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• Lattice calculation is giving important inputs in the precision test of the standard model.

E.g.: Contribution of 
hadronic vacuum polarization to muon g-2

One of the major sources of systematical error 
is the continuum extrapolation (evaluation of the 𝑎 → 0 limit).

• However, as we reach the continuum limit, 
we encounter the infamous critical slowing down when generating configurations,
which adds extreme computational cost to the simple volume scaling.

Introduction (1/3)
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From Christoph Lehner’s talk in
The Fifth Plenary Workshop of 
the Muon g-2 Theory Initiative RBC/UKQCD (incl NM)

in prepAs
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of the momentum loop
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𝐽%: vector current

Bernecker-Meyer 2011



Algorithms aimed for accelerating Monte Carlo (MC) sampling:

Introduction (2/3)

• Fourier acceleration/Riemannian manifold MC

• Trivializing map/normalizing flow

• Overrelaxation
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• Multigrid MC

• Cluster algorithm

• L2HMC, winding HMC, …

• Parallel tempering

with defects: 

Parisi 84, Batrouni et al. 85,88,90 / Nguyen et al. 2112.04556

Luscher 0907.5491 / Rezende-Mohamed 15

Adler 81, Whitmer 84, Creutz 87

Parisi 84, Goodman-Sokal 86 (see also Wolff 90)

Swendsen-Wang 87, Wolff 89

Swendsen-Wang 86, Geyer 91, Hukushima-Nemoto 96

Hasenbusch 1706.04443, Berni-Bonanno-D’Elia 1911.03384, Bonanno-Bonati-D’Elia 2012.14000

stochastic: 
Wu-Kohler-Noe 20, Caselle-Cellini-Nada-Panero 2201.08862

Foreman-X.Y.Jin-Osborn 2105.03418, Albandea, et al. 2106.14234, …



• We attempt to improve the flow kernel *𝑆' (=generating function) of the map
using a Schwinger-Dyson (SD) equation.

Advantages of this method

• We apply our method to Wilson and DBW2 actions and show that:

Gonzalez-Arroyo, Okawa 87, de Forcrand et al. hep-lat/9806008

- With the SD method, we can have better control of the effective action than
the known (perturbative-type) 𝑡-expansion.

• We perform the HMC using the resulting effective action in the MD Hamiltonian.
cf. L Jin LATTICE 2021

Lüscher 0907.5491

- basis functions for the flow kernel can be chosen by hand

- the coefficients in the kernel are determined by lattice estimates of the observables
- can be applied to general actions of interest without analytic calculation

- However, we have large algorithmic overhead, 
and need to check the scaling with larger statistics to confirm the actual benefits at large 𝛽.

Engel-Schaefer 1102.1852

- In particular cases, faster decorrelation (in MC step unit) is observed for long-ranged observables 
by adding rectangle and chair to the flow.

Short timeline on trivializing map

• Test in 𝐶𝑃()* model

This work

Introduction (3/3)

4/30We here report preliminary results in this direction.

• Original proposal

• Machine learning approaches Albergo-Kanwar-Shanahan 1904.12072, Foreman et al. 2112.01586
Bacchio-Kessel-Schaefer-Vaitl 2212.08469

acceleration rather negative 

𝑈 → 𝑒)+ , -.!(0)𝑈
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𝑆: action
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Critical slowing down (1/2)

Make physical predictions from the lattice path integral:

• We give input values in physical units (e.g., in GeV)
for the scales that will be dynamically generated in the system (e.g., correlation length).

Goal

𝑈&,%: link variable

𝒪: observable
𝑑𝑈 : Haar measure𝒪 ≡

∫ 𝑑𝑈 𝑒). 0 𝒪 𝑈
∫ 𝑑𝑈 𝑒). 0

𝑆 𝑈 ≡ −
𝛽
6 '
&,%'(

Re tr 𝑈&,%𝑈&)%,(𝑈&)(,%
* 𝑈&,(

*

Wilson 74
𝑥" = 𝑡

𝑥#

• Fixing the physical lattice volume (e.g., 𝐿𝑎 = 5 fm), 
we take the 𝑎 → 0 limit by tuning 𝛽 towards 𝛽 → ∞.

Make predictions about the continuum theory.

e.g., Wilson action

enables us to introduce lattice spacing in physical units (e.g., 𝑎 = 0.1 fm) for a given 𝛽.

𝑥 𝑥 + 𝜇̂

𝑼𝒙,𝝁

𝐿 sites



infinite correlation length in lattice units (since 𝑎 → 0),
which is a property of 2nd order phase transition
regarding the lattice system as a statistical system.

• We expect to have a finite correlation length in physical units in the continuum.

• Generically, as we approach the critical point, 
more and more modes contribute to the correlator to give the quasi-long-range correlation.

Such long correlation makes the Monte Carlo simulation inefficient. critical slowing down

We expect fermions add another nonlocal structure in the theory;
however, in the following we basically concentrate on the gauge DOF.
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Wilson 74

#
emnst.exponent

e

(in lattice units)

#cidowervetin

#
emnst.exponent

e

(in lattice units)

#cidowervetin

Critical slowing down (2/2)



Topological freezing (1/3)

Further complication in QCD: topological freezing
Cause: nontrivial topological sectors of gauge field on 𝑇2 (in the continuum)

As the continuum limit is reached, the lattice gauge field acquires continuum-like nature.
Correspondingly, configurations will be trapped in the emerging disconnected sectors
during Monte Carlo simulation (topological freezing).

7/30

• Gauge field 𝐴% is periodic up to gauge transformation:

𝐴% 𝑥( = 𝐿 = 𝑣( 𝑥 𝜕% + 𝐴% 𝑥( = 0 𝑣(+, 𝑥 .

• The gauge function (or transition function) 𝑣% 𝑥

• One can show that 𝑄 ∈ ℤ by, e.g., taking the pure gauge:

𝑄 ≡
−1
16𝜋 ∫ d

-𝑥 tr 𝐹%( J𝐹%(

−3∑'() ∫* ',) tr [𝑑𝑣)
+, 𝑥' = 𝐿 𝑣) 𝑥' = 𝐿 𝑣' 𝑥) = 0 𝑑𝑣'+, 𝑥) = 0 ]

∑%∫. % tr 𝑣%𝑑𝑣%+,
/

=
1

24𝜋0

• Topological sectors are disconnected ∵ they have 𝑣% 𝑥 that cannot be continuously deformed to one another.

𝑔+, 𝑥' = 𝐿 𝑔 𝑥' = 0 = 𝑣'𝐴%𝑑𝑥% = 𝑔+,𝑑𝑔 𝑄 ≡
1

24𝜋0
P
12
tr 𝑔+,𝑑𝑔 / ∈ ℤconstraint:

More mathematical way to see the freezing is
through the geometrical definition of the lattice topological charge:

‘t Hooft 81
cf. Dirac monopole

Solely expressed with 𝑣' 𝑥 !

completely encodes the topological information of the gauge field: Luscher 82, van Baal 82, Phillips-Stone 86
see also Kronfeld 88

Luscher 82

Nontrivial 𝑣% 𝑥 can give nontrivial 𝑄.

->

p(,r)
A a 1)periodicf(t)

·Ain
#

roofaction: SCUL
I map(

#VccMaction: Set(V)



Simpler example: 𝑈(1) on 𝑇3

Emergence of disconnected topological sectors.

Similarly for SU(2) on 𝑇2, exceptional configurations (= boundary of 𝑄)
consists of ∃ local Wilson loop = −1, which will be suppressed at large 𝛽.

• Lattice topological charge: winding in the plaquette angles 𝜅4:

𝑄 is defined unambiguously except for the exceptional configurations.
for which ∃𝑥, 𝜅& = 𝜋
(∴ measure zero in path integral).

Boundary of 𝑄 sectors are the exceptional configurations.

• Tunneling only occurs when the fluctuation becomes so large 
that the plaquette angle goes around the 𝑆* penetrating the potential barrier at ±𝜋.

Except for these configurations, one can define 𝑄 via the transition functions 𝑣% 𝑥 .
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𝑄(567) = )*
38
∑4 𝜅4 𝜅4 ≡

*
9
log 𝑈4,%𝑈4;%,*𝑈4;*,%

< 𝑈4,*
< , take a single branch s.t. log1 = 0.

𝜅4

0

±𝜋: bdy of 𝑄

𝑆 𝑈 = −𝛽N
4

cos 𝜅4 .

However, such large fluctuation will be directly suppressed 
for the Wilson action at large 𝛽:

−𝛽cos 𝜅&

potential

Topological freezing (2/3)

Phillips 85, see also Fujiwara et al. hep-lat/0001029 

Luscher 82

↑doodaeint



Regarding both the critical slowing down and the topological freezing, 
they are rather intrinsic to the lattice simulation near the continuum (at large 𝛽).

A detour for the topological freezing: open boundary condition

Cons 

In particular, translational invariance will be violated.

trivializing map!

Pros 

No more topological sectors in the continuum!

Need to consider the boundary effects.
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we want to avoid this if possible
∵ many statistical techniques assume the translational invariance

it will be advantageous if one can use small 𝛽 simulation to generate large 𝛽 configurations.

𝑥" = 𝑡

𝑥#

No periodicity

Topological freezing (3/3)

Luscher-Schaefer 1105.4749
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• With a field transformation (or a change of the integration variable),
we can generate a new action for the transformed variable:

𝑍 ≡ ∫ 𝑑𝑈 𝑒Z[ \ = ∫ 𝑑𝑉 det ℱ∗ 𝑉 𝑒Z[ ℱ _ ≡ ∫ 𝑑𝑉 𝑒Z[=>> _ .

Trivializing map (1/4)
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Idea

For 𝑈 = ℱ 𝑉 ,

𝑆?@@ 𝑉 ≡ 𝑆 ℱ 𝑉 − ln det ℱ∗ 𝑉 .

i.e., the action for the 𝑉-field is

• We can perform the ordinary Monte Carlo sampling (e.g., HMC)
in the 𝑉-space with the action 𝑆?@@ 𝑉 .

𝑈: original (or “physical”) variable 𝑉: new (or “artificial”) variable

Prepare ℱ so that the sampling in 𝑉-space becomes efficient!

𝑆abb 𝑉 = const for which 𝑍 = ∫ 𝑑𝑉 const.

Such ℱ will map the theory to the strong coupling limit 𝛽 = 0 , 
which is the opposite of where the critical slowing down occurs 𝛽 = ∞ .

• Ultimate ℱ: trivializing map

Luscher 0907.5491

cf. Nicolai map in SUSY theory [Nicolai 80]

Duane et al. 87

Jacobian

#Use action: SCUL

↑ map (

#action: Seti(



𝑒B-,.
/ C/𝑈4,!. 𝑇3: su(3) generators. tr 𝑇3𝑇4 = − ,

0𝛿
34

- Haar measure: 𝑑𝑈 ∝ ∏5 𝑑𝜃5

Some boring mathematics

• We need to write down the Jacobian matrix ℱ∗ 𝑉 :

𝐴 ≡ (𝑥, 𝜇, 𝑎) labels the DOF

𝜕4,!D 𝑈4,! ≡ lim
'→%

F!0
/
)* 0-,.
'

= 𝑇D𝑈4,!. 𝜕4,!D = 𝜕B-,./ |BG%.

- Introduce a local parametrization 𝜃&,%3 of the field space around a configuration 𝑈&,%:

right-invariant metric: 𝛿𝑈 0 ∝ ∑&,%Re tr 𝑈&,%
* 𝛿𝑈&,%

0
∝ ∑5 𝛿𝜃5 0

for 𝛿𝑈&,% ≡ 𝑒67!,#$ 8$ − 1 𝑈&,%.

• For later convenience, we also define the right-invariant derivative:

In other words,

In Lüscher 0907.5491, the symbol 𝜃&,%3 is used for the Maurer-Cartan form Θ&,%3 :

Comment on the convention

Θ&,%3 = 1 + 𝑂 𝜃 𝑑𝜃&,%3

Θ&,%3 is the dual of 𝜕&,%3 : Θ5, 𝜕9 = 𝛿59. See, e.g., Chevalley 46 11/30

(at each point 𝑈&,% on the group manifold).

ℱ∗ 𝑉 = ℱ∗ 𝑉 HI can be read off from the infinitesimals:

e.g., Polyakov 87

𝑑𝜃(0)
H = ℱ∗HI 𝑉 𝑑𝜃(J)

I .

Trivializing map (2/4)

dOcul
- r

Ya
*

v

#.Fr.SINEU.phyoCeete



Trivializing map (3/4)

• Lüscher particularly considered the gradient flow form:

− 𝜕H 3 *𝑆' + 𝑡 𝜕H𝑆 𝜕H *𝑆' = 𝑆

𝑆?@@, ' 𝑉 = 𝑆 ℱ' 𝑉 − ln det ℱ'∗ 𝑉

• Requiring that ℱ' trivializes the theory at 𝑡 = 1:

ℱ̇' 𝑈 4,! = −𝑇D𝜕4,!D *𝑆' 𝑈 ⋅ 𝑈4,! .

(up to const; ignored hereafter)

* requirement
= 1 − 𝑡 𝑆 ℱ' 𝑉

𝑑/𝑑𝑡

from Jacobian from action

Δ

Equation for the kernel function *𝑆':

*

12/30

Solving the map has boiled down to 
solving a linear differential equation!

• For convenience we define 

ℒ' ≡ − 𝜕H 3 + 𝑡 𝜕H𝑆 𝜕H

∴ ℒ' *𝑆' = 𝑆*

Luscher 0907.5491

dOcul
- r

Ya
*

v

#.Fr.SINEU.phyoCeete
𝑆 𝑈 : original action
𝑆;<<,! 𝑉 : effective action
p𝑆! 𝑈 : flow kernel

NB



Trivializing map (4/4)

• The differential operator ℒ' = − 𝜕H 3 + 𝑡 𝜕H𝑆 𝜕H is

𝜓,𝜙 ≡ % 𝑑𝑈 𝑒)' .(0) 𝜓∗ 𝑈 𝜙(𝑈)

∴ ℒ' shares almost the same properties with the Hamiltonian in QM.

- elliptic (∴ bounded from below)
- symmetric with respect to the inner product:

- eigenvalues of ℒ' are nonnegative
- zero-mode is only constant (∵ we need 𝜕5𝜓= = 0)

𝜆K = 𝜓K , ℒ'𝜓K = ∫ 𝑑𝑈 𝑒)'. 𝜕H𝜓K 3 ≥ 0 .

ℒ')* can be taken modulo constant.

• For a normalized eigenvector 𝜓K,

ℒ' is diagonalizable and the eigenvectors form a complete set.

13/30

Existence (with another math)

∴ The solution of ℒ' *𝑆' = 𝑆 exists!

Luscher 0907.5491

e.g., Lee 81

i.e., 𝜓, ℒ'𝜙 = ℒ'𝜓,𝜙 .



Luscher further gave a way to construct the map as a 𝑡-expansion:

− 𝜕H 3 *𝑆' + 𝑡 𝜕H𝑆 𝜕H *𝑆' = 𝑆.

𝜕D
𝜕D = −

1
2

−
1
3

tr[ 𝑇D 3…] = − 2
L
tr …Recall:

𝜕&,%3 ∼ 𝑇3 insertion

Plug into the equation:

𝜕D 3 = −
4
3

tr 𝑇D𝐴 tr 𝑇D𝐵 = − *
3
tr 𝐴𝐵 − *

L
tr𝐴 ⋅ tr𝐵

𝑡-expansion (1/2)

• This recurrence equation can be inverted order by order.

• Expand *𝑆' as a Taylor series:

Matching the powers of 𝑡,

ℒ% *𝑆(%) = 𝑆,

ℒ% *𝑆(M) = −𝜕𝑆 ⋅ 𝜕 *𝑆 M)* 𝑘 ≥ 1 .
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4𝑆s = ∑tuv 𝑡t 4𝑆(t).

∵ Operator ℒ> can be represented as a matrix using the involved Wilson loops as basis functions.

• Radius of convergence is proven to be finite.

Luscher 0907.5491

Basic machinery
•

•



𝑡-expansion (2/2)

15/30

*𝑆' = − N
L3
𝑊%

+𝑡
𝛽1

192
−
4
33
𝑊, +

12
119

𝑊1 +
1
33
𝑊2 −

5
119

𝑊3 +
3
10
𝑊4 −

1
5
𝑊5 +

1
9
𝑊6

+𝑂(𝑡3)

LO: plaquette

• Solution for the Wilson action case: 𝑊% = ∑

𝑊* = ∑ 𝑊3 = ∑

𝑊O = ∑ 𝑊P = ∑

𝑊Q = ∑

𝑊L = ∑ 𝑊2 = ∑

+ 𝑐. 𝑐.

+ 𝑐. 𝑐. + 𝑐. 𝑐.

+ 𝑐. 𝑐. + 𝑐. 𝑐.

+ 𝑐. 𝑐. + 𝑐. 𝑐.

+ +

+ +

NLO: rectangle, chair, twisted rectangle …
“footprint 2 shapes”

• Leading order: Wilson flow = stout smearing 

Luscher 0907.5491

Morningstar-Peardon hep-lat/0311018

smeared link

· =

x

(Ux,y)

unsmeared link

+ +H+

or
--
Ex,M

(v) vFMI
⑧

I-
-
i

++

smeared link

· =

x

(Ux,y)

unsmeared link

-

x,M

+ toy--Ec
(v) vFMI I-
-
i

++
Improving the map = Adding more complicated shapes in RHS



direction of
construction
in the 𝑡-expansion

In particular, at 𝑡 = 0, one only needs to add the plaquette in 𝑆?@@,
∴ the expansion begins with the plaquette.

• Note that the 𝑡-expansion is performed around 𝑡 = 0;
this corresponds to the expansion around the trivial 𝛽 = 0 theory.

• However, our primary target is to decrease 𝛽,
for which the information of the nontrivial theory should be necessary.

finite

(Ftt = I
p=0 V

.
-

"
•→¥m{V•:→

finite B

"

FFF
{eff, C- - - - -

- - -
-

-
-
-
- -

-
-
-
.

.
.£"""

€ ¥
" ' '
' '
'
- ' - -

- -
-

+ = ,
E.tt

. . . - - - -

- -
--

-
-
. _

.

Seti3 C-
go

p=0 V

.
.

.̂ •→v•v•:
→

HMC

Because of the asymptotic freedom, 
one can expect that the relevant modes become rather wave-like for large 𝛽.

⇔*,¥,

p=o V

.
.
.̂ •→v•v•:→

HMC

finite B

FF
{eff, C- - - - -

- - -
-

-
-
-
- -

-
-
-
.

.
.£"""

€ ¥
" ' '
' '
'
- ' - -

- -
-

+ = ,JeffBE
g.

C- !↓
. . . _ - - -

- -
--

-
-
- -

-

yp-0
Sett ,t=L

.
.

→✓ •

→
•
:
→

HMC

𝑡 = 0

𝑡 = 1

Trivializing map in function space (1/3)
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Correspondingly, the expansion admits 
a similarity to the strong coupling expansion.

∴ it is possible that the exact solution *𝑆' is
different from that around 𝛽 = 0.

We try to decrease the action
step by step from the large 𝛽 theory.

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 
(work in progress)



Trivializing map in function space (2/3)
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- 𝑆?@@, ';+ 𝑉 ≡ 𝑆?@@, ' ℱ',+(𝑉) − ln det ℱ',+,∗ 𝑉

• We require that at each flow time 𝑡:

⇔*,¥,

p=o V

.
.
.̂ •→v•v•:→

HMC

finite B

FF
{eff, C- - - - -

- - -
-

-
-
-
- -

-
-
-
.

.
.£"""

€ ¥
" ' '
' '
'
- ' - -

- -
-

+ = ,JeffBE
g.

C- !↓
. . . _ - - -

- -
--

-
-
- -

-

yp-0
Sett ,t=L

.
.

→✓ •

→
•
:
→

HMCThis suggests 𝑆?@@, ' 𝑉 = 1 − 𝑡 𝑆 𝑉 .

= 𝑆?@@, ' 𝑉 − 𝜖 𝑆 𝑉 .

- 𝑉 → ℱ',+(𝑉)

*

ℱ'GR+ = ℱ%,+ ∘ ℱ+,+ ∘ ℱ R)* +,+ ∘ ℱ R)* +,+ .

𝑆788, 9:;< 𝑉

= 𝑆788,(;+1)< ℱ(;+1)<,<(ℱ(;+,)<,< 𝑉 )
−ln det ℱ(;+1)<,<,∗ ℱ(;+,)<,<(𝑉) − ln det ℱ(;+,)<,<,∗ 𝑉

= ⋯
= 𝑆788, 9:"(ℱ",< ∘⋯∘ ℱ ;+, <,<(𝑉)) −∑ℓ ln det ℱℓ<,<,∗ ℱ(ℓA,)<,< ∘⋯∘ ℱ ;+, <,<(𝑉)

= 𝑆 ℱ;< − ln det ℱ;<,∗

= 𝑆788, (;+,)< ℱ(;+,)<,<(𝑉) − ln det ℱ(;+,)<,<,∗ 𝑉
∵

Comment

Composition ordering needs to be reversed:

use to be ℱ!(𝑉) instead of 𝑉

𝑡

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 
(work in progress)



Trivializing map in function space (3/3)

18/30

• The trivializing map with the requirement

can be related to Lüscher’s ℱ'
(#).

• We again assume the gradient form: 

ℱ',+ 𝑈 4,! = 𝑒)+ C
/,-,./ -.!(0)𝑈4,!.

equation for *𝑆':

(𝐿) stands for Lüscher.

− 𝜕H 3 + 1 − 𝑡 𝜕H𝑆 𝜕H *𝑆' = 𝑆 − 𝜕H 3 + 𝑡 𝜕H𝑆 𝜕H *𝑆'
# = 𝑆

we used to have:

We notice that 𝑡 is replaced by 1 − 𝑡. 

ℱsxyz = ℱv,z ∘ ⋯ ∘ ℱ yZ{ z,z

In particular ℱ'G* = ℱ'G*
(#) (for 𝜖 → 0).

= ℱ(~Z{)z,z
(�) ∘ ⋯ ∘ ℱ(~Zy)z,z

(�) .

∴ Writing 𝑡 = 𝑚𝜖 (0 ≤ 𝑡 ≤ 1) and 1 ≡ 𝑛𝜖, 

∴ The above * corresponds to 
constructing the same map from the opposite direction.

⇔*,¥,
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.
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HMC
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∑? 𝛽? 𝜕5𝑊? 𝜕5𝑊@ A%&&
= 𝜕5 0𝑊@ A%&&.

- Consider a variation using 𝑊@ as the flow kernel:

0 = 𝛿∫ 𝑑𝑉 𝑒+A%&&(2)= ∫ 𝑑𝑉 𝑒+A%&&(2)𝜖 −(𝜕5 0𝑊@ + 𝜕5𝑆;<< 𝜕5𝑊@]

- The path integral is invariant under this variation (Schwinger-Dyson equation):

∑S 𝛽S 𝜕H𝑊S 𝜕H𝑊9 .BCC
= 𝜕H 3𝑊9 .BCC

• Expand 𝑆?@@ 𝑉 with the effective couplings 𝛽S:

𝑆?@@ 𝑉 = ∑S 𝛽S𝑊S

𝛿𝑉 = −𝜖𝑇5𝜕5𝑊@ ⋅ 𝑉

from Jacobian from action

we omit the 𝑡-dependence momentarily

• 𝛽S obey the linear equation:

∵

- Combining this formula with the expansion of 𝑆;<< 𝑉 :

⋅ .BCC: expectation value with respect to 𝑆788

𝑊? : Wilson loop basis

Gonzalez-Arroyo, Okawa 87, de Forcrand et al. [QCD-TARO] hep-lat/9806008

Schwinger-Dyson equation in gauge systems (1/2)

19/30

Use “action tomography” with a Schwinger-Dyson equation:

Complication in the 2nd approach: all Wilson loops can be relevant in principle

Need a systematic way to truncate the function space 

We can tell 𝛽S from the expectation values!



• Generically, we need infinite number of couplings to parametrize 𝑆?@@ 𝑉 = ∑S 𝛽S𝑊S.

• Instead, we can try to mimic 𝑆?@@ 𝑉 with a finite basis:

prime symbols indicate truncation
(𝑗 runs a finite range)

and determine 𝛽ST by:

∑ST 𝛽ST 𝜕H𝑊S 𝜕H𝑊9 .BCC
= 𝜕H 3𝑊9 .BCC : finite-dimensional matrix!

(𝑖 is also restricted to the finite range)

Such 𝛽ST turn out to give the best approximation of 𝑆?@@ 𝑉
in the sense that it minimizes the norm:

𝑆?@@ − 𝑆?@@
T

.BCC , 𝑆 .BCC
3 ≡ 𝜕H𝑆 3

.BCCwhere

The truncation error calculable.

𝑆?@@
T 𝑉 = ∑ST 𝛽ST𝑊S

∑S 𝛽S 𝜕H𝑊S 𝜕H𝑊9 .BCC
= 𝜕H 3𝑊9 .BCC : infinite-dimensional matrix (practically unusable)

Subtracted equation

is the stationary condition:
D
DE'

( 𝑆788 − 𝑆788
F

G%&&
1

= D
DE'

( 𝜕H 𝑆788 − 𝑆788F 1
G%&&

= −2∑IF 𝛽I − 𝛽IF 𝜕H𝑊I 𝜕H𝑊# G%&&
≡ 0.

∑IF (𝛽I − 𝛽IF) 𝜕H𝑊I 𝜕H𝑊# G%&&
= 0

This Schwinger-Dyson method
gives us a way to truncate effective actions.

∴

∴

∵

L2 norm of the force

Schwinger-Dyson equation in gauge systems (2/2)

20/30

cf. Gonzalez-Arroyo, Okawa 87, de Forcrand et al. [QCD-TARO] hep-lat/9806008



− 𝜕H 3𝑊9 + ∑ST 𝛽S,'T 𝜕H𝑊S 𝜕H𝑊9 .BCC, !
= 0

∑MT 𝛾M,' 𝜕I𝑊M𝜕I[− 𝜕H 𝑊9 + 𝜕H𝑆?@@, '
T 𝜕H𝑊9] .BCC, !

= −∑ST 𝛽̇S,'T 𝜕H𝑊S 𝜕H𝑊9 .BCC, !
from the Boltzmann weight

• We particularly take 𝛽̇S,'T = −
NJ,!
K

*)'
𝛽S,'T = 1 − 𝑡 𝛽S,'G%T = 1 − 𝑡 𝛽S,'G%. so that

Linear equation for 𝛾M,'

• Parametrize *𝑆' with the finite basis:

*𝑆' 𝑉 = ∑MT 𝛾M,'𝑊M.

∑MT 𝛾M,' 𝜕I𝑊M𝜕I[− 𝜕H 𝑊9 + 𝜕H𝑆?@@, '
T 𝜕H𝑊9] .BCC, !

= *
*)'

𝜕H𝑆?@@, '
T 𝜕H𝑊9 .BCC, !

• Differentiate the equation for 𝛽S,'T :

𝑑/𝑑𝑡

from explicit 𝑡-dependence of 𝛽I,9F

In practice, we use the numerical derivative with the five-point formula to calculate this matrix

This equation gives the coefficients 𝛾M,' for a given 𝛽̇S,'T (thus a trajectory of 𝑆;<<, !D )!

Design the map with a Schwinger-Dyson equation (1/1)

21/30

Given a way to project the action onto a finite-dimensional function space,
we can construct the flow in this subspace:

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 (work in progress)



• Some of the basis functions are not linearly independent (“Mandelstam constraints”)

Further relation can be obtained by the Cayley–Hamilton eq:

Relevant example:

𝑊P = 𝑊O + 2𝑊%

tr𝑈 3 = tr(𝑈3) + 2tr𝑈< 𝑈 ∈ 𝑆𝑈 3

• We need to pick a linearly independent basis to perform the inversions.

𝑈L = tr 𝑈 𝑈3 − *
3

tr 𝑈 3 − tr 𝑈3 𝑈 + 𝕀.

= +2

∵

Mandelstam 79

Technical comment: Mandelstam constraints (1/1)

See also Giles 81, Loll 93, Watson hep-th/9311126

22/30



Field-transformed HMC (1/1)

• We use the HMC with the exact transformed action 𝑆?@@ 𝑉 .

23/30

Detailed algorithm: Luscher 0907.5491

• Most costly part: matrix mults including the Hessian 𝜕H𝜕I *𝑆' in the force propagation.

• Fully parallelized code based on qlat software (C++ codebase)
https://github.com/waterret/Qlattice

plaquette
• •

• •

⑨

Do •

• • • •

•• • •

• • • •

•

•

• • • •

•

• • • •

•

•

•

•

•

Do B. • •
•

⑧r @ • •

• • •• •

• • • •

• • ••

•

•

• """"°""

• • • • •

↑ the flowed links
• • • • •

•

• ••
• • • •

•

•• • •

• •

• •

⑨

Do •

• • • •

•• • •

• • • •

•

•

• • • •

•

• • • •

•

•

•

•

•

Do B. • •
•

⑧r @ • •

• • •• •

• • • •

• • ••

•

•

• """"°""

• • • • •

↑ the flowed links
• • • • •

•

• ••
• • • •

•

•• • •

• •

• •

⑨

Do •

• • • •

•• • •

• • • •

•

•

• • • •

•

• • • •

•

•

•

•

•

Do B. • •
•

⑧r @ • •

• • •• •

• • • •

• • ••

•

•

• """"°""

• • • • •

↑ the flowed links
• • • • •

•

• ••
• • • •

•

•• • •

E.g., 
rectangle
(short edge)

(long edge)

']
◦AT

- - - - - -

:b patterns each

d- ↑

! !
I 1

i. :

d- ↑ ◦
AT

']
◦AT

- - - - - -

:b patterns each

d- ↑

! !
I 1

i. :

d- ↑ ◦
AT

']
◦AT

- - - - - -

:b patterns each

d- ↑

! !
I 1

i. :

d- ↑ ◦
AT

']
◦AT

- - - - - -

:b patterns each

d- ↑

! !
I 1

i. :

d- ↑ ◦
AT

plaquette
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factor difference
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Coloring is actually mandatory to ensure that the map is one-to-one for a sufficiently small but finite 𝜖.

• By dividing the directions of the flowed links and appropriately coloring/masking the lattice,
we can run the multiplications in parallel.

cf. L Jin LATTICE 2021

Lüscher 0907.5491, Boyda et al. 2008.05456

https://github.com/waterret/Qlattice
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• USQCD facility at BNL (KNL)

• Univ of Tokyo Oakforest-PACS (retired)

• RIKEN HOKUSAI

picture taken from HP of CCS

We are grateful for these resources.

funded by US DOE

Resources (1/1)
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Difference from the target trajectory

82, 𝛽 = 6.13 Wilson

Determined 𝛾%,'(plaqutte coefficient)

With the SD method, 
we can have better control of the effective action

(𝑎)* = 2.56 GeV)

flow obtained by Schwinger-Dyson (SD) 
is quite different from that by 𝑡-expansion

Ce-Consonni-Engel-Giusti 1506.06052

Results (1/4)

25/30
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Difference from the target trajectory

82, 𝛽 = 6.13 Wilson

Determined 𝛾%,'(plaqutte coefficient)

(𝑎)* = 2.56 GeV)

flow obtained by Schwinger-Dyson (SD) 
is quite different from that by 𝑡-expansion

Ce-Consonni-Engel-Giusti 1506.06052

25/30

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 
(work in progress)

Naively adding the rectangle term
to the LO 𝑡-expansion makes
the deviation more significant

Results (1/4)



8L×16, 𝛽 = 0.89 DBW2 (𝑎)* = 1.49 GeV)
Necco hep-lat/0309017

0.4 12
53

173

2040

sec/conf
Difference from the target trajectory

no flow
plaq

plaq+rect

plaq+rect

+chair plaq

+all fo
otprint 2

Computational cost (1 step flow)

RIKEN HOKUSAI
1 node 
(2 MPI x 40 OpenMP)

The increase can be understood by the increase of 
the nonzero matrix elements in 𝜕H𝜕L O𝑆9.

(𝑐, = −1.4008)
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8L×16, 𝛽 = 0.89 DBW2 (𝑎)* = 1.49 GeV)
Necco hep-lat/0309017(𝑐, = −1.4008)

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 
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𝑡E0 𝐸 |!)F!* = 0.3 Luscher 1006.4518
𝑡M: Wilson smearing flow time

Normalized autocorrelation function 𝜌 𝑛
for the smeared energy density (𝑡U = 30𝑡%)

Smearing is performed so a long time
that the energy reflects the instantons

𝐸
� ' N

G
L%
' O

Faster decorrelation (in MC steps)
by including extended loops

27/30

Results (3/4)



In most cases, faster decorrelation is observed by the extended loops, 
but the autocorrelation is not controlled completely:

𝒕

𝒕𝑾 = 𝒕𝟎

𝟏𝟎𝒕𝟎

𝟑𝟎𝒕𝟎

𝒕𝑾
(smearing)

(trivializing)𝒕 = 𝟎. 𝟐 𝟎. 𝟒 𝟎. 𝟔 𝟎. 𝟖

decorrelation by large kernels
not clear for these trivializing-flow times
(there seems to be an oscillation-like behavior)

28/30

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 
(work in progress)Results (4/4)



• From the oscillation-like behavior, 
it can be doubted that the determination of the flow coefficients 𝛾S,' is not sufficient.

Statistical errors? 𝑂(𝜖3) effects?

• Relatively small improvements suggest that 
the large loops (which are truncated) contribute to increasing autocorrelation.

Discussion (1/2)
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Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 
(work in progress)

More direct optimization may also be effective. cf. Bacchio-Kessel-Schaefer-Vaitl 2212.08469

What does the exact *𝑆' at large 𝛽 actually look like?

An example that effectively succeeds in decreasing 𝛽?

More appropriate basis functions than the Wilson loops?

• MC sampling strategies:

FT-HMC can be numerically costly when including large Wilson loops.

Can we arrange the accept/reject step 
s.t. the scaling behavior is better enough for large lattices in 4D?

Discussion in this regard: e.g., Komijani-Marinkovic 2301.01504



• We showed that

Summary

Outlook

• We proposed a way to design an approximate trivializing map with the Schwinger-Dyson equation

• Include fermion / develop algorithm that is capable of it.

- With the SD method, we can have a better control of the effective action

- We in some cases have positive effects on the autocorrelation of long-ranged objects 
by adding rectangles and chairs to the flow

Advantages of this method
- the basis for the flow kernel can be chosen arbitrarily by hand

- the coefficients in the kernel are determined by lattice estimates of the observables;
no need for analytic calculation such as 𝑡-expansion

- truncation effects and goodness of the flow can be measured by the force norm

- can be applied to the general action of interest

• Develop more efficient strategies

30/30

Discussion (2/2)



Thank you.


