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Introduction (1/3)

« Lattice calculation is giving important inputs in the precision test of the standard model.

E.g.: Contribution of RBC/UKQCD 2018
. . . Aubin et al. 2019
hadronic vacuum polarization to muon g-2 BMW 2020 v1
LM 2020

o ETMC 2021

HLO Aubin et al. 2022

a,° = dtw; C(t) Bernecker-Meyer 2011 ChiQCD 2022 OV/DWF

0 ChiQCD 2022 OV/HISQ

Mainz 2022

ETMC 2022

1 RBC/UKQCD 2022
4 § C(t) = EZUk(X' £)Jx(0)) ) / Colangelo et al. 2022/Lat
X,k

From Christoph Lehner’s talk in g
The Fifth Plenary Workshop of
the Muon g-2 Theory Initiative

Ju+ vector current

w; encodes the information
of the momentum loop

lhoadionie

o J

One of the major sources of systematical error
is the continuum extrapolation (evaluation of the a — 0 limit).

« However, as we reach the continuum limit,
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4w, ud, conn, isospin, W-0.4-1.0-0.15 X 10

RBC/UKQCD (incl NM)
in prep

we encounter the infamous critical slowing down when generating configurations,

which adds extreme computational cost to the simple volume scaling.
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Introduction (2/3)

Algorithms aimed for accelerating Monte Carlo (MC) sampling:

Overrelaxation
Adler 81, Whitmer 84, Creutz 87

« Multigrid MC
Parisi 84, Goodman-Sokal 86 (see also Wolff 90)

« Fourier acceleration/Riemannian manifold MC
Parisi 84, Batrouni et al. 85,88,90 / Nguyen et al. 2112.04556

- Parallel tempering
Swendsen-Wang 86, Geyer 91, Hukushima-Nemoto 96

with defects:
Hasenbusch 1706.04443, Berni-Bonanno-D’Elia 1911.03384, Bonanno-Bonati-D’Elia 2012.14000

« Cluster algorithm
Swendsen-Wang 87, Wolff 89

« Trivializing map/normalizing flow
Luscher 0907.5491 / Rezende-Mohamed 15

stochastic:
Wu-Kohler-Noe 20, Caselle-Cellini-Nada-Panero 2201.08862

L2HMC, winding HMC, ...
Foreman-X.Y.Jin-Osborn 2105.03418, Albandea, et al. 2106.14234, ... 3/30



Introduction (3/3)

« Original proposal Liischer 0907.5491
. Test in CPV-! model M) acceleration rather negative Engel-Schaefer 1102.1852

* Machine learning approaches Albergo-Kanwar-Shanahan 1904.12072, Foreman et al. 2112.01586
Bacchio-Kessel-Schaefer-Vaitl 2212.08469

This work

- We attempt to improve the flow kernel S, (=generating function) of the map U —easi )y
using a Schwinger-Dyson (SD) equation. - e
Gonzalez-Arroyo, Okawa 87, de Forcrand et al. hep-lat/9806008

« We perform the HMC using the resulting effective action in the MD Hamiltonian.

cf. L Jin LATTICE 2021
Advantages of this method

- basis functions for the flow kernel can be chosen by hand
- can be applied to general actions of interest without analytic calculation
- the coefficients in the kernel are determined by lattice estimates of the observables

« We apply our method to Wilson and DBW2 actions and show that:

- With the SD method, we can have better control of the effective action than
the known (perturbative-type) t-expansion.

- In particular cases, faster decorrelation (in MC step unit) is observed for long-ranged observables
by adding rectangle and chair to the flow.

- However, we have large algorithmic overhead,
and need to check the scaling with larger statistics to confirm the actual benefits at large g.
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Critical slowing down (1/2)

Make physical predictions from the lattice path integral:

S @) esWo)
D= e

/‘

Uy, link variable

(dU): Haar measure
0: observable

S: action
e.g., Wilson action Wilson 74
B
s =-= z Re tr [Uy uUrs v Uiy o US|
x,u<v

« We give input values in physical units (e.g., in GeV)
for the scales that will be dynamically generated in the system (e.g., correlation length).

x x+ [

L sites

» enables us to introduce lattice spacing in physical units (e.g., a = 0.1 fm) for a given g.

« Fixing the physical lattice volume (e.g., La =5 fm),
we take the a - 0 limit by tuning g towards g — .

» Make predictions about the continuum theory.
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Critical slowing down (2/2)

«  We expect to have a finite correlation length in physical units in the continuum.

>

infinite correlation length in lattice units (since a - 0),
which is a property of 2nd order phase transition
regarding the lattice system as a statistical system. Wilson 74

« Generically, as we approach the critical point,
more and more modes contribute to the correlator to give the quasi-long-range correlation.

/2D . poer-ke
# \

—2 A

x
(o (atice wnits)

x
Cin lodhice ontts)

Such long correlation makes the Monte Carlo simulation inefficient. critical slowing down

We expect fermions add another nonlocal structure in the theory;
however, in the following we basically concentrate on the gauge DOF.

6/30



Topological freezing (1/3)

Cause: nontrivial topological sectors of gauge field on T* (in the continuum) f
+ Gauge field A, is periodic up to gauge transformation: 't Hooft 81 % ¥0) N
cf. Dirac monopole F‘l"“) % v
A (x, = L) = v,(x) (au + A, (x, = 0)) v1(x).

\ F0) 7‘
+ The gauge function (or transition function) v, (x) perisdic

P P P ; . Luscher 82, van Baal 82, Phillips-Stone 86
completely encodes the topological information of the gauge field: cee aleo Kronfeld 83

-1 -
= Ef d*x tr E,, F,
5 Solely expressed with v, (x)!
B ﬁ S (vudvi?) /
-3y fp(pw) tr [dvy *(x, = L)vy,(x, = L)v,(x, = 0)dv;*(x, = 0)]

* One can show that Q € Z by, e.g., taking the pure gauge:

Aydxt = g ldg [constraint: 9 x, =L)g(x, =0) =1, ] » Q=

Nontrivial v,(x) can give nontrivial Q.

1
2412

f tr(g~tdg)3 € Z
ov

+ Topological sectors are disconnected - they have v,(x) that cannot be continuously deformed to one another.

As the continuum limit is reached, the lattice gauge field acquires continuum-like nature.
Correspondingly, configurations will be trapped in the emerging disconnected sectors
during Monte Carlo simulation (topological freezing).

More mathematical way to see the freezing is

through the geometrical definition of the lattice topological charge: Luscher 82 7/30



Topological freezing (2/3)

Simpler example: U(1) on T? Phillips 85, see also Fujiwara et al. hep-lat/0001029

« Lattice topological charge: winding in the plaquette angles k,:
-1
Qa0 = — ¥k, [ Ky = %log(Ux,onw,lU;+1,0U;,1)r take a single branch s.t. logl = 0. j

Q is defined unambiguously except for the exceptional configurations. contig space

for which 3x, k, =7
(-~ measure zero in path integral).

- Boundary of Q sectors are the exceptional configurations.

« Tunneling only occurs when the fluctuation becomes so large excepfional tonfigs
that the plaquette angle goes around the S! penetrating the potential barrier at +n.

However, such large fluctuation will be directly suppressed

+m: bdy of Q
for the Wilson action at large p:
ial
SW) =- zcosrc : potentia
W) ==p ) cosks Y
- Emergence of disconnected topological sectors.
0

Similarly for SU(2) on T*#, exceptional configurations (= boundary of Q) Luscher 82
consists of 3(local Wilson loop) = —1, which will be suppressed at large B.

[ Except for these configurations, one can define Q via the transition functions v, (x). ]
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Topological freezing (3/3)

A detour for the topological freezing: open boundary condition Luscher-Schaefer 1105.4749

Pros
No more topological sectors in the continuum!

No periodicity

Cons

x0=t¢

Need to consider the boundary effects.
In particular, translational invariance will be violated. L. o

\

we want to avoid this if possible
~ many statistical techniques assume the translational invariance

Regarding both the critical slowing down and the topological freezing,
they are rather intrinsic to the lattice simulation near the continuum (at large g).

» it will be advantageous if one can use small g simulation to generate large g configurations.

» trivializing map!
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Trivializing map (1/4)
Idea Luscher 0907.5491

« With a field transformation (or a change of the integration variable),
we can generate a new action for the transformed variable:

For U = F(V), U: original (or “physical”) variable / V': new (or “artificial”) variable

Z=[dUeSW = [ qV det F.(V) e=SFW) = [ qy e=SetrV), i

U
=7 ackion  S(V)

Jacobian

i.e., the action for the V-field is

Tw?

Sett(V) = S(F(V)) — In det F.(V).

4

« We can perform the ordinary Monte Carlo sampling (e.g., HMQC)
in the V-space with the action S (V). Duane et al. 87

» Prepare F so that the sampling in V-space becomes efficient!

« Ultimate F: trivializing map cf. Nicolai map in SUSY theory [Nicolai 80]

Seff(V) = const L for which Z = [ dV const. }

Such F will map the theory to the strong coupling limit (8 = 0),

which is the opposite of where the critical slowing down occurs (f = »).

Vocu
achion: S‘@'Ff CV)
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Trivializing map (2/4)

« We need to write down the Jacobian matrix F.(V):

- Introduce a local parametrization (9,?#) of the field space around a configuration U, ,:

e0xuT' U, . T: su(3) generators. tr(TT?) = —%Sab
- Haar measure: (dU) « [[,d84 right-invariant metric: ||6U||? « ¥, ,Re tr(ULﬁUx#)z x ¥ ,(564)2
A = (x,u,a) labels the DOF for 8Uy, = (%™ — 1)U,,,.
e.g., Polyakov 87
e 49w
F.(V) = (F.(V)48) can be read off from the infinitesimals: U
A _ AB B
doy, = FA5(V) doyy. %
« For later convenience, we also define the right-invariant derivative: dBev)
. etTa_l Ux,u a — a ]
0%, Uy = %l—{%% =TU,,. In other words, 05, = dgg lo=0-

Comment on the convention

In LUscher 0907.5491, the symbol 6, is used for the Maurer-Cartan form 0% ,:

0%, = (1+0(0))d62, (at each point Uy, on the group manifold).

02, is the dual of 3%,: (94,0%) = 548, | See, e.g., Chevalley 46 11/30



Trivializing map (3/4)

« Llscher particularly considered the gradient flow form: Luscher 0907.5491
j:'t(U)x,u = _Taaﬁg,ugt(u) ) Ux,/.t . %‘l .
G U : WSICQQ
'
TR =Lk flow fime
 Requiring that F, trivializes the theory at t = 1: Fe
V: friviak

A * requirement
Sett, e (V) = S(F:(V)) = Indet Fr.(V) = (1 —t) S(F,(V))
NB  S(U): original action
‘ d/dt Setet (V): effective action

. _ ~ S.(U): flow kernel
Equation for the kernel function §;:

x R
—(0M)%S, +t 045 94S, =S (up to const; ignored hereafter)
from Jacobian from action

Solving the map has boiled down to
solving a linear differential equation!

« For convenience we define
L, = —(0%)2 +t 945 04

~ X
o LtSt =S
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Trivializing map (4/4)

Luscher 0907.5491

« The differential operator £, = —(04)? + t 04504 is

- elliptic (-~ bounded from below)
- symmetric with respect to the inner product: @, ¢) = J(dU) e~ Sy () p(U)

i'e'l (l/)'Lt(.b) = (Ltl/)l (p)

~ L; shares almost the same properties with the Hamiltonian in QM.

»Lt is diagonalizable and the eigenvectors form a complete set. e.g., Lee 81

- For a normalized eigenvector y,, 4, = Wn, Le,) = [(dU) e 5|04y, = 0.

» - eigenvalues of L, are nonnegative
- zero-mode is only constant (= we need 94y, = 0)

» L7 can be taken modulo constant.

-~ The solution of £.5, = S exists!

13/30



t-expansion (1/2)
Luscher further gave a way to construct the map as a t-expansion:  Luscher 0907.5491

« Expand S, as a Taylor series:
S:t == ZRZO tk S:(k).
Plug into the equation: » Matching the powers of t,
—(04)28, +t 345 945, = S. LSO =5,

LS = —95 .S« (k > 1).

* This recurrence equation can be inverted order by order.

« Operator £, can be represented as a matrix using the involved Wilson loops as basis functions.

LRy
(9= "~"3 L
Recall: tr[(T%)?% ...] = —3tr[...]
¢, ~ T% insertion 3
yz St >
. gy 1t 7.1
S o i B S Y

tr[T®A] tr[T®B] = — % (tr[AB] — %trA : trB)

« Radius of convergence is proven to be finite.

14/30



t-expansion (2/2)

Solution for the Wilson action case: Luscher 0907.5491 | W, = Z[D +c. c]

§t = —£W0 <= LO: plaquette W, =

+
192 119 2 " 33 119 * ' 10 5 9

+0(t2) e NLO: rectangle, chair, twisted rectangle ...
“footprint 2 shapes”

0.

w, =23
o
Leading order: Wilson flow = stout smearing
Morningstar-Peardon hep-lat/0311018

sweared link unsmeared [ e — P—\ ;2
= = fx-hé— NED %‘TI‘ * T
X C
(Upy) oy L A f

Improving the map = Adding more complicated shapes in RHS

e ved) w=3(H &
+tﬁ—2(—%W1+£W s iwm 2w 3W5—1W6+1W7> [B+Qy+w] W4=Z[B+Qy+c.c]
-3

W = Z[@ +c.c.]
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Trivializing map in function space (1/3) (Bv?,\c/’Lek-?:upIiL:;r:‘ie-;;in-Jung-NM-Lehner-Tomiya 2212.11387

finite
* Note that the t-expansion is performed around t = 0; ! L\.\'t:‘l\
this corresponds to the expansion around the trivial p = 0 theory. U
Correspondingly, the expansion admits TFr=1
a similarity to the strong coupling expansion. y
=0
In particular, at t = 0, one only needs to add the plaguette in S.g, P AT
. the expansion begins with the plaquette. ) HWC

« However, our primary target is to decrease g,
for which the information of the nontrivial theory should be necessary.

Because of the asymptotic freedom,
one can expect that the relevant modes become rather wave-like for large g.

- it is possible that the exact solution S, is
different from that around g = 0.

We try to decrease the action
step by step from the large g theory.
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Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387

Trivializing map in function space (2/3) (york in progrese)

« We require that at each flow time t:

finite
- V- Tt,E(V) e{b
Sett,e  -- B
- Seff, t+e(V) = Seff, t(:Ft,e(V)) — In det Tt,e,* (V) t ,zeé.. .
€y
= Setr, t (V) — e S(V). :
p-o v
R G S A v
[ This suggests  Segr (V) = (1 —t) S(V). J Beftenl E}Mc,u v

use to be F.(V) instead of V

Comment

Composition ordering needs to be reversed:
Fiome = TO,E ° :Fe,e ° T(m—l)e,e ° T(m—l)e,e-

4 N
Seff, t=me (V)
= Veff, (m—l)e(T(m— e, (V)) —Indet T(m—l)e,e,* W)

= eff,(m—z)e(g:(m—z)e,e (:F(m—l)e,e(v)))
—Indet T(m—z)e,e,*(?(m—l)e,e(v)) — Indet T(m—l)e,e,* (V)

= eff, tzo(TO,e 00 T(m—l)e,e(v)) - Zf In det Fre e (:F(f+1)e,e 00 T(m—l)e,e(v))

= S(Fne) — Indet F e .
o %
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Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387

Trivializing map in function space (3/3) (york in progrese)

« The trivializing map with the requirement

*
Seft t+e(V) = Segr t (V) — € S(V).

- (L) stands for Luscher.
can be related to Liischer’s F".

« We again assume the gradient form:

_ _—eT%¢ , S.(U
Tt,e(U)x,u =e L t( )Ux,p.-

» equation for S, : we used to have:
[—(8%)% + (1 - 1)045 84] 5, = 5 [—(84)? + ¢ 945 3418 = 5

We notice that t is replaced by 1 —t.

=~ Writing t =me (0 <t <1) and 1 = ne,

_ _ @) (L)
Ft=me = Foe° " Fm-1ee = T(n—l)e,e °e T(n—m)e,e'

In particular F,-; = Tt(:Li (for € - 0).

~ The above * corresponds to
constructing the same map from the opposite direction.
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Schwinger-Dyson equation in gauge systems (1/2)

Complication in the 2nd approach: all Wilson loops can be relevant in principle

» Need a systematic way to truncate the function space

» Use “action tomography” with a Schwinger-Dyson equation:
Gonzalez-Arroyo, Okawa 87, de Forcrand et al. [QCD-TARO] hep-lat/9806008

« Expand S.(V) with the effective couplings p;: [ we omit the t-dependence momentarily ]

Setet(V) = X BiW; {w;}: Wilson loop basis

 p; obey the linear equation:

2 B (BAW]- OAWi)Seff = ((6“‘)2Wi)5eff (+ )s gt €xpectation value with respect to Seg

- Consider a variation using W; as the flow kernel:
8V = —eT404W; -V
- The path integral is invariant under this variation (Schwinger-Dyson equation):

0=235f(av) e=Sett() = [ (dV) e=SeitWe [—(04)2 W; + 04Segs 04W;]

from Jacobian from action

- Combining this formula with the expansion of S.g(V):

55 B (049 94Wi) = (@12 Wis,yp
~ _

We can tell g; from the expectation values!
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Schwinger-Dyson equation in gauge systems (2/2)
cf. Gonzalez-Arroyo, Okawa 87, de Forcrand et al. [QCD-TARO] hep-lat/9806008

* Generically, we need infinite number of couplings to parametrize S.x(V) = X; B;W;.

X Bj (04w GAWi)Seff = ((0)*W;)s., : infinite-dimensional matrix (practically unusable)

« Instead, we can try to mimic S.«(V) with a finite basis:

Seee(V) = X BiW; «—— prime symbols indicate truncation
(j runs a finite range)
and determine f; by:

X Bi (04W; aAVVi)S = ((@")°W))s., : finite-dimensional matrix!
eff (i is also restricted to the finite range)

N

Such g; turn out to give the best approximation of S.(V)

. . .. - ** Subtracted equation
in the sense that it minimizes the norm: ] , duaon
Y (B —Bp{9*w;a Wi)seff =0
|Sesr — Séff”seff , Where ||S||~29pff = ((6‘45’)2)56ff is the stationary condition:

L2 norm of the force

0 2
FTH ISesr — Segells
~ The truncation error calculable.

0 ’
=35 ([0 (Sett = Set)]*)sege

= -2 (8 - B)) (0" W; 0°w;),
L =0.

This Schwinger-Dyson method
gives us a way to truncate effective actions.
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Design the map with a Schwinger-Dyson equation (1/1)
Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 (work in progress)

Given a way to project the action onto a finite-dimensional function space,
we can construct the flow in this subspace:

« Parametrize S, with the finite basis:
gt(V) = Z;c Yie,r Wi

- Differentiate the equation for g;,:

(—(@H*W; + X Bj . 04W; aAWi)seff,t =0
¥ d/dt
i Viee (0P Wi 0P [—(0M)W; + 94Sgsr o 04Wil ) = —Xj By (04w 04wy)
from the Boltzmann weight from explicit t-dependence' of B,

This equation gives the coefficients y, , for a given [)’]’t (thus a trajectory of Sg .)!

!

. 57 ﬁ', ! !
« We particularly take Bj, = —== sothat B/ =1 =B =0 = (1 = t)Bjt=0-

1-t
Linear equation for yy
1
Yk Viee (OBW 0B [—(0)W; + 04Sse  04W,] ). = —(04Sis (04W;)
’ . Seff,t  1-t ’ Seff, t
o\
In practice, we use the numerical derivative with the five-point formula to calculate this matrix
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Technical comment: Mandelstam constraints (1/1)

« Some of the basis functions are not linearly independent (“Mandelstam constraints”)

Mandelstam 79

Relevant examp|e; See also Giles 81, Loll 93, Watson hep-th/9311126

s &
<

~ <

<

A4

S Y. N

A — Y A +2 1T Y [ W6 = WS + ZWO ]

- <
<

S
32
rg

N

+ (trU)? = tr(U?) + 2trUT [ U € SU(3) J
Further relation can be obtained by the Cayley—-Hamilton eq:

U3 = (tr U)U? —%[(tr U)? —tr U2]U + 1.

We need to pick a linearly independent basis to perform the inversions.
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Field-transformed HMC (1/1)

« We use the HMC with the exact transformed action Se(V).  Detailed algorithm: Luscher 0907.5491

« Fully parallelized code based on glat software (C++ codebase) cf. L Jin LATTICE 2021
https://github.com/waterret/Qlattice

« Most costly part: matrix mults including the Hessian 9492S, in the force propagation.

rectangle (long edge)
3x6/4 = 45  (Shortedge) . :
factor difference I | : \ B,
plaquette g = | : 3°: b potteves ench
7 a"\? aﬁ 5
) o

« By dividing the directions of the flowed links and appropriately coloring/masking the lattice,
we can run the multiplications in parallel. Liischer 0907.5491, Boyda et al. 2008.05456

rectangle 7
E.g., plaquette (short edge) (long edgz —~ Jirediion &
1 the flowad Zinks
[ {

—

1

ECoIoring is actually mandatory to ensure that the map is one-to-one for a sufficiently small but finite e.]
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Resources (1/1)

- RIKEN HOKUSAI R HOKUSAI

« Univ of Tokyo Oakforest-PACS (retired)

. USQCD facility at BNL (KNL Core taken from
fundcezd by US boL (KNL) k? Brookhaven picture taken from HP of CCS

National Laboratory

We are grateful for these resources.
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Results (1/4)

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387
(work in progress)
8%, B = 6.13 Wilson (a™! = 2.56 GeV)
Ce-Consonni-Engel-Giusti 1506.06052

Determined Yo c(plaqutte coefficient) Difference from the target trajectory
-~ t-expansion plag (LO) -~ t-expansion plag (LO)
0051 4 —¥- t-expansion plag+all footprint 2 (NLO) 0.35 A ~¥- t-expansion plag+all footprint 2 (NLO)
,,,,,,, —&—= -$- SD plaq 8- SD plag
0.00 - =" ~F- SD plag+rect 7y 0.30 1 ¥ SD plag+rect
=k SD plag+rect+chair = 0.25 - —~k- SD plag+rect+chair
-¥- SD plag+all footprint 2 % . o -¥- SD plag+all footprint 2
. e N TR + | 02014 T o
S PLTRTTELL: Lt o am IR | Gangl —® 2 \""?lt-;.. o
—-0.10 1 ... RS ml LTS Sy o — | 0151 % _ ~Trw,,
""" —‘._____—- - -~.._'_~_.~.\\-\rti~’r
o= 35 0104 0 Tree. "--.T\*yb'
0151 e * A Y T = )
.................. Wy 0.05 - S
s s e R e e e L L (N S -
020 { T g - - 0.00 -
070 075 080 085 090 095 100 070 075 | 080 085 050 095 100
X 1—t¢ 1-t
flow obtained by Schwinger-Dyson (SD) With the SD method,
is quite different from that by t-expansion we can have better control of the effective action
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Results (1/4)

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387
. (work in progress)
8%, B = 6.13 Wilson (a™! = 2.56 GeV)
Ce-Consonni-Engel-Giusti 1506.06052

Determined Vn,f(plaqutte coefficient) Difference from the target trajectory

—&~ t-expansion plag (LO) —#- texpansion plag (LO)
0051 e 4 =¥~ t-expansion plag+all footprint 2 (NLO) ¢, & texpansion plag+rect
_______ —&—TTT -8~ SD plag 0.4 b 5 ~¥- t-expansion plag+all footprint 2 (NLO)
0004 *¥~ ~F- SD plag+rect o ' -8~ SDplag
=k SD plag+rect+chair = ¥+ SD plag+rect
-¥- SD plag+all footprint 2 ja) 0.31 \‘\,‘ ~k- SD plag+rect+chair
. 0051 e - "r i -§- SD plag+all footprint 2
S R i — S =02 o Tesel. >
= -0.10 1 L. P AR o= =" - | . H’\’Z’;x. e 0
Y aaamiae - Foae, 2y, g
i g ........... r.:"\ tr, .
0151 e x wy 0.11 oy
R i o - -
o e s |
—020{ = =& o - 0.0 -
070 075 080 085 090 095 100 070 075 080 0 090 095 100
R 1-t t
flow obtained by SChWInger-Dyson (SD) Nalvely addlng the rectangle term

is quite different from that by t-expansion :
a Y P to the LO t-expansion makes

the deviation more significant
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Results (2/4)

83x16,8 = 0.89 DBW2 (a™' =1.49 GeV)
(c; = —1.4008) Necco hep-lat/0309017

Difference from the target trajectory

0.6 4
— 0.5 1 —&— SD plag
2 ¥~ SD plag+rect
wv 0.4 - &+ SD plag+rect+chair
'™
|
— 0.3
|
~ 0.2 1
=
w»
— 0.1
0.0 4
0.0 0.2 0.4 0.6 0.8 1.0

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387
(work in progress)

Computational cost (1 step flow)

sec/conf

2300

RIKEN HOKUSAI
2040 1 node

1000 \/\/\/\._ (2 MPI x 40 OpenMP)

200
100 1
53
0.4 12
> QoM 50 e e &Q“\(\‘
QO VO a0 o PV €00

The increase can be understood by the increase of
the nonzero matrix elements in 949%S,.
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Results (3/4)

Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387
(work in progress)

83x16,8 = 0.89 DBW2 (a™' =149 GeV)
(c; = —1.4008) Necco hep-lat/0309017

. . . tw: Wilson smearing flow time
Normalized autocorrelation function p(n) v

: ta{EM ¢ = 0.3 Luscher 1006.4518
for the smeared energy density (t,, = 30t,) WA= Ttw=to
t=0.4, ty =30t, tw = 30t
1.0
—— no flow 0.035 —— no flow
08 — plag 0.030 1
| —— plag+rect
—— plag+rect+chair S5 0.025 1
0.61 @
I 0.020 A
—_ =
£ 041 —= 0.015 -
Q ~
B po010-
0.2
0.005
0.0 0.000 R
1000 1050 1100 1150 1200 1250 1300 1350 1400
-0.2 - - - - - - - MC steps
0 25 /50 75 100 125 150 175 200
MC steps n

Smearing is performed so a long time

Faster decorrelation (in MC steps
( 2 that the energy reflects the instantons

by including extended loops
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Resu |tS (4/4) Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387

(work in progress)

In most cases, faster decorrelation is observed by the extended loops,
but the autocorrelation is not controlled completely:

0.4 ' Yk
t=0.2 . . 0.8 (trivializing)
t=0.6,tw=to t=0.8,tyw=to
t=02,tw=to 10 t=04,tw=ty 1.0 1.0
e . —+ no flow —+= no flow —+ no flow
—t no flow plag 08 —+— plaq 08 —— plag
0.8 —— plaq 0.8 plagrect ’ —— plag+rect —— plag+rect
-+ i lag+rect+chai
—}— plag+rect ) —— plag+rect+chair 0.6 plag+rect+chair o6 —— plag+rect+chair
t —_ t 0.6 —— plag+rect+chair 0.6
w 0 = | ~ s S o4
T s °* S o4 S 4
0.24 . 0.2
0.2 02
0.0 0.0
0.0 0.0
? 0 25 50 75 100 135 150 175 200 -0.2 02 25 50 75 100 125 150 175 200 oz 25 50 75 100 125 150 175 200
MC steps n 0 25 50 75 100 125 150 175 200 MC steps MC steps n
MC steps n
o t=02,ty =10t 1o t=0.4, ty = 10t t=0.6, tw =10t 1o t=0.8, ty =10t
. - 1.0 i
—— no flow —— no flow no flow —+— no flow
08 —+— plaq —+= plaq —+— plag —+ plag
’ 0.8 08 —+ plag+rect
—t— plag+rect —}— plag+rect plag+rect plag+rec )
06 —— plag-+rect+chair —+— plag+rect+chair —— plag-+rect+chair —— plag+rect+chair
10 | -
Lo T T = S
— 3 5 04 g o4 3
0.2 0.2 0.2
0.0 0.0 0.0
—0.2 _
0 25 50 75 100 125 150 175 200 025 0 75 10 135 %0 5 200 -0z 25 50 75 100 135 1%0 195 200 0 25 50 75 100 125 150 175 200
MC steps n MC steps n MC steps n MC steps n
1o =02ty =30t o t=0.4, ty =30t, o t=0.6, ty = 30t, o t=0.8, tw =30to
—+— no flow no flow —— no flow —— no flow
0.8 plag 0.8 —— plag . ~f plag 0.8 — Pl
—+— plag+rect ) - —+— plag+rect —— plag+rect plag+rect
3 Ot 0.6 plag +rect+chair —t+— plag+rect+chair h —— plag+rect+chair —— plag+rect+chair
0 0.6
= -
-T- < \g 0.4
I [
0.2
h 0.2
W“‘K
' 0.0 0.0
0T 35 s 75 10 135 180 175k 0 -02 ¥ ¥ ¥ . , : ‘ ‘ -02 y y y ] ‘ ; ‘
tW 0 25 50 75 100 125 150 175 200 0 2 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
MC steps n MC steps n MC steps n MC steps n
(smearing)

decorrelation by large kernels
not clear for these trivializing-flow times
(there seems to be an oscillation-like behavior)
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- : Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387
Discussion (1/2) (work in progress)

« From the oscillation-like behavior,
it can be doubted that the determination of the flow coefficients y;, is not sufficient.

» Statistical errors? 0(e?) effects?

More direct optimization may also be effective. cf. Bacchio-Kessel-Schaefer-Vaitl 2212.08469

« Relatively small improvements suggest that
the large loops (which are truncated) contribute to increasing autocorrelation.

» What does the exact S, at large g actually look like?
An example that effectively succeeds in decreasing p?

More appropriate basis functions than the Wilson loops?
« MC sampling strategies:
FT-HMC can be numerically costly when including large Wilson loops.

Can we arrange the accept/reject step
s.t. the scaling behavior is better enough for large lattices in 4D?
Discussion in this regard: e.g., Komijani-Marinkovic 2301.01504
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Discussion (2/2)

Summary

+ We proposed a way to design an approximate trivializing map with the Schwinger-Dyson equation

Advantages of this method
- the basis for the flow kernel can be chosen arbitrarily by hand
- can be applied to the general action of interest

- the coefficients in the kernel are determined by lattice estimates of the observables;

no need for analytic calculation such as t-expansion
- truncation effects and goodness of the flow can be measured by the force norm

+ We showed that
- With the SD method, we can have a better control of the effective action

- We in some cases have positive effects on the autocorrelation of long-ranged objects
by adding rectangles and chairs to the flow

« Develop more efficient strategies

« Include fermion / develop algorithm that is capable of it.
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Thank you.



