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Surprisingly little is known about scattering of  strings
in flat space beyond the low-energy limit
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Veneziano amplitude

Center of  mass energy

Momentum transfer

Inverse string tension

Polarization dependence
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No equivalently-useful expression currently exists at loop level…



But why is the Veneziano amplitude so much better than

Doesn’t converge in the physical kinematics, e.g., 

Have to define it via analytic continuation

?
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A sign of  a more general problem

Textbook definition of  string amplitudes

isn’t entirely correct, e.g., not consistent with unitarity
(the integration contour isn’t known)

Moduli space of  genus-g
Riemann surfaces with n punctures

or
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Known for 



The underlying problem is that we formulate string amplitudes
on a Euclidean worldsheet, but the target space is Lorentzian

(the reason to formulate the theory on a Euclidean worldsheet in the first place
is to be able to use CFT technology, manifest UV finiteness, …)
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Why hasn’t it been a problem before?

Most computations done:

[enormous literature: Green, Schwarz, Gross, Veneziano, Di Vecchia, Koba, Nielsen, D’Hoker, Phong, 
Martinec, Bern, Dixon, Polyakov, Kosower, Vanhove, Schlotterer, Mafra, Stieberger, Brown, Broedel, 

Hohenegger, Kleinschmidt, Gerken, Roiban, Lipstein, Mason, Monteiro, ...]

• At tree level

• At loop level in the              expansion

where we can get away without being careful about the integration contour

(meromorphic functions)

(branch cuts fixed by matching with QFT)
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So what does it mean to “compute” an amplitude?

Pragmatic answer:
Be able to efficiently evaluate it numerically

(e.g., known hypergeometric functions, fast convergent integrals, infinite sums, …)
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In this talk we’ll do it for the imaginary parts
of  genus-one amplitudes
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Outline of  the talk

1) Continuation from 
Euclidean to Lorentzian

2) Unitarity cuts
of  the worldsheet

3) Physical properties
of  the imaginary parts

4) Glimpse of  the real part
(if  there’s time)
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Let’s start at tree level
(            from now on )

s-channel poles come from           , so set               and take  

massless level-1 level-2

11



Important distinction

Euclidean proper time

Lorentzian proper time
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This tells us about the correct integration contour

We can resum

infinite number of  string resonances
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Strategy for finding the contour at higher genus

• Identify local variables
• Continue to Lorentzian signature locally in the moduli space

• Glue everything together

[Witten ‘13]
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Genus-one superstring amplitudes
In this talk we focus on the planar annulus contribution

Jacobi theta function

Modular parameter
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Various degenerations need the Witten iε

Massive pole
exchange

Wave-function 
renormalization

Tadpole Non-separating 
degeneration

Unitarity cuts
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Let’s focus on the contour in the fundamental domain,

Approach the 
essential singularity 
from the right 
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Adding the other planar contribution: Möbius strip

Planar
annulus

Möbius
strip

Closed-string pole
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Our proposal for the correct integration contour

Precise shape 
doesn’t matter

Approach 0 and ½ 
from the right

We’ll come back to it at the end of  the talk

(similar for other topologies)
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For the imaginary part we only need

Size of  the circles 
doesn’t matter

They’ll give as unitarity cuts of  the planar annulus and the Möbius strip
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Unitarity cuts
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Unitarity,               , embodies the physical principle of  
probability conservation. Using                    :  



At genus one

Two options:

• Do unitarity cuts “by hand” just as in field theory
• Let the worldsheet do it for us

On-shell states
with positive energy

Masses squared are integers

Thresholds
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First do it by hand

• Color sums • Polarization sums

• Loop integration

gluons gluinos

(not feasible beyond the massless cut)
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After the dust settles

On-shell phase space
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gauge group



General form after including massive exchanges

New thresholds opening up

Double poles at every positive integer

Need a computation to determine the integrand, e.g.,

with
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Idea
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Arrive at the same representation using the newly-discovered moduli space contour, 
thus bypassing laborious sums over intermediate states,

spins, degeneracy, colors, polarizations, …



Unitarity cuts of  the worldsheet

After the modular transformation:

can be arbitrarily small 
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Tropical analysis

The integrand goes as            so only terms with Trop < 0 can contribute 

It tells us how many terms in the    -expansion we need to keep, e.g.,

always dominates needed near needed near
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For example, below the first massive threshold  

Identify the variables
supported in

and integrate in

exact computation
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Gives exactly the same formula we’ve
derived before from unitarity
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Stringy Landau analysis

When does a new contribution to Trop < 0 appear? 

Normal thresholds at

Anomalous thresholds at
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Analytic structure away from physical regions is complicated,
but consistent with field theory expectations

Branch cuts
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Tropical analysis previously featured in

• limit of  string amplitudes

• limit of  tree-level amplitudes and loop integrands 

• UV/IR divergences of  individual Feynman integrals

But here it plays a different role: we’re doing an exact computation!

[Tourkine ‘13]

[Arkani-Hamed, He, Lam, Frost, Salvatori, Plamondon, Thomas ‘19-22]

[Panzer, Borinsky, Tellander, Helmer, Arkani-Hamed, Hillman, SM ‘19-22]
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• SYM amplitudes 
[Drummond, Foster, Gurdogan, Kalousios, Henke, Papathanasiou ‘19-]



This strategy allows us to go to higher energies
bypassing summing over states

where the first few polynomials are

35



Similar analysis for other genus-one topologies
in all kinematic channels

Möbius strip Non-planar annulus Torus
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We can now analyze the results
(this talk: planar annulus in the s-channel only)

We often normalize by               to remove the double poles

does not include the     tensor
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Fixed momentum transfer 
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Fixed angle
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Total cross section
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Low-spin dominance
(cf. [Arkani-Hamed, Huang, Huang ’20], [Bern, Kosmopoulos, Zhiboedov ‘21] at tree level)
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Almost all
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spins
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Decay widths

Coefficient of  the double residue computes decay widths

In agreement with
[Okada, Tsuchiya ‘89]
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Using decay widths to approximate the amplitude
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In high-energy fixed-angle scattering, this gives 

with

Exponential decay predicted 
by [Gross-Manes ‘89]



Comparison with numerics
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Finally, α’ expansion is straightforward

Coefficient of  N in agreement 
with [Edison, Guillen, 
Johansson, Schlotterer, 
Teng ‘21]
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Thank you!
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The idea is to recycle the computation
of  a single circle (infinitely) many times 
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Great simplification compared with 
the full, four-dimensional, contour



Farey sequence

all irreducible fractions between 0 and 1 with the denominator 
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Ford circles

circle touching the real axis at     with radius       in the    plane  

Each one is a modular 
transform of  
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Rademacher contour

follow all the Ford circles in the Farey sequence      from 0 to ½  

Original contour
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... and so on
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Not a complete circle yet



In the limit, we enclose all the circles

In all cases we observed that this series converges!
Stay tuned
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