LHCh technische universität dortmund

News from the flavour sector

Biljana Mitreska

Physics at the Terascale - DESY Hamburg 29.11.2022
(1) Introduction
(2) Lepton universality
(3) Rare decays
(4) Semileptonic decays
(5) Summary

- Different flavours of quarks and leptons
- We have three generations of fermions
- In the Standard Model (SM), distinguished only by the couplings to the Higgs field
- Why three generations?

(1) Introduction

(2) Lepton universality
(3) Rare decays
(4) Semileptonic decays
(5) Summary

2 Lepton universality

- Lepton Flavour Universality (LFU) hypothesis: equal gauge bosons couplings to leptons
- Well tested in weak couplings
$Z \rightarrow \ell^{+} \ell^{-}$
$\frac{\Gamma_{Z \rightarrow \mu^{+} \mu^{-}}}{\Gamma_{Z \rightarrow e^{+} e^{-}}}=1.0009 \pm 0.0028$
$\frac{\Gamma_{Z \rightarrow \tau^{+} \tau^{-}}^{Z \rightarrow e^{+}}}{\Gamma_{Z \rightarrow \mu^{+} \mu^{-}}}=1.0019 \pm 0.0032$
- Phys. Rept. 427 (2006) 257]
- Nature Physics 17, 813-818 (2021)]]
- Not so well tested in heavy quark decays

$$
\begin{aligned}
& \Rightarrow b \rightarrow c l l \\
& \Rightarrow b \rightarrow c l v
\end{aligned}
$$

$W \rightarrow P v$

(1) Introduction

(2) Lepton universality
(3) Rare decays
(4) Semileptonic decays
(5) Summary

- b sll decays proceed via FCNC transitions that only occur at loop order in the Standard Model

- Hadronize in many different channels: $B \rightarrow K \ell \ell, B_{s} \rightarrow \mu \mu, B_{s} \rightarrow \phi \ell \ell$
- Excellent probe for New Physics
- New particles can contribute to loop or tree level diagrams: \rightarrow introduce changes in decay rates and modified angular distributions
- Possible NP contributions are from supersymmetry leptoquarks or heavy gauge bosons

$3 b \rightarrow$ sll: Effective field theory

- Assume the interaction is point like

- Effective field theory provides model independent description

$$
H_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha_{e}}{4 \pi} \sum C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}
$$

C_{i} are the Wilson coefficients and O_{i} represent the effective operators

- Branching fractions: $B \rightarrow K^{*} \mu \mu, B \rightarrow K^{+} \mu \mu, B_{s} \rightarrow \phi \mu \mu$
- Angular analyses define observables with smaller theoretical uncertainties: $B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \phi \mu \mu, B \rightarrow K^{*} e e, \Lambda_{b} \rightarrow \Lambda \mu \mu$
- Test the lepton universality concept via the ratios

$$
R\left(K^{(*)}\right)=\frac{B\left(B \rightarrow K^{(*)} \mu \mu\right)}{B\left(B \rightarrow K^{(*)} e e\right)}
$$

- Different q^{2} regions probe different processes in the EFT framework

- Suppressed in the SM
- Dominant backgrounds: combinatorial (BDT used for separation) and misidentified hadrons and as muons or partially reconstructed muons
- LHCb measurement: $B\left(B_{s} \rightarrow \mu \mu\right)=$
$\left(3.09_{-0.43-0.11}^{+0.46+0.15}\right) \times 10^{-9}$
$B\left(B^{0} \rightarrow \mu \mu\right)=$
$\left(1.2_{-0.7}^{+0.8} \pm 0.1\right) \times 10^{-10}$
- Result is in agreement with the SM
- PRL 128, 041801 • PRD 105, 012010

- LHCb measurement: $B\left(B_{s} \rightarrow \mu \mu\right)=$ $\left(3.09_{-0.43-0.11}^{+0.46+0.15}\right) \times 10^{-9}$
$B\left(B^{0} \rightarrow \mu \mu\right)=$
$\left(1.2_{-0.7}^{+0.8} \pm 0.1\right) \times 10^{-10}$
- PRL 128, 041801 - PRD 105, 012010
- Recent CMS measurement: $B\left(B_{s} \rightarrow \mu \mu\right)=$
$\left(3.83_{-0.36}^{+0.38}(\text { stat })_{-0.16}^{+0.19}(s y s t)_{-0.13}^{+0.14} f_{s} / f_{u}\right) \times$ $10^{-9} \mathrm{~B}\left(\mathrm{~B}^{0} \rightarrow \mu \mu\right)=$
$\left(0.37_{-0.67-0.09}^{+0.75+0.08}\right) \times 10^{-10}$
- CMS-PAS-BPH-21-006
- Average moves towards SM

- No evidence for the decays searched is found
- Upper limits at 95\% confidence level on their branching fractions set: 1.8×10^{-10} to 2.6×10^{-9}
- JHEP (2022) 109
- Predicted SM branching fractions: $B\left(B_{s} \rightarrow 4 \mu\right) \sim 10^{-10}$ $B\left(B^{0} \rightarrow 4 \mu\right) \sim 10^{-12}$
- BSM particles can enhance these decays
- Search performed for two light scalars with $\mathrm{m} \sim 1 \mathrm{GeV}$

3 Branching fractions

JHEP 11 (2016) 047

JHEP 06 (2016) 133

- JHEP 06 (2015) 115

- JHEP 06 (2016) 133

- PLB 753 (2016) 424

- Branching fractions are consistently below the SM (at low q^{2})
- Tension of 1-3 σ
- Sizeable hadronic uncertainties uncertainties from SM

- Test of LFU with the ratio $R_{K}=\frac{B\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{B\left(B^{+} \rightarrow K^{+}+e^{+} e^{-}\right)}$
- The SM prediction is unity
- Analysis strategy: construct double ratio of rare modes $B \rightarrow K \ell^{+} \ell^{-}$ and resonant modes $B \rightarrow K J / \psi\left(\rightarrow \ell^{+} \ell^{-}\right)$

$$
R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} J / \psi\left(\mu^{+} \mu^{-}\right)\right)} / \frac{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} J / \psi\left(e^{+} e^{-}\right)\right)}
$$

- Crosschecks: $r(J / \psi)=1$ and $r(\psi(2 S))=1$

$3 R(K)$: experimental challenges

- LHCb signals for $B \rightarrow K^{+} \ell^{+} \ell^{-}$(left) and $B \rightarrow K^{+} e^{+} e^{-}$
- Main differences due to bremsstrahlung:
> Worse mass resolution
> Lower reconstruction and selection efficiency
> PID and trigger effects
Challenge to control the efficiency due to these effects

Nat. Phys. 18, (2022) 277-282

- Measured $R(K)=0.846_{-0.039}^{+0.042+0.013}$ in range $1<q^{2}<6 \mathrm{GeV}^{2}$
- Tension of 3.1 with the SM

$3 R\left(K^{*}\right)$ with K_{s}

- Measure $\left.R\left(K^{(}+\right)\right)$with $B \rightarrow K_{s}^{0} \ell \ell$ and $B \rightarrow K^{*+}\left(\rightarrow K_{s}^{0} \pi^{+}\right) \ell \ell$
$R\left(K_{\mathrm{S}}^{0}\right)=0.66{ }_{-0.14}^{{ }_{-1}+0.20}{ }_{-0.04}^{+0.02}$
$R\left(K^{*+}\right)=0.70{ }_{-0.13}^{+0.18}{ }_{-0.04}^{+0.03}$
- Each measurement with tension of $\sim 1.5 \sigma$ with the SM ${ }^{\text {PRLL }} 128,191802$ What's next:
- Unified analysis of $R(K)$ and $R\left(K^{*}\right) \rightarrow$ high priority for LHCb
- In addition: $R_{p K}, R_{\phi}$

3 Angular analysis: $B^{0} \rightarrow K^{* 0} \mu \mu$

- Three angles feature the decay: $\theta_{l}, \theta_{K}, \phi$
- Angular observables sensitive to New Physics: $F_{L}, A_{F B}, S_{i}$

$$
\begin{aligned}
\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}} & =\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
& +\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

3 Angular analysis: $B^{0} \rightarrow K^{* 0} \mu \mu$

- $P_{5}^{\prime}=\frac{S_{5}}{\sqrt{F_{L}\left(1-F_{L}\right)}} \rightarrow$ observables where form factors cancel out

- 2.5σ to 2.9σ tension in $q^{2}[4.0-6.0]$ and $[6.0-8.0] \mathrm{GeV}^{2}$
- LHCb measurements consistent with ATLAS, CMS and Belle

[^0]4 Outline |19
(1) Introduction
(2) Lepton universality
(3) Rare decays
(4) Semileptonic decays
(5) Summary

4 Semileptonic B decays

Semileptonic b-hadron decays provide powerful probes for testing the Standard Model(SM) and search for BSM effects

Lepton Flavour Universality (LFU) hypothesis: equal gauge bosons couplings to leptons

- Description with a tree level diagram in the SM
- We can use operators with unknown coupling constants and write them in an effective Hamiltonian

$$
\begin{aligned}
H_{e f f} & =\frac{G_{F}}{\sqrt{2}} V_{c b} \sum C_{i} O_{i} \\
C_{i} & =C_{i}^{S M}+C_{i}^{N P}
\end{aligned}
$$

- $C_{i}^{N P}$ are the Wilson coefficients that describe the NP effects
- O_{i} are effective operators that can be of a vector, scalar or tensor type

4 Experimental challenge

- Difficulty: two neutrinos for $\tau \rightarrow \pi \pi v_{\tau}$ and 2 neutrinos for $T \rightarrow \mu v_{\mu} v_{\tau}$
- Main backgrounds: $B \rightarrow D^{*} \mu v, B \rightarrow D^{* *} \mu v, B \rightarrow D^{*} D X, B \rightarrow D^{*} D X$, $B \rightarrow D^{*} \pi \pi \pi X$, combinatorial and misidentified backgrounds
- Can make precise measurements at LHCb and B factories
- Ratios of branching fractions is one choice to test LFU

$$
R\left(H_{c}\right)=\frac{B\left(H_{b} \rightarrow H_{c} \tau v\right)}{B\left(H_{b} \rightarrow H_{c} \mu v\right)} \quad \begin{aligned}
& H_{b}=B^{0}, B^{+}, B_{s}, \Lambda_{b}^{0} \\
& H_{c}=D^{*}, D^{+}, D_{s}, \Lambda_{c}^{0}, J / \Psi
\end{aligned}
$$

- τ decay modes used: $\tau^{-} \rightarrow \mu^{-} v_{\mu} v_{\tau}$ and $\tau^{-} \rightarrow \pi^{+} \pi^{-} \pi^{-} v_{\tau}$

$R\left(D^{*}\right)$ with $\tau \rightarrow \mu v v$
2.1σ greater than the SM expectation: 0.252 ± 0.003
$R\left(D^{*}\right)$ with $\tau \rightarrow \pi \pi \pi v$
1σ higher than the SM prediction
- PRL 120, 171802
- PRL 115111803

NEW: Simultaneous $R(D)-R\left(D^{*}\right)$ measurement

Any discrepancy could be a clear sign of New Physics (NP)

4 Simultaneous $R(D)-R\left(D^{*}\right)$ at LHCb

- First joint measurement of $R(D)-R\left(D^{*}\right)$: LHCb-PAPER-2022-039 in preparation

$$
R\left(D^{*}\right)=\frac{B\left(B \rightarrow D^{*} T v\right)}{B\left(B \rightarrow D^{*} \mu v\right)}
$$

- Discriminating kinematic variables are:
- the muon energy E_{μ}
$-m_{\text {miss }}^{2}=\left(p_{B}-p_{D^{*}}-p_{l}\right)^{2}$
- $q^{2}=\left(p_{B}-p_{D^{*}}\right)^{2}$
- B momentum approximated with the relation:

$$
\left(p_{B}\right)_{z}=\frac{m_{B}}{m_{\text {reco }}}\left(p_{\text {reco }}\right)_{z}
$$

- Isolation: reject backgrounds with additional charged tracks

4 Simultaneous $R(D)-R\left(D^{*}\right)$ at LHCb

Main background contributions:

- $B \rightarrow D^{* *} \mu v$
- $B_{s} \rightarrow D_{s} \mu v$
- Semileptonic decays to heavier charmed hadrons decaying to $D^{\star *} \rightarrow D^{\star \star} \pi \pi$
- $B \rightarrow D^{* *} T V$
- $B \rightarrow D^{\star+} H_{c} X$
- Hadrons (π, K, p) misidentified as muons
- Combinatorial backgrounds -wrong-sign final state combinations

Fitting strategy:

- Signal region +3 control samples, for both D^{0} and D^{*+} samples
- Simultaneous fit with three dimensional templates that extracts the relative contributions of signal and normalization modes and their form factors
- Improvements from previous LHCb measurement: detailed study of the backgrounds and completely new procedure of understanding the calibration of simulation to match data

4 Simultaneous $R\left(D^{0}\right)-R\left(D^{*}\right)$ at LHCb

Result:

- 1.9σ agreement with the SM

4 The big picture

- New average: change from 3.3σ to 3.2σ
- Overall agreement between measurements
- Next: Angular analyses give more information on sensitivity to New Physics \rightarrow ongoing measurement

4 Belle II status and prospects

Observable	Current Belle/ Babar	$\begin{gathered} 2019 \\ \text { LHCb } \end{gathered}$	$\begin{aligned} & \text { Belle II } \\ & \left(5 a^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Belle II } \\ & \left(50 \mathrm{ab}^{-1}\right) \end{aligned}$
CKM precision, new physics in CP Violation				
$\sin 2 \beta / \varphi_{1}(\mathrm{~B} \rightarrow \mathrm{~J} / \psi \mathrm{Ks})$	0.03	0.04	0.012	0.005
γ / φ_{3}	13°	$5.4{ }^{\circ}$	4.7°	$1.5{ }^{\circ}$
α / φ_{2}	4°	-	2	$0.6{ }^{\circ}$
$\left\|\mathrm{V}_{\mathrm{ub}}\right\|$ (Belle) or $\left\|\mathrm{V}_{\mathrm{ub}}\right\| / \mathrm{V}_{\mathrm{cb}} \mid$ (LHCb)	4.5\%	6\%	2\%	1\%
φ s	-	49 mrad	-	-
$S_{\mathrm{CP}}\left(\mathrm{B} \rightarrow \eta^{\prime} \mathrm{K}_{\text {s, gluonic penguin }}\right.$	0.08	-	0.03	0.015
$A \mathrm{CP}\left(\mathrm{B} \rightarrow \mathrm{K} \mathrm{s}^{0}\right)$	0.15	-	0.07	0.04
New physics in radiative \& EW Penguins, LFUV				
$S_{\text {cp }}\left(\mathrm{B}_{d} \rightarrow \mathrm{~K}^{*} \gamma\right)$	0.32	-	0.11	0.035
$R\left(\mathrm{~B} \rightarrow \mathrm{~K}^{*} l^{+} l\right.$) $)\left(1<q^{2}<6 \mathrm{GeV}^{2} / c^{2}\right)$	0.24	0.1	0.09	0.03
$R\left(\mathrm{~B} \rightarrow \mathrm{D}^{*} \tau \mathrm{v}\right)$	6\%	10\%	3\%	1.5\%
$\mathrm{Br}(\mathrm{B} \rightarrow \tau \mathrm{v}), \mathrm{Br}\left(\mathrm{B} \rightarrow \mathrm{K}^{*} \mathrm{v}^{\prime}\right)$	24\%, -	-	9\%, 25\%	4\%, 9\%
$B r\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mu \mu\right)$	-	90\%	-	-
Charm and τ				
$\triangle A_{\text {CP }}(\mathrm{KK}-\pi \pi)$	-	8.5×10^{-4}	-	5.4×10^{-4}
$A_{\text {CP }}\left(\mathrm{D} \rightarrow \pi^{\prime} \pi^{0}\right)$	1.2\%	-	0.5\%	0.2\%
$B r(\tau \rightarrow \mathrm{e} \gamma)$	$<120 \times 10^{-9}$	-	$<40 \times 10^{-9}$	$<12 \times 10^{-9}$
$\operatorname{Br}(\tau \rightarrow \mu \mu \mu)$	$<21 \times 10^{-9}$	$<46 \times 10^{-9}$	$<3 \times 10^{-9}$	$<3 \times 10^{-9}$

- Belle II Physics book
- Belle results and prospects presented today by

4 Belle II: $B \rightarrow K v v$

- One of the first flavour publications with Belle II: >PRL 127181802 (2021)
- Upper limit on the branching fraction of $B^{+} \rightarrow K^{+} v v$
- Improved analysis methods: using properties of other B meson in the $B \bar{B}$ event

Integrated luminosity $\left[\mathrm{fb}^{-1}\right]$		
	LHCb	ATLAS $/ \mathrm{CMS}$
Run 1	3	25
Run 2	9	+140
Run 3	23	+300
Run 4	50	$+300 /$ year
Run 5(+)	300	$+300 /$ year

ShutdowñTechrical stop
Protors
tons
Commissioning with beam

- Updates of flavour anomaly measurements with full Run $1+$ Run 2 are ongoing
- Run 3 already started at LHCb: commissioning a brand new detector has a lot of challenges $\stackrel{\text { LHCb Ugrade }}{ }$
- Important complementary results from Belle II to come
- HL-LHC: expecting even better precision of measurements

observable	LHCb 2025	Belle II	LHCb Upgrade II
$R\left(D^{*}\right)$	0.0072	0.005	0.002
$R(J / \psi)$	0.071	-	0.02
$\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	34%	-	10%
$R_{K}\left(1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.025	0.036	0.007
$R_{K^{*}}\left(1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.031	0.032	0.008

5 Outline | 31
(1) Introduction
(2) Lepton universality
(3) Rare decays
(4) Semileptonic decays
(5) Summary

- Rare B and semileptonic decays are an excellent test bench for New Physics effects
- Limited number of measurements up to now, but updates in preparation
- The LHC Run 3 data has potential to distentangle the tensions
- LHCb, Belle II, ATLAS and CMS have a lot to say in near future
- Still: flavour physics remains exciting to follow

Thank you!

BACKUP SLIDES

6 Full angular distribution $B \rightarrow D^{*} / v$

$$
\begin{aligned}
& \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{l} d \cos \theta_{d} d \chi}=\frac{3 G_{F}^{2}\left|V_{c b}\right|^{2}}{256(2 \pi)^{4} m_{B}^{3}} q^{2}\left(1-\frac{m_{l}^{2}}{q^{2}}\right) \sqrt{\lambda_{D^{*}}} \times B\left(D^{*} \rightarrow D \pi\right) \times\{ \\
& \left(\left|H_{+}\right|^{2}+\left|H_{+}\right|^{2}\right)\left(1+\cos ^{2} \theta_{l}+\frac{m_{l}^{2}}{q^{2}} \sin ^{2} \theta_{l}\right) \sin ^{2} \theta_{D}+2\left[\left|H_{+}\right|^{2}-\left|H_{-}\right|^{2}\right] \cos \theta_{l} \sin ^{2} \theta_{D}+ \\
& +4\left|H_{0}\right|^{2}\left(\sin ^{2} \theta_{l}+\frac{m_{l}^{2}}{q^{2}} \cos ^{2} \theta_{l}\right) \cos ^{2} \theta_{D}+4\left|H_{t}\right|^{2} \frac{m_{l}^{2}}{q^{2}} \cos ^{2} \theta_{D}- \\
& -2 \beta_{l}^{2}\left(R e\left[H_{+} H_{-}^{*}\right] \cos 2 X+I m\left[H_{+} H_{0}^{*}-H_{-} H_{0}^{*}\right] \sin 2 x\right) \sin ^{2} \theta_{l} \sin ^{2} \theta_{D}- \\
& -\beta_{l}^{2}\left(R e\left[H_{+} H_{0}^{*}+H_{-} H_{0}^{*}\right] \cos X ;-\operatorname{Im}\left[H_{+} H_{0}^{*}+H_{-} H_{0}^{*}\right] \sin X\right) ; \sin 2 \theta_{l} \sin 2 \theta_{D}- \\
& -R e\left[H_{+} H_{0}^{*}-H_{-} H_{0}^{*}-\frac{m_{l}^{2}}{q^{2}}\left(H_{+} H_{t}^{*}+H_{-} H_{t}^{*}\right)\right] \cos X \sin \theta_{l} \sin 2 \theta_{D}- \\
& -2 I m\left[H_{+} H_{0}^{*}+H_{-} H_{0}^{*}-\frac{m_{l}^{2}}{q^{2}}\left(H_{+} H_{t}^{*}+H_{-} H_{t}^{*}\right)\right] \sin \chi \sin \theta_{l} \sin 2 \theta_{D}+ \\
& \left.+8 \operatorname{Re}\left[H_{0} H_{t}^{*}\right] \frac{m_{l}^{2}}{q^{2}} \cos \theta_{l} \cos ^{2} \theta_{D}\right\}, \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{m_{l}^{2}}{q^{2}}}, H\left(q^{2}\right)=\tilde{\epsilon}^{\mu \star}\left\langle D^{*}(\epsilon)\right| J_{\mu}|\bar{B}\rangle
\end{aligned}
$$

[^0]: - 2107.04822
 - LHCb, PRL 125 (2020) 011802

 CMS, PLB 781 (2018) 517

 - ATLAS, JHEP 10 (2018) 047
 - Belle, PRL 118 (2017) 111801

