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Swampland: 
EFT’s that do not have QG completion

Landscape:
EFT’s with QG completion

Boundary defined by Swampland criteria

[Vafa ’05, Ooguri,Vafa ’06]SWAMPLAND



WEB OF CONJECTURES

[Brennan, Carta, Vafa ’17 — Palti ’19
van Beest, Calderón-Infante, Mirfendereski, Valenzuela ’21]
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THE WEAK GRAVITY CONJECTURE

Consider it as a statement about particles of charge q ⇠ O(1)

• (electric) WGC in flat spacetime in d dimensions 

In any consistent U(1) gauge theory coupled to gravity, there must exist (at least) a state

q2g2 � d� 3

d� 2

m2

Md�2
d

[Arkani-Hamed, Motl, Nicolis, Vafa ’06]



THE WEAK GRAVITY CONJECTURE

Consider it as a statement about particles of charge q ⇠ O(1)

• (electric) WGC in flat spacetime in d dimensions 

In any consistent U(1) gauge theory coupled to gravity, there must exist (at least) a state

• Applying this to the magnetic monopole with mass

q2g2 � d� 3

d� 2

m2

Md�2
d

[Arkani-Hamed, Motl, Nicolis, Vafa ’06]

mmag . gmagMp ⇠ Mp

g
implies a new EFT cut-off 

mmag ⇠ ⇤

g2el

UV CUT-OFF

⇤  gMp

• Stronger version: an infinite tower of particles exists at                       T/sL-WGC⇤ ⇠ gMp

[Heidenreich, Reece, Rudelius ’15,…,SA, Junghans, Noumi, Shiu]

e.g.     compactifications ⇤ ⇠ 1/R ⇠ gKK

above which KK modes appear m ⇠ n/R



THE WEAK GRAVITY CONJECTURE

Consider it as a statement about particles of charge q ⇠ O(1)

• In presence of a massless Yukawa-coupled scalar: Scalar WGC (SWGC)

• (electric) WGC in flat spacetime in d dimensions 

In any consistent U(1) gauge theory coupled to gravity, there must exist (at least) a state

• In case of (canonically normalized) U(1)N

X
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q2i g
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q2g2 � d� 3

d� 2

m2

Md�2
d

[Arkani-Hamed, Motl, Nicolis, Vafa ’06]

[Palti ’17]
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MOTIVATIONS (subtleties modded out!)

Starting from: No exact global symmetries in QG         (e.g. global U(1))

1) Perturbative ST:  WS continuous global symmetries are gauged in spacetime

[Banks, Dixon ’88]

2) AdS/CFT:              

• global symmetries in the bdy associated to gauged symmetries in the bulk

• global symmetries in the bulk lead to a contradiction in the CFT
[Ooguri, Harlow ’18]

3) Path Integral: global symmetries are violated by Euclidean wormholes

[Giddings, Strominger ’88][Coleman Lee ’90][…]



4) Black hole heuristics for absence of global symmetries in QG:

• “No-hair” theorem in tension with finiteness of BH entropy:

A black hole of fixed mass (other gauge charge, angular momentum) 
can have any global charge, not reflected in the horizon

Thus, there is an infinite uncertainty (infinite number of microstates) 
associated to the black hole for an observer, therefore infinite entropy



• single particle charged under global U(1) gives infinite # of stable remnants

Hawking evaporation does not 
shed global charge

Stable: any particle combination 
with same global charge is heavier 

- Issues in deep IR for renormalisation of G

- infinite number of states for same black hole geometry, 
    in contradiction with CEB (finite remnant entropy)

[taken from Palti ’19]

[Susskind ’95]

O(Mp)

[Banks, Seiberg ’10]

4) Black hole heuristics for absence of global symmetries in QG:



Take 2 copy of particle with global charge q, m and smallest m/q

5) Bottom-up rephrasing in terms of infinite number of stable bound states
using m/q ratio

Gravity pulls them together into a stable bound state

…

✓
m

q

◆

bound

<

✓
m

q

◆

particle

<

✓
m

q

◆

other particles

m, q m, q 2q,M < 2m

We end up with an infinite number of stable bound states…

Remember that decay is possible if it exists a by-product 
with smaller m/q than the decaying object. 

Here, for any bound state, all possible by-products have
✓
m

q

◆
>

✓
m

q

◆

bound



Gauging the U(1) we get rid of this infinite number of remnants/bound states:

• Charged black hole solutions M �
p
2gQMP

M

Q

M0

Finite # black holes below any given mass

NBH ⇠ M0

gMP

But for             it is like we restore the global symmetry with its issues!g ! 0

• Additional long range force: gauge VS gravity battle

m, q m, q

g2q2

m2



We better gauge the U(1) strongly enough

• This is precisely the condition allowing extremal black holes to decay: 

• Also equivalent to Repulsive Force conjecture (RFC) 
    requiring the existence of a self-repulsive particle

s.t. there exists a particle for which gravity is weaker than gauge force

and so we get rid of infinite # stable bound states

✓
m

gqMP

◆

WGC particle

<

✓
M

gQMP

◆

EBH

=
p
2

[Arkani-Hamed, Motl, Nicolis, Vafa ’06]getting rid of infinite # EBHs

[Heidenreich, Reece, Rudelius ’19]



What happens with massless scalars - additional long range forces ?

Logic demands the existence of a particle which is self-repulsive 
under all forces

[Palti ’19]

m, q m, q

g2q2

m2

µ2

WGC bound (4d):

L � m2|�|2 + 2|m|µ'|�|2

q2g2 � 1

2

m2

M2
P

+ µ2



Support from string theory (F-theory construction)

[Lee, Lerche, Weigand ’18]

gravity

scalar

gravity + scalar

self-repulsive 
non-BPS states

* Evidence from non-BPS states in susy setups
Would be nice to check non susy theories/vacua…

� � �� �� �� �� �� ��n-1∼M
2�

��

���

���

���

���
q2maxgauge



• What is the appropriate formulation of WGC in AdS ?

L ! 1

• It can teach us about CFT properties

• It must reduce to the flat spacetime version in the flat limit 

Testable framework
(also in non-susy setups!)

[Nakayama, Nomura ’15]

[Aharony, Palti ’21]

• It must be saturated by BPS states, as in flat spacetime

�(2q) � 2�(q)

maybe more universal convexity ?

[Aharony, Palti ’21]

�(n1q0 + n2q0) � �(n1q0) +�(n2q0)Abelian Convex Charge Conj.
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WGC in AdS

Let us follow the logic of demanding a self-repulsive particle.

In flat space, only long range forces were relevant to this statement.

But AdS is like a box: we cannot separate two particles arbitrarily far away, 
thus we cannot neglect “short-range” forces. 

A more accurate formulation taking this into account is the proposed

Positive Binding Conjecture:
For a (weakly coupled) gravitational theory with a U(1) gauge field, 
there should exist at least one charged particle with charge of order one, 
that has a non-negative self-binding energy.

By definition, BPS states saturate the bound

� � 0 [Aharony, Palti ’21]



Given an EFT around a AdS vacuum, the self-binding energy can be 
computed in the Hamiltonian formalism as the difference between 
the energy of the 2-particle state and twice the single particle state:

� ⌘ E�� � 2E� = h��|H|��i � 2h�|H|�i

� > 0

� < 0

� = 0

Self-repulsive

Self-attractive (bound state)

No-force condition (BPS) — or free theory

We want to compute       at tree level, determined by quartic interactions�

�

� �

�

Ai
µ, hµ⌫ ,�

�

� �

�

contact 
terms

field
exchanges



S[�, Ai, h,�] =

Z
ddx

p
�g


1

2

✓
R

2
� ⇤

◆
�

NX

i=1

F 2
i

4
� |D�|2 �m2|�|2 � V (�)

�1

2
(@�)2 � M2

2
�2 � Y �|�|2 � ↵�|D�|2

�

Setup for such an EFT:

V (�) = a|�|4 + b|�|2|D�|2 + c
�
�2(D�†)2 + (�†)2(D�)2

�

In general, very hard to compute 

� ⌘ E�� � 2E� = h��|H|��i � 2h�|H|�i

with a contact term potential

Situation simplifies under the assumption of small interactions
treated as perturbations of the free theory for �

Y = 2|m|µ



BINDING ENERGY via PERTURBATION THEORY

Standard Hamiltonian perturbation theory: at leading order in couplings

Operator      and states                   are those of free theory, well known|�i, |��i�

H = Hfree + �H

[Fitzpatrick, Katz, Poland, Simmons-Duffin ’10]

focus on quartic 
interactions

� = h��|�H|��i = h��|�Hcontact|��i+
X

↵ 6=��

|h��|�Hexchange|↵i|2

(E�� � E↵)free

Hamiltonian of system

� =
X

nlJ

�
anlJ nlJ(x) + b†nlJ 

⇤
nlJ(x)

�
|��i ⇠ b†000b

†
000|0i

Sfree =

Z
ddx

p
�g

⇥
�|@�|2 �m2|�|2

⇤
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SHORTCUT

Classically integrate out all exchanged fields 
to obtain a TL effective action in terms of      �

[Fitzpatrick, Shih ’11]

Se↵ = Sfree �
Z

ddx
p
�g Ve↵ [�,�

†]

Ve↵ [�,�
†] = V [�,�†] + Ve↵,phot[�,�

†] + Ve↵,grav[�,�
†] + Ve↵,scal[�,�

†]

H = Hfree + �He↵ , �He↵ =

Z
d
d�1

x
p
�g Ve↵ = �Hcontact + �H̃contact



SHORTCUT

Classically integrate out all exchanged fields 
to obtain a TL effective action in terms of      �

[Fitzpatrick, Shih ’11]

Binding energy all within first order PT:

Se↵ = Sfree �
Z

ddx
p
�g Ve↵ [�,�

†]

Ve↵ [�,�
†] = V [�,�†] + Ve↵,phot[�,�

†] + Ve↵,grav[�,�
†] + Ve↵,scal[�,�

†]

H = Hfree + �He↵ , �He↵ =

Z
d
d�1

x
p
�g Ve↵ = �Hcontact + �H̃contact

� =

Z
dd�1x

p
�gh��|Ve↵ |��i



More explicitly, the eoms of graviton, photon, and neutral scalar are

Classically integrating out graviton, photon, and neutral scalar:

Tµ⌫ = gµ⌫
�
�|@�|2)�m2|�|2

�
+

�
@µ�

†@⌫�+ h.c.
�

�⇢�
µ⌫h⇢�[�,�

†] =


2
Tµ⌫ [�,�

†]

Jµ = i�†@µ�+ h.c.
1p
�g

@µ(
p
�gFµ⌫

i [�,�†]) = giqiJ
⌫ [�,�†]

⇤�[�,�†]�M2� = Y |�|2 + ↵|@�|2

V scal
e↵ =

1

2
�
�
Y |�|2 + ↵|@�|2

�

V grav
e↵ = �2

4
hµ⌫Tµ⌫

V phot
e↵ =

1

2
AµJ

µ
X

i

g2i q
2
i

hµ⌫ , Aµ,�

solve eoms



• Contact terms in the scalar potential V

• Photon exchange 

• Graviton exchange

BINDING ENERGY in d=5

�V =
⇡2N4

�

�
aL2 � b(�� 2)�+ 2c�2

�

(�� 1)(2�� 1)L4
N� =

r
�� 1

2⇡2

�phot =
⇡2N4

�

L2(2�� 1)

X

i

g2i q
2
i

�grav = � 2⇡2(�� 2)�22N4
�

3(�� 1)(2�� 1)L4

m2L2 = �(�� 4)

� > 1



• Scalar exchange 

-                       

BINDING ENERGY in d=5

-           M2 = 0

M2L2 = �2

(BF saturation)

�
scal =

⇡
2
N

4
�

8(�� 2)2(�� 1)2


Y

2

✓
1��+

1

�
+

4

�� 1
+

2

2�� 1
+ 4H��2 � 2H2�

◆

+
2Y ↵

L2(2�� 1)

✓
4 + 7�(�� 1)� 9�3 + 2�4 + 2�(2�2 � 9�+ 4) (H2� � 2H�)

◆

+
↵
2�2

L4

✓
�6 +

2

2�� 1
��(�(�� 7) + 11)� 2�(�� 4)2 (H2� � 2H�)

◆�

� � 2

�scal = � Y 2⇡2N4
�

8(�� 1)3
↵ = 0



• Scalar exchange 

BINDING ENERGY in d=5

- numerics for                     ↵ = 0

* Caveat: Perturbative analysis covers parameter range 

M . 2m

Exchanges of heavy particles can be thought of as being included 
in HO effective operators in V

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Δ

-0.0020

-0.0015

-0.0010

-0.0005

0.0000
γ

M2=-3.5

M2=-2.5

M2=-1.5

M2=-0.5

M2=0.5

M2=1.5

M2=2.5

M2=3.5

For ML>>1:

� � 1 +
q

1 + M2

4



TESTING #1 — FLAT LIMIT
m2L2 = �(�� 4)

Obtained taking L ! 1 � ! 1 m = fixed

…precisely the SWGC if

The positive binding conjecture is…

� = �phot + �grav + �M=0
scal + �V � 0

leading term 

X

i

q2i g
2
i � 2

3
m22 +

⇣
µ� ↵m

2

⌘2
� 1

L

⇣ a

m
�m(b� 2c)

⌘

↵ = 0

…matches the SWGC due to relative suppression  

↵ =
↵̃

Md ✓
µ� m

Md

↵̃

2

◆

[ same in d=4 ]



TESTING #2 — BPS STATES

N=2 d=5: [Ceresole, Dall’Agata, Kallosh, Van Proeyen ’01]

qX = (V,�, ✓, ⌧)

⇢, A1

one hypermultiplet

one vector multiplet

gravity multiplet g,A0
SU(2, 1)

SU(2)⇥ U(1)
⇥O(1, 1)

Lp
�g

=
R

2
� 1

4⇢8
F 2
0 � ⇢4

4
F 2
1 � 1

2
gXY Dµq

XDµqY � 6

⇢2
@µ⇢@

µ⇢� V (q, ⇢) + CS

ds2 =
dV 2

2V 2
+

1

2V 2
(d� + 2✓d⌧ � 2⌧d✓)2 +

2

V
(d⌧2 + d✓2)

we gauge U(1)⇥ U(1) ⇢ SU(2)⇥ U(1)

Dµq
X = @µq

X + gA0
µK

X
0 (q) + gA1

µK
X
1 (q)

V = g2
✓
�6W 2 +

9

2
g⇢⇢@⇢W@⇢W +

9

2
gXY @XW@Y W

◆

K0(�, �; q),K1(�, �; q),via



AdS SUSY vacuum: @⇢W = @XW = 0

W 6= 0
yields EFT of type studied:

Useful field redefinitions:

�1 = �2 = � = 0

V =
1� |�1|2 � |�2|2

(1 + �1)(1 + �⇤
1)

,� = ... , ✓ = ... , ⌧ = ... , ⇢ = e�

Lp
�g

= �F 2
0

4
� F 2

1

4
� |D�1|2 �

(@�)2

2
+

6

2L2
�m2

1|�1|2 �
M2

2
�2 � Y1�|�1|2 � V + . . .

V = a1|�1|4 + b1|�1|2|@�1|2

Dµ�i = @µ�i � i
�
g0qi0A0µ + g1qi1A1µ

�
�i

g0q10 =
p
2L

(2� + 1) , g1q11 =


L
(� + 1)

with

Y1 = � p
3L2

(� � 2�)(1 + 2� + 2�)

m2
1 =

1

4L2
(�5 + 2(� + �)) (3 + 2(� + �))

M2 = � 4

L2
(BF saturation)

a1 =
2

2L2
(�6 + 3�2 + 4�� + 4�2) , b1 = 22

↵1 = 0

c1 = 0



The lightest field        has �1 � =
3

2
+ � + � m2L2 = �(�� 4)

Therefore, in terms of             its binding energy is�,�

�V =
2

L4

⇡2(� + 1)(3� � 4�+ 3)N4
�

2 (2�2 � 3�+ 1)
,
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�

(2�� 1)
,
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2

L4
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�

(2�� 1)
,
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L4

2⇡2(�� 2)�22N4
�

3(�� 1)(2�� 1)
,

�� = � 2

L4

⇡2(3� � 2�+ 3)2N4
�

6(�� 1)

(chiral primary in SCFT, 
other is dual with                       )�d = �+ 1
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�V + �A0 + �A1 + �grav + �� = 0 (trust me)

(chiral primary in SCFT, 
other is dual with                       )�d = �+ 1

8�,�



N=2 d=4: [Hristov, Looyestijn, Vandoren ’09]

one hypermultiplet

gravity multiplet

we gauge via

g,A
qX = (⇢,�, ⇠1, ⇠2)

Lp
�g

=
R

2
� gXY Dµq

XDµqY � 1

8
F 2 � V (q)

Dµq
X = @µq

X � gAµK
X(q)

K = �(0, 0,�⇠2, ⇠1)

V = g2
⇣
4KXKY gXY � 3~P · ~P

⌘

~P = �

✓
2⇠1
⇢1/2

,� 2⇠2
⇢1/2

, 1� ⇠21 + ⇠22
⇢

◆

U(1)

scalar potential



AdS SUSY vacuum:

yields EFT of type studied:

and so non-vanishing parameters are:

KX = 0

✏ijkP jP k = 0

P · ~P > 0

⇠1 = ⇠2 = 0

⇢ = e�
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p
2

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2
, Y =

2
p
2

L2
, ↵ = �

p
2

Binding energies � = 2m2L2 = �(�� 3) (              breaks PT)� = 1

�V = �� = �3

8

2

L3
⇡2N4

2 , �phot =
5

4

2

L3
⇡2N4

2 , �grav = �1

2

2

L3
⇡2N4

2

Total binding energy vanishes !



Summary & Future directions

Positive Binding Energy proposal as formulation of WGC in AdS

Test for non-BPS states in susy and non-susy theories 

Check with super-radiance instability

Extend it to fermions and more charged particles (vs TWGC/sLWGC) 

� > 0

(eg: string/F-theory , compactification of SM to AdS3 , …)

CFT side of the story (and back): Convexity properties universal ? [Aharony, Palti ’21] 

Survives tests

Do it in AdS3     [WIP]

- flat spacetime limit (d=4,5)

- BPS states in N=2 (d=4,5) have  � = 0



Thank you 



A tale about Wormholes



Euclidean Wormholes and axionic WGC

[2004.13721     SA, Huang, Noumi, Ooguri, Shiu]

[2205.01119     SA, Shiu, Soler, Van Riet]



AWGC is the generalisation to p=0 form potential (axion):

(d=4)

form field potential

WGC AWGC

charged states

coupling

relevant quantities

WGC bound
Exists a state s.t.

Extremal obj’s

Interpretation

photon

particles & black holes

mass, charge

gauge coupling

m

qgMP
< 1

EBH’s

Aµ

g

(m, q)

Instability of EBH’s 

axion/2-form dual

instantons & grav. instantons

action, charge

f=axion decay constant 

Sf

nMP
<O(1)

regular solutions
[Eucl. wormholes]

✓/Bµ⌫

1

f

(S, q)

tunneling via collection small instantons 
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We would like to interpret the AWGC as instability of (axionic) Euclidean WHs
in flat spacetime

If really present in the QG path integral, EWHs give rise to series of puzzles:
Coleman’s baby universes, factorisation problem in AdS/CFT,…

Pertubatively unstable? 
No, no negative modes that lower their action

Non-perturbative unstable?
NP effects that lower their action:

[Loges, Shiu, Sudhir ’22]

[Hertog, Truijen Van Riet ’18]

Perturbative/NP stability of asymptotically AdS addressed in [Marolf, Santos ’21]

Finding NP instability (brane nucleation) for EWHs in UV complete setups

- higher derivative corrections (via positivity and duality)

- adding massive dilaton

[Giddings, Strominger ’88]

(EFT regime + UV properties)

[SA, Huang, Noumi, Ooguri, Shiu ’20]

[SA, Shiu, Soler, Van Riet ’22]



Classical Axio-dilaton-gravity (ADG)
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[reviews: Hebecker,Mangat,Theisen,Witkowski ’16, Hebecker-Mikhail-Soler ’18, Van Riet ’20]
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Classical Axio-dilaton-gravity (ADG)
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Wick-rotate and evaluate the action on EWH solutions
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0

1

Sf

nMP

n

�S < 0

- AG: from positivity conditions

- ADG: from positivity 
            + SL(2,R) on HO terms

Reminiscent of how HO (string) corrections modify the classical BH 
extremality bound in a way that the EBH’s (Q,M) can satisfy the WGC
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[Kats, Motl, Padi ’06]
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MASSIVE DILATON
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•                 analytically 

•                 numerically, for any m value we have the same behaviour  
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Summary & Future directions

Possible interpretation of the AWGC as “instability” 
of Euclidean axionic wormholes (with flat asymptotics, d=4)

Extend it to more reliable setups, 
eg EFT from UV-complete settings a’la Marolf-Santos

Via NP analysis of 
- HO derivative corrections

- explicit setup (massive dilaton)   

S(q1 + q2) > S(q1) + S(q2)

However, still in EFT regime. It would be nice to have a better grasp of 
microscopics…

Explore possible UV properties that obstruct such solutions



Thank you 



generically,              follows from unitarity, analyticity, locality 
of UV scattering amplitudes 

and the sing of        is related to the sign of propagator (unitarity)

where, for instance,     arises after integrating out massive scalar

POSITIVITY

ℒ = −
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g2

2m2
≥ 0

α

[Hamada-Noumi-Shiu ’18]|α | > 1/(M2
s M2

Pl)

Axion-gravity EFT

↵ > 0

- Caveat, assumption: gravitational Regge states are sub-dominant

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ’06]


