Unitarity Cuts of the Worldsheet

Sebastian Mizera (IAS)

Based on [hep-th/2208.12233] and WIP with Lorenz Eberhardt

Surprisingly little is known about scattering of strings in flat space beyond the low-energy limit

Veneziano amplitude

Polarization dependence $t_8 = s p_1 \cdot \epsilon_2 p_2 \cdot \epsilon_1 \epsilon_3 \cdot \epsilon_4 + \dots$ $\mathcal{A}_{\text{tree}}^{\text{planar}}(s,t) = -t_8 \frac{\Gamma(-\alpha's)\Gamma(-\alpha't)}{\Gamma(1-\alpha's-\alpha't)}$ Center of mass energy Inverse string tension Momentum transfer

No equivalently-useful expression currently exists at loop level...

But why is the Veneziano amplitude so much better than

$$\mathcal{A}_{\text{tree}}^{\text{planar}}(s,t) = \frac{t_8}{t} \int_0^1 z^{-\alpha' s - 1} (1-z)^{-\alpha' t} \mathrm{d}z \ \mathbf{?}$$

Doesn't converge in the physical kinematics, e.g., s > 0, t, u < 0

 \implies Have to define it via analytic continuation

A sign of a more general problem

isn't entirely correct, e.g., not consistent with unitarity (the integration contour isn't known)

The underlying problem is that we formulate string amplitudes on a *Euclidean* worldsheet, but the target space is *Lorentzian*

(the reason to formulate the theory on a Euclidean worldsheet in the first place is to be able to use CFT technology, manifest UV finiteness, ...)

Why hasn't it been a problem before?

Most computations done:

• At tree level

(meromorphic functions)

• At loop level in the $\alpha' \to 0$ expansion (branch cuts fixed by matching with QFT)

[enormous literature: Green, Schwarz, Gross, Veneziano, Di Vecchia, Koba, Nielsen, D'Hoker, Phong, Martinec, Bern, Dixon, Polyakov, Kosower, Vanhove, Schlotterer, Mafra, Stieberger, Brown, Broedel, Hohenegger, Kleinschmidt, Gerken, Roiban, Lipstein, Mason, Monteiro, ...]

where we can get away without being careful about the integration contour

So what does it mean to "compute" an amplitude?

Pragmatic answer: Be able to efficiently evaluate it numerically (e.g., known hypergeometric functions, fast convergent integrals, infinite sums, ...)

In this talk we'll do it for the imaginary parts of genus-one amplitudes

9

Outline of the talk

1) Continuation from Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

Let's start at tree level

 $(\alpha' = 1 \text{ from now on})$

$$1 \underbrace{\underbrace{4}}_{2} 3 = \frac{t_8}{t} \int_0^1 z^{-s-1} (1-z)^{-t} \, \mathrm{d}z$$

s-channel poles come from $z\approx 0$, so set $z=e^{-\tau}$ and take $\tau\rightarrow\infty$

Important distinction

$$\frac{-1}{s - m^2} = \int_0^\infty \mathrm{d}\tau_{\rm E} \, e^{\tau_{\rm E}(s - m^2)}$$

Euclidean proper time

$$\frac{i}{s-m^2} = \lim_{\varepsilon \to 0^+} \int_0^\infty \mathrm{d}\tau_\mathrm{L} \, e^{i\tau_\mathrm{L}(s-m^2+i\varepsilon)}$$

Lorentzian proper time

This tells us about the correct integration contour

infinite number of string resonances

Strategy for finding the contour at higher genus

- Identify local variables $q \sim e^{-(\text{Schwinger parameter})}$
- Continue to Lorentzian signature locally in the moduli space
 - Glue everything together

[Witten '13]

Genus-one superstring amplitudes

In this talk we focus on the planar annulus contribution

Various degenerations need the Witten is

Massive pole exchange

 $q = z_{43}$

Wave-function renormalization

 $q = z_{42}$

Tadpole

 $q = z_{41}$

Non-separating degeneration

 $q = e^{-\frac{2\pi i}{\tau}}$

Unitarity cuts

Adding the other planar contribution: Möbius strip

Our proposal for the correct integration contour

(similar for other topologies)

We'll come back to it at the end of the talk

For the imaginary part we only need

They'll give as unitarity cuts of the planar annulus and the Möbius strip

Outline of the talk

1) Continuation from Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

Unitarity cuts

Unitarity, $SS^{\dagger} = 1$, embodies the physical principle of probability conservation. Using S = 1 + iT:

$$\operatorname{Im} T = \frac{1}{2}TT^{\dagger}$$

- Do unitarity cuts "by hand" just as in field theory
 - Let the worldsheet do it for us

First do it by hand

(not feasible beyond the massless cut)

• Color sums

• Polarization sums

$$\mathcal{P} = \sum_{\text{pol}} \left[t_8^b(1256) t_8^b(34\overline{56}) - t_8^f(1256) t_8^f(34\overline{56}) \right] = \frac{s^2}{2} t_8$$

• Loop integration

$$\int \mathrm{d}^{\mathrm{D}}\ell \,\delta^{+}[\ell^{2}]\delta^{+}[(p_{12}-\ell)^{2}](\cdots)$$
$$\propto \int_{P>0} \mathrm{d}t_{\mathrm{L}} \,\mathrm{d}t_{\mathrm{R}}P^{\frac{\mathrm{D}-5}{2}}(\cdots)$$

After the dust settles

General form after including massive exchanges

Idea

Arrive at the same representation using the newly-discovered moduli space contour, thus bypassing laborious sums over intermediate states, spins, degeneracy, colors, polarizations, ...

Unitarity cuts of the worldsheet

After the modular transformation:

$$\operatorname{Im} A_{\operatorname{an}}^{\operatorname{p}} = -\frac{N}{64} \int_{\longrightarrow} \frac{\mathrm{d}\tau}{\tau^2} \int \mathrm{d}z_1 \, \mathrm{d}z_2 \, \mathrm{d}z_3 \, q^{sz_{41}z_{32} - tz_{21}z_{43}} \left(\frac{\vartheta_1(z_{21}\tau,\tau)\vartheta_1(z_{43}\tau,\tau)}{\vartheta_1(z_{31}\tau,\tau)\vartheta_1(z_{42}\tau,\tau)} \right)^{-s} \left(\frac{\vartheta_1(z_{41}\tau,\tau)\vartheta_1(z_{32}\tau,\tau)}{\vartheta_1(z_{31}\tau,\tau)\vartheta_1(z_{42}\tau,\tau)} \right)^{-t} \\ \sim q^{\operatorname{Trop}(s,t,z_i)} \text{ as } q \to 0$$

Tropical analysis

The integrand goes as q^{Trop} so only terms with Trop < 0 can contribute

It tells us how many terms in the q-expansion we need to keep, e.g.,

$$\vartheta_1(z\tau,\tau) = iq^{\frac{1}{8}} \left(q^{-\frac{z}{2}} - q^{\frac{z}{2}} - q^{1-\frac{3z}{2}}\right) (1 + \mathcal{O}(q)) \qquad z \in [0,1]$$

always dominates needed near $z \approx 0$ needed near $z \approx 1$

For example, below the first massive threshold

$$q^{sz_{41}z_{32}-tz_{21}z_{43}} \left(\frac{\vartheta_{1}(z_{21}\tau,\tau)\vartheta_{1}(z_{43}\tau,\tau)}{\vartheta_{1}(z_{31}\tau,\tau)\vartheta_{1}(z_{42}\tau,\tau)}\right)^{-s} \left(\frac{\vartheta_{1}\vartheta_{1}}{\vartheta_{1}\vartheta_{1}}\right)^{-t} \sim q^{-s(1-z_{41})z_{32}-tz_{21}z_{43}} (1-q^{z_{21}})^{-s}(1-q^{z_{43}})^{-s}$$

$$exact computation supported in$$

$$\alpha_{L} \diamondsuit_{2}^{1} (1-q^{z_{43}})^{-s} \alpha_{L} = z_{21}, \qquad \alpha_{R} = z_{43}, \qquad t_{L} = -sz_{32} + tz_{43}$$

$$and integrate in$$

$$1 = s\sqrt{\frac{-i\tau}{2stu}} \int_{-\infty}^{\infty} dt_{R} q^{-\frac{1}{4st(s+t)}(st_{R}-(s+2t)t_{L}+2t(s+t)\alpha_{R}-st)^{2}}$$

Gives exactly the same formula we've derived before from unitarity

$$\begin{split} \operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}} \Big|_{s<1} &= \frac{N}{64\sqrt{2stu}} \int_{\longrightarrow} \frac{\mathrm{d}\tau}{(-i\tau)^{\frac{3}{2}}} \int_{\mathcal{R}} \mathrm{d}\alpha_{\mathrm{L}} \,\mathrm{d}\alpha_{\mathrm{R}} \,\mathrm{d}t_{\mathrm{L}} \,\mathrm{d}t_{\mathrm{R}} \,q^{-t_{\mathrm{L}}\alpha_{\mathrm{L}}-t_{\mathrm{R}}\alpha_{\mathrm{R}}-P(t_{\mathrm{L}},t_{\mathrm{R}})} (1-q^{\alpha_{\mathrm{L}}})^{-s} (1-q^{\alpha_{\mathrm{R}}})^{-s} \\ &= \frac{N\pi}{60\sqrt{stu}} \int_{P>0} \mathrm{d}t_{\mathrm{L}} \,\mathrm{d}t_{\mathrm{R}} \,P(t_{\mathrm{L}},t_{\mathrm{R}})^{\frac{5}{2}} \frac{\Gamma(1-s)\Gamma(-t_{\mathrm{L}})}{\Gamma(1-s-t_{\mathrm{L}})} \frac{\Gamma(1-s)\Gamma(-t_{\mathrm{R}})}{\Gamma(1-s-t_{\mathrm{R}})} \end{split}$$

Stringy Landau analysis

When does a new contribution to Trop < 0 appear?

Normal thresholds at

$$s, t, u = (\sqrt{n_1} + \sqrt{n_2})^2$$

Anomalous thresholds at

$$\det \begin{bmatrix} 2n_1 & n_1+n_2 & n_1+n_3-s & n_1+n_4\\ n_1+n_2 & 2n_2 & n_2+n_3 & n_2+n_4-t\\ n_1+n_3-s & n_2+n_3 & 2n_3 & n_3+n_4\\ n_1+n_4 & n_2+n_4-t & n_3+n_4 & 2n_4 \end{bmatrix} = 0 \qquad n_i \in \mathbb{Z}_{\geq 0}$$

Analytic structure away from physical regions is complicated, but consistent with field theory expectations

Tropical analysis previously featured in

• $\alpha' \rightarrow 0$ limit of string amplitudes [Tourkine '13]

• $\alpha' \rightarrow 0$ limit of tree-level amplitudes and loop integrands [Arkani-Hamed, He, Lam, Frost, Salvatori, Plamondon, Thomas '19-22]

• $\mathcal{N} = 4$ SYM amplitudes

[Drummond, Foster, Gurdogan, Kalousios, Henke, Papathanasiou '19-]

• UV/IR divergences of individual Feynman integrals [Panzer, Borinsky, Tellander, Helmer, Arkani-Hamed, Hillman, SM '19-22]

But here it plays a different role: we're doing an exact computation!

This strategy allows us to go to higher energies bypassing summing over states

$$\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}} = \frac{\pi N}{60} \frac{\Gamma(1-s)^{2}}{\sqrt{stu}} \sum_{n_{1} \geqslant n_{2} \geqslant 0} \theta \left[s - (\sqrt{n_{1}} + \sqrt{n_{2}})^{2} \right] \int_{P_{n_{1},n_{2}} > 0} \mathrm{d}t_{\mathrm{L}} \, \mathrm{d}t_{\mathrm{R}} \, P_{n_{1},n_{2}}(t_{\mathrm{L}},t_{\mathrm{R}})^{\frac{5}{2}} \\ \times \frac{Q_{n_{1},n_{2}}(t_{\mathrm{L}},t_{\mathrm{R}})}{\Gamma(n_{1}+n_{2}+1-s-t_{\mathrm{L}})\Gamma(-t_{\mathrm{R}})} \frac{\Gamma(-t_{\mathrm{L}})\Gamma(-t_{\mathrm{R}})}{\Gamma(n_{1}+n_{2}+1-s-t_{\mathrm{R}})\Gamma(n_{1}+n_{2}+1-s-t_{\mathrm{R}})}$$

where the first few polynomials are

$$\begin{split} Q_{0,0} &= 1 \ , \\ Q_{1,0} &= 2 \left(-2st_{\rm L} t_{\rm R} - s^2 t_{\rm L} + st_{\rm L} - s^2 t_{\rm R} + st_{\rm R} + s^2 t - 2st + t \right) \ , \\ Q_{2,0} &= 2s^4 t_{\rm L} t_{\rm R} + 4s^3 t_{\rm L} t_{\rm R}^2 + 4s^3 t_{\rm L}^2 t_{\rm R} - 4s^3 t t_{\rm L} t_{\rm R} - 12s^3 t_{\rm L} t_{\rm R} + 4s^2 t_{\rm L}^2 t_{\rm R}^2 - 10s^2 t_{\rm L} t_{\rm R}^2 \\ &\quad -10s^2 t_{\rm L}^2 t_{\rm R} + 12s^2 t t_{\rm L} t_{\rm R} + 18s^2 t_{\rm L} t_{\rm R} - 2st_{\rm L}^2 t_{\rm R}^2 + 4st_{\rm L} t_{\rm R}^2 + 4st_{\rm L}^2 t_{\rm R} - 12st t_{\rm L} t_{\rm R} \\ &\quad -6st_{\rm L} t_{\rm R} + 4tt_{\rm L} t_{\rm R} + s^4 t_{\rm L}^2 - 2s^4 t t_{\rm L} - s^4 t_{\rm L} - 4s^3 t_{\rm L}^2 + 10s^3 t t_{\rm L} + 4s^3 t_{\rm L} + 5s^2 t_{\rm L}^2 \\ &\quad -18s^2 t t_{\rm L} - 5s^2 t_{\rm L} - 2st_{\rm L}^2 + 14st t_{\rm L} + 2st_{\rm L} - 4t t_{\rm L} + s^4 t_{\rm R}^2 - 2s^4 t t_{\rm R} - s^4 t_{\rm R} \\ &\quad -4s^3 t_{\rm R}^2 + 10s^3 t t_{\rm R} + 4s^3 t_{\rm R} + 5s^2 t_{\rm R}^2 - 18s^2 t t_{\rm R} - 5s^2 t_{\rm R} - 2st_{\rm R}^2 + 14st t_{\rm R} \\ &\quad +2st_{\rm R} - 4tt_{\rm R} + s^4 t^2 + s^4 t - 6s^3 t^2 - 6s^3 t + 13s^2 t^2 + 13s^2 t - 12st^2 - 12st \\ &\quad +4t^2 + 4t \; . \end{split}$$

Similar analysis for other genus-one topologies in all kinematic channels

Outline of the talk

1) Continuation from Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

We can now analyze the results

(this talk: planar annulus in the s-channel only)

We often normalize by $\sin(\pi s)^2$ to remove the double poles

 $\operatorname{Im} A_{\operatorname{an}}^{\operatorname{p}}(s,t)$ does not include the t_8 tensor

The imaginary part of the planar annulus

Fixed angle

 $\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}(s, \frac{s}{2}(\cos \theta - 1)) \sin(\pi s)^{2}$ $\theta = \pi/6$ 0.2 $\theta = \pi/3$ 0.1 $\theta = \pi/2$ 1 1 1 S $- \theta = 2\pi/3$ $\mathbf{2}$ 64 5 -0.1 $\theta = 5\pi/6$ -0.2 ||

Total cross section

Low-spin dominance

(cf. [Arkani-Hamed, Huang, Huang '20], [Bern, Kosmopoulos, Zhiboedov '21] at tree level)

Decay widths

Coefficient of the double residue computes decay widths

In ag [Ok

agreement with
tada, Tsuchiya '89]
DRes Im
$$A_{an}^{p} = \frac{\pi^{2}}{420}$$
,
DRes Im $A_{an}^{p} = \frac{\pi^{2}(t+1)}{420}$,
DRes Im $A_{an}^{p} = \frac{10883\pi^{2}(t+1)(t+2)}{8981280}$,
:
DRes Im $A_{an}^{p} = 6.8078 \cdot 10^{-8} \times (t+1.00045)(t+2.00087)(t+3.0015)(t+4.0028)$
 $\times (t+5)(t+5.9972)(t+6.9985)(t+7.99913)(t+8.99955)$.

Using decay widths to approximate the amplitude

$$\operatorname{DRes}_{s=n} \operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}} \sim \frac{1}{4\pi^2} \frac{\Gamma(t+n)}{\Gamma(t+1)\Gamma(n)}$$

In high-energy fixed-angle scattering, this gives

$$\operatorname{Im} A_{\operatorname{an}}^{\operatorname{p}}(s,t) \sim -\sqrt{\frac{s}{8\pi t u}} \frac{\sin(\pi t)}{\sin(\pi s)^2} e^{-S_{\operatorname{tree}}} \quad \text{with} \quad S_{\operatorname{tree}} = s \log(s) + t \log(-t) + u \log(-u)$$

Exponential decay predicted by [Gross-Manes '89]

Comparison with numerics

Finally, α ' expansion is straightforward

$$\begin{split} \mathrm{Im}\, A_{\mathrm{I}} &= \pi^{2}g_{s}^{4}t_{8}\mathrm{tr}(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}}) \bigg[\frac{\alpha'\mathrm{Im}\left[(N-4)\mathcal{I}_{\mathrm{box}}(s,t)-2\mathcal{I}_{\mathrm{box}}(s,u)\right]}{120} \\ &+ \frac{\zeta_{2}}{180}\alpha'^{3}(N-3)s^{3} + \frac{\zeta_{3}}{1260}\alpha'^{4}s^{3}((4N-22)s+(N-2)t) \\ &+ \frac{\zeta_{2}^{2}}{50400}\alpha'^{5}s^{3}\left(2(92N-219)s^{2}+(15-8N)st+(4N-9)t^{2}\right) \\ &+ \frac{\zeta_{5}}{15120}\alpha'^{6}s^{3}\left((38N-208)s^{3}+6(2N-5)s^{2}t+3(N-4)st^{2}+(N-2)t^{3}\right) \\ &+ \frac{\zeta_{2}\zeta_{3}}{5040}\alpha'^{6}s^{4}\left(12(N-3)s^{2}+t((N-2)u+t)+st\right) \\ &+ \frac{\zeta_{3}^{2}}{30240}\alpha'^{7}s^{4}\left(4(5N-28)s^{3}+2(N+1)s^{2}t-3(N-4)st^{2}-(N-2)t^{3}\right) \\ &+ \frac{\zeta_{3}^{2}}{5292000}\alpha'^{7}s^{3}(70(176N-383)s^{4}+25(9-11N)s^{3}t+3(119N-347)s^{2}t^{2} \\ &+ 4(17-9N)st^{3}+2(16N-33)t^{4}) \\ &+ \frac{\zeta_{7}}{831600}\alpha'^{8}s^{3}\left(20(83N-452)s^{5}+5(129N-368)s^{4}t+2(148N-593)s^{3}t^{2} \\ &+ (137N-362)s^{2}t^{3}+4(9N-29)st^{4}+10(N-2)t^{5}\right) \\ &+ \frac{\zeta_{2}^{2}\zeta_{3}}{756000}\alpha'^{8}s^{4}\left(60(20N-47)s^{4}+5(66-23N)s^{3}t+6(33-8N)s^{2}t^{2} \\ &- (N-6)st^{3}+2(9-4N)t^{4}\right) \\ &+ \frac{\zeta_{2}\zeta_{5}}{37800}(N-3)\alpha'^{8}s^{4}\left(70s^{4}-5s^{3}t-6s^{2}t^{2}-2st^{3}-t^{4}\right) + \mathcal{O}(\alpha'^{9})\right] + \ldots \end{split}$$

Coefficient of N in agreement with [Edison, Guillen, Johansson, Schlotterer, Teng '21]

R

Outline of the talk

1) Continuation from Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

Thank you!

The idea is to recycle the computation of a single circle (infinitely) many times

Great simplification compared with the full, four-dimensional, contour

Farey sequence

 $F_q =$ all irreducible fractions between 0 and 1 with the denominator $\leq q$

$$F_{1} = \left(\frac{0}{1}, \frac{1}{1}\right)$$

$$F_{2} = \left(\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right)$$

$$F_{3} = \left(\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}\right)$$

$$F_{4} = \left(\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right)$$

$$F_{5} = \left(\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right)$$

$$\vdots$$

Ford circles

 $C_{p/q} =$ circle touching the real axis at $\frac{p}{q}$ with radius $\frac{1}{2q^2}$ in the τ plane $C_{0/1}$ $C_{1/1}$ Each one is a modular transform of $C_{0/1}$ $C_{1/2}$ $C_{1/3}$ $C_{2/3}$ $\frac{1}{76}\frac{1}{5} \quad \frac{1}{4} \quad \frac{2}{7} \quad \frac{1}{3}$ $\frac{4}{7}\frac{3}{5}$ $\frac{2}{3} \quad \frac{5}{7} \quad \frac{3}{4} \quad \frac{4}{5} \quad \frac{5}{6} \\ \frac{6}{7} \quad \frac{5}{7} \quad \frac{6}{7} \quad \frac{1}{7} \quad \frac{5}{7} \quad \frac{6}{7} \quad \frac{1}{7} \quad \frac{1}$ $\frac{2}{5}\frac{3}{7}$ $\frac{1}{2}$ 0 1

Rademacher contour

 Γ_q = follow all the Ford circles in the Farey sequence F_q from 0 to $\frac{1}{2}$

... and so on

In the limit, we enclose all the circles

In all cases we observed that this series converges! Stay tuned