Unitarity Cuts of the Worldsheet

Sebastian Mizera (IAS)

Based on [hep-th/2208.12233] and WIP with Lorenz Eberhardt

Surprisingly little is known about scattering of strings in flat space beyond the low-energy limit

Veneziano amplitude

Momentum transfer

No equivalently-useful expression currently exists at loop level...

But why is the Veneziano amplitude so much better than

$$
\mathcal{A}_{\text {tree }}^{\text {planar }}(s, t)=\frac{t_{8}}{t} \int_{0}^{1} z^{-\alpha^{\prime} s-1}(1-z)^{-\alpha^{\prime} t} \mathrm{~d} z \text { ? }
$$

Doesn't converge in the physical kinematics, e.g., $s>0, t, u<0$
\Longrightarrow Have to define it via analytic continuation

A sign of a more general problem

> Textbook definition of string amplitudes $\mathcal{A}_{g, n}\left(p_{1}, p_{2}, \ldots, p_{n}\right) \stackrel{?}{=} \int_{\mathcal{M}_{g, n}}($ correlation function) or $\Gamma \subset \mathcal{M}_{g, n}$ \longleftarrow $\begin{aligned} & \text { Moduli space of genus-g for } g \lesssim 2, n \lesssim 5 \\ & \text { Riemann surfaces with } \mathrm{n} \text { punctures }\end{aligned}$

The underlying problem is that we formulate string amplitudes on a Euclidean worldsheet, but the target space is Lorentzian
(the reason to formulate the theory on a Euclidean worldsheet in the first place
is to be able to use CFT technology, manifest UV finiteness, ...)

Why hasn't it been a problem before?

Most computations done:

- At tree level
(meromorphic functions)
- At loop level in the $\alpha^{\prime} \rightarrow 0$ expansion
(branch cuts fixed by matching with QFT)

```
[enormous literature: Green, Schwarz, Gross, Veneziano, Di Vecchia, Koba, Nielsen, D'Hoker, Phong,
Martinec, Bern, Dixon, Polyakov, Kosower, Vanhove, Schlotterer, Mafra, Stieberger, Brown, Broedel,
    Hohenegger, Kleinschmidt, Gerken, Roiban, Lipstein, Mason, Monteiro, ...]
```

where we can get away without being careful about the integration contour

So what does it mean to "compute" an amplitude?

Pragmatic answer:
Be able to efficiently evaluate it numerically
(e.g., known hypergeometric functions, fast convergent integrals, infinite sums, ...)

In this talk we'll do it for the imaginary parts of genus-one amplitudes

Outline of the talk

1) Continuation from

Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

Let's start at tree level

($\alpha^{\prime}=1$ from now on)

$$
1 * \underbrace{\substack{x}}_{\substack{x \\ 2}} \overbrace{2}^{t_{8}} \int_{0}^{1} z^{-s-1}(1-z)^{-t} \mathrm{~d} z
$$

s-channel poles come from $z \approx 0$, so set $z=e^{-\tau}$ and take $\tau \rightarrow \infty$

$$
\begin{aligned}
& t_{8} \int_{0}^{\infty} e^{\tau s}\left(\#+\# e^{-\tau}+\# e^{-2 \tau}+\ldots\right) \mathrm{d} \tau \\
& \begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
-\frac{1}{s} & -\frac{\#}{s-1} & -\frac{\#}{s-2}
\end{array} \\
& \text { massless level-1 level-2 }
\end{aligned}
$$

Important distinction

$$
\begin{gathered}
\frac{-1}{s-m^{2}}=\int_{0}^{\infty} \mathrm{d} \tau_{\mathrm{E}} e^{\tau_{\mathrm{E}}\left(s-m^{2}\right)} \\
\frac{i}{s-m^{2}}=\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} \mathrm{d} \tau_{\mathrm{L}} e^{i \tau_{\mathrm{L}}\left(s-m^{2}+i \varepsilon\right)} \\
\text { Luclidean proper time } \\
\text { Lorentzian proper time }
\end{gathered}
$$

This tells us about the correct integration contour

We can resum

Strategy for finding the contour at higher genus

- Identify local variables $q \sim e^{-(\text {Schwinger parameter })}$
- Continue to Lorentzian signature locally in the moduli space
- Glue everything together

Genus-one superstring amplitudes

In this talk we focus on the planar annulus contribution

$$
\begin{aligned}
& \text { Modular parameter }
\end{aligned}
$$

$$
\begin{aligned}
& \vartheta_{1}(z, \tau)=i \sum_{n \in \mathbb{Z}}(-1)^{n} \mathrm{e}^{2 \pi i\left(n-\frac{1}{2}\right) z+\pi i\left(n-\frac{1}{2}\right)^{2} \tau}
\end{aligned}
$$

Various degenerations need the Witten is

Massive pole exchange
$q=z_{43}$

Wave-function renormalization
$q=z_{42}$

Tadpole
$q=z_{41}$

Non-separating degeneration
$q=e^{-\frac{2 \pi i}{\tau}}$

Unitarity cuts

Let's focus on the contour in the fundamental domain, $\tau=\frac{2 \pi i}{t_{*}+i t}$

Approach the essential singularity
from the right

Adding the other planar contribution: Möbius strip

Closed-string pole

Our proposal for the correct integration contour

(similar for other topologies)

We'll come back to it at the end of the talk

For the imaginary part we only need

They'll give as unitarity cuts of the planar annulus and the Möbius strip

Outline of the talk

1) Continuation from

Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

Unitarity cuts

Unitarity, $S S^{\dagger}=\mathbb{1}$, embodies the physical principle of probability conservation. Using $S=\mathbb{1}+i T$:

$$
\operatorname{Im} T=\frac{1}{2} T T^{\dagger}
$$

- Do unitarity cuts "by hand" just as in field theory
- Let the worldsheet do it for us

First do it by hand

(not feasible beyond the massless cut)

- Color sums

Möbius strip

- Polarization sums

$$
\mathcal{P}=\sum_{\text {pol }}[t_{8}^{b}(1256) t_{8}^{b}(34 \overline{56})-\frac{t_{8}^{f}(1256) t_{8}^{f}(34 \overline{56})}{\overbrace{8}}]=\frac{s^{2}}{2} t_{8}
$$

- Loop integration

$$
\begin{array}{r}
\int \mathrm{d}^{\mathrm{D}} \ell \delta^{+}\left[\ell^{2}\right] \delta^{+}\left[\left(p_{12}-\ell\right)^{2}\right](\cdots) \\
\quad \propto \int_{P>0} \mathrm{~d} t_{\mathrm{L}} \mathrm{~d} t_{\mathrm{R}} P^{\frac{\mathrm{D}-5}{2}}(\cdots)
\end{array}
$$

After the dust settles

$$
\mathrm{SO}(N=32) \text { gauge group }
$$

$$
\left.\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}\right|_{s<1}=\frac{\searrow^{N \pi}}{60 \sqrt{s t u}} \int_{P>0} \mathrm{~d} t_{\mathrm{L}} \mathrm{~d} t_{\mathrm{R}} P\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)^{\frac{5}{2}} \frac{\Gamma(1-s) \Gamma\left(-t_{\mathrm{L}}\right)}{\Gamma\left(1-s-t_{\mathrm{L}}\right)} \frac{\Gamma(1-s) \Gamma\left(-t_{\mathrm{R}}\right)}{\Gamma\left(1-s-t_{\mathrm{R}}\right)}
$$

$$
\uparrow
$$

On-shell phase space

$$
P\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)=-\frac{s\left(t^{2}+t_{\mathrm{L}}^{2}+t_{\mathrm{R}}^{2}-2 t t_{\mathrm{L}}-2 t t_{\mathrm{R}}-2 t_{\mathrm{L}} t_{\mathrm{R}}\right)-4 t t_{\mathrm{L}} t_{\mathrm{R}}}{4 t u}
$$

General form after including massive exchanges

New thresholds opening up

$$
\begin{aligned}
& \operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}=\frac{\pi N}{60} \frac{\Gamma(1-s)^{2}}{\sqrt{s t u}} \sum_{n_{1} \geqslant n_{2} \geqslant 0} \theta\left[s-\left(\sqrt{n_{1}}+\sqrt{n_{2}}\right)^{2}\right] \int_{P_{n_{1}, n_{2}}>0} \mathrm{~d} t_{\mathrm{L}} \mathrm{~d} t_{\mathrm{R}} P_{n_{1}, n_{2}}\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)^{\frac{5}{2}} \\
& \text { poles at every positive integer }
\end{aligned} \times Q_{n_{1}, n_{2}}\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right) \frac{\Gamma\left(-t_{\mathrm{L}}\right) \Gamma\left(-t_{\mathrm{R}}\right)}{\Gamma\left(n_{1}+n_{2}+1-s-t_{\mathrm{L}}\right) \Gamma\left(n_{1}+n_{2}+1-s-t_{\mathrm{R}}\right)}
$$

Need a computation to determine the integrand, e.g., $Q_{0,0}=1$

$$
\text { with } P_{n_{1}, n_{2}}=-\frac{1}{4 s t u} \operatorname{det}\left[\begin{array}{cccc}
0 & s & u & n_{2}-s-t_{\mathrm{L}} \\
s & 0 & t & t_{\mathrm{L}}-n_{1} \\
u & t & 0 & n_{1}-t_{\mathrm{R}} \\
n_{2}-s-t_{\mathrm{L}} & t_{\mathrm{L}}-n_{1} & n_{1}-t_{\mathrm{R}} & 2 n_{1}
\end{array}\right]
$$

Idea

Arrive at the same representation using the newly-discovered moduli space contour, thus bypassing laborious sums over intermediate states, spins, degeneracy, colors, polarizations, ...

Unitarity cuts of the worldsheet

q can be arbitrarily small
After the modular transformation:

$$
\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}=-\frac{N}{64} \int_{\longrightarrow} \frac{\mathrm{d} \tau}{\tau^{2}} \int \mathrm{~d} z_{1} \mathrm{~d} z_{2} \mathrm{~d} z_{3} q^{s z_{41} z_{32}-t z_{21} z_{43}}\left(\frac{\vartheta_{1}\left(z_{21} \tau, \tau\right) \vartheta_{1}\left(z_{43} \tau, \tau\right)}{\vartheta_{1}\left(z_{31} \tau, \tau\right) \vartheta_{1}\left(z_{42} \tau, \tau\right)}\right)^{-s}\left(\frac{\vartheta_{1}\left(z_{41} \tau, \tau\right) \vartheta_{1}\left(z_{32} \tau, \tau\right)}{\vartheta_{1}\left(z_{31} \tau, \tau\right) \vartheta_{1}\left(z_{42} \tau, \tau\right)}\right)^{-t}
$$

$$
\sim q^{\operatorname{Trop}\left(s, t, z_{i}\right)} \quad \text { as } q \rightarrow 0
$$

Tropical analysis

The integrand goes as $q^{\text {Trop }}$ so only terms with Trop <0 can contribute

It tells us how many terms in the q-expansion we need to keep, e.g.,

$$
\vartheta_{1}(z \tau, \tau)=i q^{\frac{1}{8}}\left(q^{-\frac{z}{2}}-q^{\frac{z}{2}}-q^{1-\frac{3 z}{2}}\right)(1+\mathcal{O}(q)) \quad z \in[0,1]
$$

For example, below the first massive threshold

$$
q^{s z_{41} z_{32}-t z_{21} z_{43}}\left(\frac{\vartheta_{1}\left(z_{21} \tau, \tau\right) \vartheta_{1}\left(z_{43} \tau, \tau\right)}{\vartheta_{1}\left(z_{31} \tau, \tau\right) \vartheta_{1}\left(z_{42} \tau, \tau\right)}\right)^{-s}\left(\frac{\vartheta_{1} \vartheta_{1}}{\vartheta_{1} \vartheta_{1}}\right)^{-t} \sim q^{-s\left(1-z_{41}\right) z_{32}-t z_{21} z_{43}}\left(1-q^{z_{21}}\right)^{-s}\left(1-q^{z_{43}}\right)^{-s}
$$

Identify the variables

$$
\alpha_{\mathrm{L}}=z_{21}, \quad \alpha_{\mathrm{R}}=z_{43}, \quad t_{\mathrm{L}}=-s z_{32}+t z_{43}
$$

and integrate in

$$
1=s \sqrt{\frac{-i \tau}{2 s t u}} \int_{-\infty}^{\infty} \mathrm{d} t_{\mathrm{R}} q^{-\frac{1}{4 s t(s+t)}\left(s t_{\mathrm{R}}-(s+2 t) t_{\mathrm{L}}+2 t(s+t) \alpha_{\mathrm{R}}-s t\right)^{2}}
$$

exact computation supported in

Gives exactly the same formula we've derived before from unitarity

$$
\begin{aligned}
\left.\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}\right|_{s<1} & =\frac{N}{64 \sqrt{2 s t u}} \int_{\longrightarrow} \frac{\mathrm{d} \tau}{(-i \tau)^{\frac{3}{2}}} \int_{\mathcal{R}} \mathrm{d} \alpha_{\mathrm{L}} \mathrm{~d} \alpha_{\mathrm{R}} \mathrm{~d} t_{\mathrm{L}} \mathrm{~d} t_{\mathrm{R}} q^{-t_{\mathrm{L}} \alpha_{\mathrm{L}}-t_{\mathrm{R}} \alpha_{\mathrm{R}}-P\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)}\left(1-q^{\alpha_{\mathrm{L}}}\right)^{-s}\left(1-q^{\alpha_{\mathrm{R}}}\right)^{-s} \\
& =\frac{N \pi}{60 \sqrt{s t u}} \int_{P>0} \mathrm{~d} t_{\mathrm{L}} \mathrm{~d} t_{\mathrm{R}} P\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)^{\frac{5}{2}} \frac{\Gamma(1-s) \Gamma\left(-t_{\mathrm{L}}\right)}{\Gamma\left(1-s-t_{\mathrm{L}}\right)} \frac{\Gamma(1-s) \Gamma\left(-t_{\mathrm{R}}\right)}{\Gamma\left(1-s-t_{\mathrm{R}}\right)}
\end{aligned}
$$

Stringy Landau analysis

When does a new contribution to Trop <0 appear?

$$
\begin{gathered}
\text { Normal thresholds at } \\
s, t, u=\left(\sqrt{n_{1}}+\sqrt{n_{2}}\right)^{2} \\
\operatorname{det}\left[\begin{array}{cccc}
2 n_{1} & n_{1}+n_{2} & n_{1}+n_{3}-s & n_{1}+n_{4} \\
n_{1}+n_{2} & 2 n_{2} & n_{2}+n_{3} & n_{2}+n_{4}-t \\
n_{1}+n_{3}-s & n_{2}+n_{3} & 2 n_{3} & n_{3}+n_{4} \\
n_{1}+n_{4} & n_{2}+n_{4}-t & n_{3}+n_{4} & 2 n_{4}
\end{array}\right]=0 \quad n_{i} \in \mathbb{Z}_{\geqslant 0}
\end{gathered}
$$

Analytic structure away from physical regions is complicated, but consistent with field theory expectations

Tropical analysis previously featured in

- $\alpha^{\prime} \rightarrow 0$ limit of string amplitudes
[Tourkine '13]
- $\alpha^{\prime} \rightarrow 0$ limit of tree-level amplitudes and loop integrands
[Arkani-Hamed, He, Lam, Frost, Salvatori, Plamondon, Thomas '19-22]
- $\mathcal{N}=4$ SYM amplitudes
[Drummond, Foster, Gurdogan, Kalousios, Henke, Papathanasiou '19-]
- UV/IR divergences of individual Feynman integrals
[Panzer, Borinsky, Tellander, Helmer, Arkani-Hamed, Hillman, SM '19-22]
But here it plays a different role: we're doing an exact computation!

This strategy allows us to go to higher energies bypassing summing over states

$$
\begin{aligned}
\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}=\frac{\pi N}{60} \frac{\Gamma(1-s)^{2}}{\sqrt{s t u}} \sum_{n_{1} \geqslant n_{2} \geqslant 0} & \theta\left[s-\left(\sqrt{n_{1}}+\sqrt{n_{2}}\right)^{2}\right] \int_{P_{n_{1}, n_{2}}>0} \mathrm{~d} t_{\mathrm{L}} \mathrm{~d} t_{\mathrm{R}} P_{n_{1}, n_{2}}\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)^{\frac{5}{2}} \\
& \times Q_{n_{1}, n_{2}}\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right) \frac{\Gamma\left(-t_{\mathrm{L}}\right) \Gamma\left(-t_{\mathrm{R}}\right)}{\Gamma\left(n_{1}+n_{2}+1-s-t_{\mathrm{L}}\right) \Gamma\left(n_{1}+n_{2}+1-s-t_{\mathrm{R}}\right)}
\end{aligned}
$$

where the first few polynomials are

$$
\begin{aligned}
Q_{0,0}= & 1, \\
Q_{1,0}= & 2\left(-2 s t_{\mathrm{L}} t_{\mathrm{R}}-s^{2} t_{\mathrm{L}}+s t_{\mathrm{L}}-s^{2} t_{\mathrm{R}}+s t_{\mathrm{R}}+s^{2} t-2 s t+t\right), \\
Q_{2,0}= & 2 s^{4} t_{\mathrm{L}} t_{\mathrm{R}}+4 s^{3} t_{\mathrm{L}} t_{\mathrm{R}}^{2}+4 s^{3} 3_{\mathrm{L}}^{2} t_{\mathrm{R}}-4 s^{3} t t_{\mathrm{L}} t_{\mathrm{R}}-12 s^{3} t_{\mathrm{L}} t_{\mathrm{R}}+4 s^{2} t_{\mathrm{L}}^{2} t_{\mathrm{R}}^{2}-10 s^{2} t_{\mathrm{L}} t_{\mathrm{R}}^{2} \\
& -10 s^{2} t_{\mathrm{L}}^{2} t_{\mathrm{R}}+12 s^{2} t t_{\mathrm{L}} \mathrm{t}_{\mathrm{R}}+18 s^{2} t_{\mathrm{L}} t_{\mathrm{R}}-2 s t_{\mathrm{L}}^{2} t_{\mathrm{R}}+4 s t_{\mathrm{L}} t_{\mathrm{R}}^{2}+4 s t_{\mathrm{L}}^{2} t_{\mathrm{R}}-12 s t t_{\mathrm{L}} t_{\mathrm{R}} \\
& -6 s t_{\mathrm{L}} t_{\mathrm{R}}+4 t t_{\mathrm{L}} t_{\mathrm{R}}+s^{4} t_{\mathrm{L}}^{2}-2 s^{4} t t_{\mathrm{L}}-s^{4} t_{\mathrm{L}}-4 s^{3} t_{\mathrm{L}}^{2}+10 s^{3} t t_{\mathrm{L}}+4 s^{3} t_{\mathrm{L}}+5 s^{2} t_{\mathrm{L}}^{2} \\
& -18 s^{2} t t_{\mathrm{L}}-5 s^{2} t_{\mathrm{L}}-2 s t_{\mathrm{L}}^{2}+14 s t t_{\mathrm{L}}+2 s t_{\mathrm{L}}-4 t t_{\mathrm{L}}+s^{4} t_{\mathrm{R}}^{2}-2 s^{4} t t_{\mathrm{R}}-s^{4} t_{\mathrm{R}} \\
& -4 s^{3} t_{\mathrm{R}}^{2}+10 s^{3} t t_{\mathrm{R}}+4 s^{3} t_{\mathrm{R}}+5 s^{2} t_{\mathrm{R}}^{2}-18 s^{2} t t_{\mathrm{R}}-5 s^{2} t_{\mathrm{R}}-2 s t_{\mathrm{R}}^{2}+14 s t t_{\mathrm{R}} \\
& +2 s t_{\mathrm{R}}-4 t t_{\mathrm{R}}+s^{4} t^{2}+s^{4} t-6 s^{3} t^{2}-6 s^{3} t+13 s^{2} t^{2}+13 s^{2} t-12 s t^{2}-12 s t \\
& +4 t{ }^{2} .
\end{aligned}
$$

Similar analysis for other genus-one topologies in all kinematic channels

Möbius strip

Non-planar annulus

Torus

Outline of the talk

1) Continuation from

Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

We can now analyze the results

(this talk: planar annulus in the s-channel only)

We often normalize by $\sin (\pi s)^{2}$ to remove the double poles

$\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}(s, t)$ does not include the t_{8} tensor

The imaginary part of the planar annulus

Most of the known results

Fixed momentum transfer

$\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}(s, t) \sin (\pi s)^{2}$

Asymptotic
behavior not reached
$-t=0$
$-t=-\frac{1}{2}$
$-t=-1$
$-t=-\frac{3}{2}$
$-t=-2$

Fixed angle

$\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}\left(s, \frac{s}{2}(\cos \theta-1)\right) \sin (\pi s)^{2}$

- $\theta=\pi / 6$
- $\theta=\pi / 3$
- $\theta=\pi / 2$
- $\theta=2 \pi / 3$
- $\theta=5 \pi / 6$

Total cross section

Low-spin dominance

(cf. [Arkani-Hamed, Huang, Huang '20], [Bern, Kosmopoulos, Zhiboedov '21] at tree level)

Almost all contributions from spins $j+1 \lesssim s$

Decay widths

Coefficient of the double residue computes decay widths

$$
\begin{aligned}
& \rightarrow \quad \mathrm{DRes} \\
& \operatorname{Dim} A_{\mathrm{an}}^{\mathrm{p}} \\
&= \frac{\pi^{2}}{420}, \\
& \underset{s=2}{\mathrm{DRes}} \operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}= \frac{\pi^{2}(t+1)}{420}, \\
& \mathrm{DRes}_{s=3}^{\mathrm{DRes}} \operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}= \frac{10883 \pi^{2}(t+1)(t+2)}{8981280}, \\
& \vdots \\
& \underset{s=10}{\mathrm{DRes}} \operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}= 6.8078 \cdot 10^{-8} \times(t+1.00045)(t+2.00087)(t+3.0015)(t+4.0028) \\
& \quad \times(t+5)(t+5.9972)(t+6.9985)(t+7.99913)(t+8.99955)
\end{aligned}
$$

Using decay widths to approximate the amplitude

$$
\underset{s=n}{\operatorname{DRes} \operatorname{Im}} A_{\mathrm{an}}^{\mathrm{p}} \sim \frac{1}{4 \pi^{2}} \frac{\Gamma(t+n)}{\Gamma(t+1) \Gamma(n)}
$$

In high-energy fixed-angle scattering, this gives

$$
\operatorname{Im} A_{\mathrm{an}}^{\mathrm{p}}(s, t) \sim-\sqrt{\frac{s}{8 \pi t u}} \frac{\sin (\pi t)}{\sin (\pi s)^{2}} \mathrm{e}^{-S_{\text {tree }}} \quad \text { with } \quad S_{\text {tree }}=s \log (s)+t \log (-t)+u \log (-u)
$$

Exponential decay predicted
by [Gross-Manes '89]

Comparison with numerics

Finally, α^{\prime} expansion is straightforward

$$
\begin{aligned}
& \operatorname{Im} A_{\mathrm{I}}=\pi^{2} g_{s}^{4} t_{8} \operatorname{tr}\left(t^{a_{1}} t^{a_{2}} t^{a_{3}} t^{a_{4}}\right)\left[\frac{\alpha^{\prime} \operatorname{Im}\left[(N-4) \mathcal{I}_{\mathrm{box}}(s, t)-2 \mathcal{I}_{\mathrm{box}}(s, u)\right]}{120}\right. \\
& +\frac{\zeta_{2}}{180} \alpha^{\prime 3}(N-3) s^{3}+\frac{\zeta_{3}}{1260} \alpha^{\prime 4} s^{3}((4 N-22) s+(N-2) t) \\
& +\frac{\zeta_{2}^{2}}{50400} \alpha^{\prime 5} s^{3}\left(2(92 N-219) s^{2}+(15-8 N) s t+(4 N-9) t^{2}\right) \\
& +\frac{\zeta_{5}}{15120} \alpha^{\prime 6} s^{3}\left((38 N-208) s^{3}+6(2 N-5) s^{2} t+3(N-4) s t^{2}+(N-2) t^{3}\right) \\
& +\frac{\zeta_{2} \zeta_{3}}{5040} \alpha^{\prime 6} s^{4}\left(12(N-3) s^{2}+t((N-2) u+t)+s t\right) \\
& +\frac{\zeta_{3}^{2}}{30240} \alpha^{\prime 7} s^{4}\left(4(5 N-28) s^{3}+2(N+1) s^{2} t-3(N-4) s t^{2}-(N-2) t^{3}\right) \\
& +\frac{\zeta_{2}^{3}}{5292000} \alpha^{\prime 7} s^{3}\left(70(176 N-383) s^{4}+25(9-11 N) s^{3} t+3(119 N-347) s^{2} t^{2}\right. \\
& \left.\quad \quad+4(17-9 N) s t^{3}+2(16 N-33) t^{4}\right)
\end{aligned} \begin{aligned}
& +\frac{\zeta_{7}}{831600} \alpha^{\prime 8} s^{3}\left(20(83 N-452) s^{5}+5(129 N-368) s^{4} t+2(148 N-593) s^{3} t^{2}\right. \\
& \left.\quad \quad+(137 N-362) s^{2} t^{3}+4(9 N-29) s t^{4}+10(N-2) t^{5}\right)
\end{aligned} \begin{aligned}
& +\frac{\zeta_{2}^{2} \zeta_{3}}{756000} \alpha^{\prime 8} s^{4}\left(60(20 N-47) s^{4}+5(66-23 N) s^{3} t+6(33-8 N) s^{2} t^{2}\right. \\
& \left.\quad \quad-(N-6) s t^{3}+2(9-4 N) t^{4}\right)
\end{aligned} \begin{aligned}
& \left.+\frac{\zeta_{2} \zeta_{5}}{37800}(N-3) \alpha^{\prime 8} s^{4}\left(70 s^{4}-5 s^{3} t-6 s^{2} t^{2}-2 s t^{3}-t^{4}\right)+\mathcal{O}\left(\alpha^{\prime 9}\right)\right]+\ldots .
\end{aligned}
$$

Coefficient of N in agreement with [Edison, Guillen, Johansson, Schlotterer, Teng '21]

Outline of the talk

1) Continuation from

Euclidean to Lorentzian

2) Unitarity cuts of the worldsheet

3) Physical properties of the imaginary parts

4) Glimpse of the real part (if there's time)

Thank you!

The idea is to recycle the computation of a single circle (infinitely) many times

$\sqrt{ } \sqrt{ }$ Great simplification compared with the full, four-dimensional, contour

Farey sequence

$F_{q}=$ all irreducible fractions between 0 and 1 with the denominator $\leqslant q$

$$
\begin{aligned}
& F_{1}=\left(\frac{0}{1}, \frac{1}{1}\right) \\
& F_{2}=\left(\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right) \\
& F_{3}=\left(\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}\right) \\
& F_{4}=\left(\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right) \\
& F_{5}=\left(\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right)
\end{aligned}
$$

Ford circles

$C_{p / q}=$ circle touching the real axis at $\frac{p}{q}$ with radius $\frac{1}{2 q^{2}}$ in the τ plane

Rademacher contour

$\Gamma_{q}=$ follow all the Ford circles in the Farey sequence F_{q} from 0 to $1 / 2$

... and so on

In the limit, we enclose all the circles

In all cases we observed that this series converges!
Stay tuned

