$

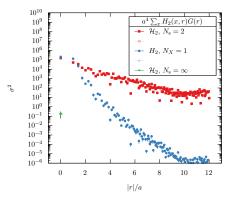
so that the total is split between short- and long-distance

$$\mathcal{W}_2 = a^4 \sum_{|r| \le R} \mathcal{H}_2^{\mu\nu}(r) G^{\mu\nu}(r) + a^4 \sum_{r>R} \bar{H}_2^{\mu\nu}(r) G^{\mu\nu}(r)$$

Efficient for small r as $\sigma_{\mathcal{H}_2}^2 \sim \frac{1}{N_{\mathrm{src}}^2}$

Efficient at large r with no signal-to-noise ratio problem

Numerical experiments W_2 1

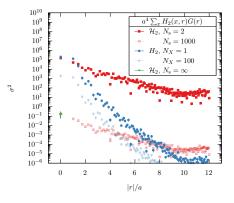


Choose $R/a \sim 4$ so variance is dominated by short-distance contribution

Using naïve scaling, approach gauge noise with

- short-distance piece with N_{src} ~ O(1000) stochastic sources
- long-distance piece with $N_X \sim O(100)$ point sources

Numerical experiments W_2 1

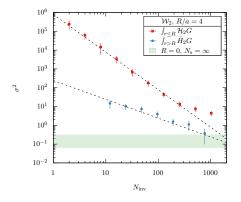


Choose $R/a \sim 4$ so variance is dominated by short-distance contribution

Using naïve scaling, approach gauge noise with

- short-distance piece with N_{src} ~ O(1000) stochastic sources
- long-distance piece with $N_X \sim O(100)$ point sources

Numerical experiments W_2 2



Good scaling of short-distance contribution allows us to approach gauge noise Long-distance piece under control with moderate cost Factor $\sim 10^4$ larger variance than W_1

Conclusions

Analysis of the variance helps us construct good estimators ~> can substantially reduce cost of translation averaging

For sea-quark electric charge contributions

- W_{1,3} good precision of uds contribution + split-even estimator
- W_2 variance dominated by short distances $\sigma^2_{W_2} \sim a^{-4}$ \rightsquigarrow split into short- and long-distance contributions

 $W_{1,3}$ are independent of the observable! Worth investing

Next include mass insertions, include corrections close to physical point...