

News from the flavour sector

Biljana Mitreska

Physics at the Terascale - DESY Hamburg 29.11.2022

1 Outline

1 Introduction

2 Lepton universality

3 Rare decays

4 Semileptonic decays

6 Summary

1 Flavour physics

- Different flavours of quarks and leptons
- We have three generations of fermions
- In the Standard Model (SM), distinguished only by the couplings to the Higgs field
- Why three generations?

2 Outline

Introduction

2 Lepton universality

3 Rare decays

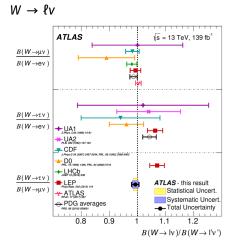
4 Semileptonic decays

6 Summary

2 Lepton universality

- Lepton Flavour Universality (LFU) hypothesis: equal gauge bosons couplings to leptons
- Well tested in weak couplings

$$Z \rightarrow \ell^{+}\ell^{-}$$


$$\frac{\Gamma_{Z \rightarrow \mu^{+}\mu^{-}}}{\Gamma_{Z \rightarrow e^{+}e^{-}}} = 1.0009 \pm 0.0028$$

$$\frac{\Gamma_{Z \rightarrow \tau^{+}\tau^{-}}}{\Gamma_{Z \rightarrow \mu^{+}\mu^{-}}} = 1.0019 \pm 0.0032$$

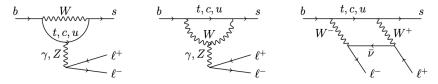
Phys. Rept. 427 (2006) 257]

Nature Physics 17, 813-818 (2021)]]

- Not so well tested in heavy quark decays
 - $b \rightarrow sll$

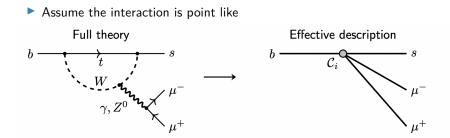
3 Outline

1 Introduction


2 Lepton universality

3 Rare decays

4 Semileptonic decays

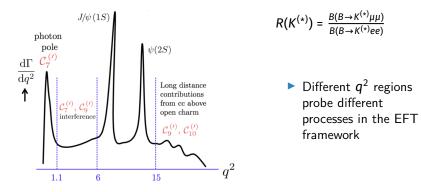

6 Summary

- 3 $b \rightarrow sll$
 - b → sll decays proceed via FCNC transitions that only occur at loop order in the Standard Model

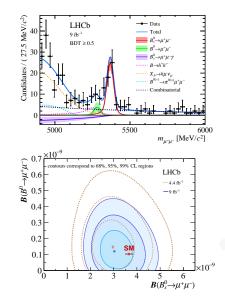
- ► Hadronize in many different channels: $B \rightarrow K \ell \ell$, $B_s \rightarrow \mu \mu$, $B_s \rightarrow \phi \ell \ell$
- Excellent probe for New Physics
- New particles can contribute to loop or tree level diagrams: → introduce changes in decay rates and modified angular distributions
- Possible NP contributions are from supersymmetry leptoquarks or heavy gauge bosons

3 $b \rightarrow s\ell\ell$: Effective field theory

Effective field theory provides model independent description

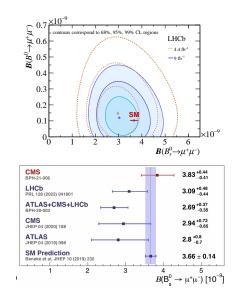

$$H_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum C_i O_i + C'_i O'_i$$

 C_i are the Wilson coefficients and O_i represent the effective operators

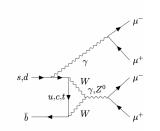

3 $b \rightarrow s\ell\ell$: lepton universality

► Branching fractions: $B \rightarrow K^* \mu \mu$, $B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$

- Angular analyses define observables with smaller theoretical uncertainties: $B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$, $B \rightarrow K^* ee$, $\Lambda_b \rightarrow \Lambda \mu \mu$
- Test the lepton universality concept via the ratios


3 $B_s \rightarrow \mu\mu$

- Suppressed in the SM
- Dominant backgrounds: combinatorial (BDT used for separation) and misidentified hadrons and as muons or partially reconstructed muons
- ► LHCb measurement: $B(B_s \rightarrow \mu\mu) =$ $(3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$ $B(B^0 \rightarrow \mu\mu) =$ $(1.2^{+0.8}_{-0.7}\pm0.1) \times 10^{-10}$
- Result is in agreement with the SM


PRL 128, 041801 PRD 105, 012010

3 $B_s \rightarrow \mu\mu$

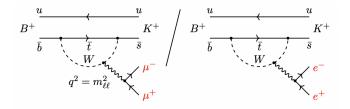
- ► LHCb measurement: $B(B_s \rightarrow \mu\mu) =$ $(3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$ $B(B^0 \rightarrow \mu\mu) =$ $(1.2^{+0.8}_{-0.7}\pm0.1) \times 10^{-10}$ ► PRL 128, 041801 ► PRD 105, 012010 ► Recent CMS measurement: $B(B_s \rightarrow \mu\mu) =$ $(3.83^{+0.38}_{-0.36}(stat)^{+0.19}_{-0.16}(syst)^{+0.14}_{-0.13}f_s/f_u) \times$ $10^{-9} B(B^0 \rightarrow \mu\mu) =$
 - (0.37^{+0.75+0.08}) × 10⁻¹⁰ ► CMS-PAS-BPH-21-006
- Average moves towards SM

3 $B_s \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

- No evidence for the decays searched is found
- Upper limits at 95% confidence level on their branching fractions set: 1.8 × 10⁻¹⁰ to 2.6 × 10⁻⁹

▶ JHEP (2022) 109

- ▶ Predicted SM branching fractions: $B(B_s \rightarrow 4\mu) \sim 10^{-10}$ $B(B^0 \rightarrow 4\mu) \sim 10^{-12}$
- BSM particles can enhance these decays
- Search performed for two light scalars with m ~ 1 GeV



3 Branching fractions

- Branching fractions are consistently below the SM (at low q²)
- Tension of 1-3 σ
- Sizeable hadronic uncertainties uncertainties from SM

3 R(K)

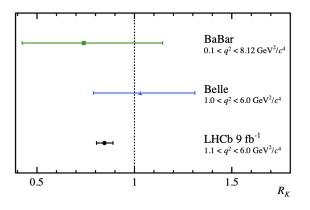
► Test of LFU with the ratio
$$R_K = \frac{B(B^* \rightarrow K^+ \mu^+ \mu^-)}{B(B^* \rightarrow K^+ e^+ e^-)}$$

- The SM prediction is unity
- Analysis strategy: construct double ratio of rare modes B → Kℓ⁺ℓ[−] and resonant modes B → KJ/ψ(→ ℓ⁺ℓ[−])

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} J / \psi(\mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B \to K^{(*)} e^+ e^-)}{\mathcal{B}(B \to K^{(*)} J / \psi(e^+ e^-))}$$

Crosschecks:
$$r(J/\psi) = 1$$
 and $r(\psi(2S)) = 1$

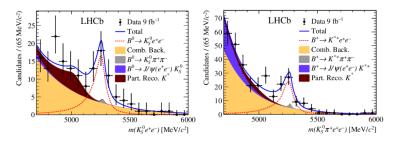
3 R(K): experimental challenges



- ▶ LHCb signals for $B \to K^+ \ell^+ \ell^-$ (left) and $B \to K^+ e^+ e^-$
- Main differences due to bremsstrahlung:
 - Worse mass resolution
 - > Lower reconstruction and selection efficiency
 - > PID and trigger effects

Challenge to control the efficiency due to these effects

▶ Nat. Phys. 18, (2022) 277-282


3 R(K): result

▶ Nat. Phys. 18, (2022) 277-282

- Measured $R(K) = 0.846^{+0.042+0.013}_{-0.039-0.012}$ in range $1 < q^2 < 6 \text{ GeV}^2$
- ► Tension of 3.1 with the SM

3 $R(K^*)$ with K_s

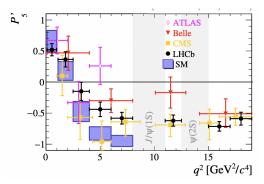
• Measure $R(K^{(*)})$ with $B \to K_s^0 \ell \ell$ and $B \to K^{**}(\to K_s^0 \pi^*)\ell \ell$ $R(K_s^0) = 0.66 \stackrel{+0.20}{_{-0.14}} \stackrel{+0.02}{_{-0.04}} \stackrel{+0.03}{_{-0.13}} \stackrel{+0.03}{_{-0.04}}$

Each measurement with tension of ~ 1.5 σ with the SM \rightarrow PRL 128, 191802 What's next:

▶ Unified analysis of R(K) and $R(K^*) \rightarrow$ high priority for LHCb

In addition: R_{pK}, R_φ

3 Angular analysis: $B^0 \rightarrow K^{*0} \mu \mu$



- Three angles feature the decay: θ_{l} , θ_{κ} , ϕ
- Angular observables sensitive to New Physics: F_L , A_{FB} , S_i

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$$

3 Angular analysis: $B^0 \rightarrow K^{*0} \mu \mu$

▶ $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$ → observables where form factors cancel out

- ► 2.5 σ to 2.9 σ tension in q^2 [4.0 6.0] and [6.0 8.0] GeV²
- LHCb measurements consistent with ATLAS, CMS and Belle

▶ 2107.04822 ▶ LHCb, PRL 125 (2020) 011802 ▶ CMS, PLB 781 (2018) 517 ▶ ATLAS, JHEP 10 (2018) 047

4 Outline

1 Introduction

2 Lepton universality

3 Rare decays

④ Semileptonic decays

6 Summary

4 Semileptonic *B* decays

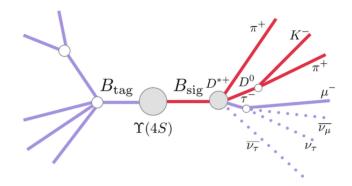
Semileptonic b-hadron decays provide powerful probes for testing the Standard Model(SM) and search for BSM effects

Lepton Flavour Universality (LFU) hypothesis: equal gauge bosons couplings to leptons

Description with a tree level diagram in the SM

4 New Physics

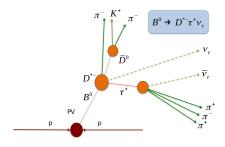
We can use operators with unknown coupling constants and write them in an effective Hamiltonian



 \triangleright C_i^{NP} are the Wilson coefficients that describe the NP effects

O_i are effective operators that can be of a vector, scalar or tensor type

4 Experimental challenge


- ▶ Difficulty: two neutrinos for $\tau \rightarrow \pi \pi v_{\tau}$ and 2 neutrinos for $\tau \rightarrow \mu v_{\mu} v_{\tau}$
- ▶ Main backgrounds: $B \rightarrow D^* \mu v$, $B \rightarrow D^{**} \mu v$, $B \rightarrow D^* DX$, $B \rightarrow D^* DX$, $B \rightarrow D^* \pi \pi \pi X$, combinatorial and misidentified backgrounds
- Can make precise measurements at LHCb and B factories

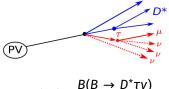
4 $b \rightarrow clv$ transitions at the LHCb experiment

Ratios of branching fractions is one choice to test LFU

$$R(H_c) = \frac{B(H_b \to H_c \tau \nu)}{B(H_b \to H_c \mu \nu)} \qquad H_b = B^0, B^+, B_s, \Lambda_b^0, \\ H_c = D^*, D^+, D_s, \Lambda_c^0, J/\Psi$$

▶ τ decay modes used: $\tau^- \rightarrow \mu^- \nu_\mu \nu_\tau$ and $\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu_\tau$

 $R(D^*)$ with $\tau \rightarrow \mu \nu \nu$ 2.1 σ greater than the SM expectation: 0.252 ± 0.003


 $R(D^*)$ with $\tau \rightarrow \pi \pi \pi \nu$ 1 σ higher than the SM prediction

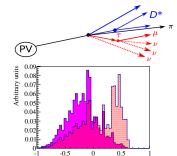
▶ PRL 120, 171802 ▶ PRL 115 111803
NEW: Simultaneous R(D) - R(D*)
measurement

Any discrepancy could be a clear sign of New Physics (NP)

4 Simultaneous *R*(*D*)-*R*(*D*^{*}) at LHCb

First joint measurement of R(D) – R(D*): LHCb-PAPER-2022-039 in preparation

$$R(D^*) = \frac{B(B \to D^* \tau v)}{B(B \to D^* \mu v)}$$


- Discriminating kinematic variables are:
 - the muon energy E_{μ}

$$- m_{miss}^2 = (p_B - p_{D^*} - p_l)^2 - q^2 = (p_B - p_{D^*})^2$$

B momentum approximated with the relation:

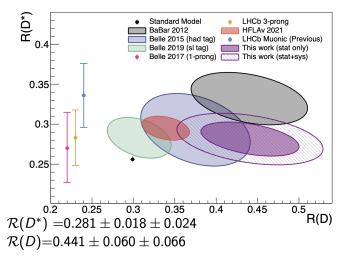
$$(p_{\scriptscriptstyle B})_z = \frac{m_{\scriptscriptstyle B}}{m_{\scriptscriptstyle reco}}(p_{\scriptscriptstyle reco})_z$$

 Isolation: reject backgrounds with additional charged tracks

4 Simultaneous *R*(*D*)-*R*(*D*^{*}) at LHCb

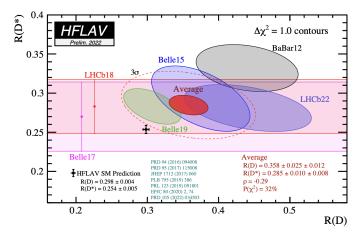
Main background contributions:

- ► $B \rightarrow D^{**}\mu v$
- ► $B_s \rightarrow D_s \mu v$
- Semileptonic decays to heavier charmed hadrons decaying to $D^{**} \rightarrow D^{**}\pi\pi$


- B → D^{**}τν
- ► $B \rightarrow D^{*+}H_cX$
- Hadrons(π, K, p) misidentified as muons
- Combinatorial backgrounds wrong-sign final state combinations

Fitting strategy:

- ▶ Signal region + 3 control samples, for both D^0 and D^{**} samples
- Simultaneous fit with three dimensional templates that extracts the relative contributions of signal and normalization modes and their form factors
- Improvements from previous LHCb measurement: detailed study of the backgrounds and completely new procedure of understanding the calibration of simulation to match data

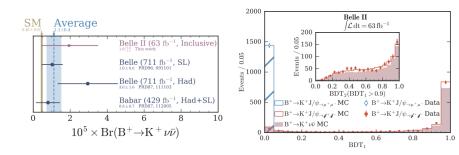

4 Simultaneous $R(D^0)$ - $R(D^*)$ at LHCb

Result:

• 1.9σ agreement with the SM

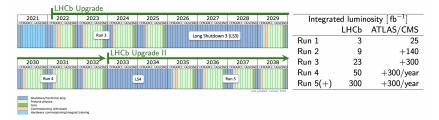
4 The big picture

- New average: change from 3.3σ to 3.2σ
- Overall agreement between measurements
- Next: Angular analyses give more information on sensitivity to New Physics → ongoing measurement


4 Belle II status and prospects

Observable	Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	Belle II (50 ab-1)		
CKM precision, new physics in CP Violation						
$\sin 2\beta/\phi_1 (B \rightarrow J/\psi K_S)$	0.03	0.04	0.012	0.005		
γ/ϕ_3	13°	5.4°	4.7°	1.5°		
α/φ ₂	4°	-	2	0.6°		
Vub (Belle) or Vub / Vcb (LHCb)	4.5%	6%	2%	1%		
φs	-	49 mrad	-	-		
$S_{CP}(B \rightarrow \eta' K_{S}, gluonic penguin)$	0.08	0	0.03	0.015		
$A_{CP}(B \rightarrow K_{S}\pi^{0})$	0.15	-	0.07	0.04		
New physics in radiative & EW Penguins, LFUV						
$S_{CP}(B_d \rightarrow K^* \gamma)$	0.32	0	0.11	0.035		
$R(B\rightarrow K^{*}l^{+}l^{-})$ (1< q^{2} <6 GeV ² / c^{2})	0.24	0.1	0.09	0.03		
$R(B \rightarrow D^* \tau v)$	6%	10%	3%	1.5%		
$Br(B \rightarrow \tau v), Br(B \rightarrow K^* v v)$	24%, -	-	9%, 25%	4%, 9%		
$Br(B_d \rightarrow \mu\mu)$	-	90%	_	-		
<u>Charm and τ</u>						
$\Delta A_{CP}(KK-\pi\pi)$	-	8.5×10-4	-	5.4×10-4		
$A_{CP}(D \rightarrow \pi^+ \pi^0)$	1.2%	-	0.5%	0.2%		
$Br(\tau \rightarrow e \gamma)$	<120×10-9	-	<40×10-9	<12×10-9		
$Br(\tau \rightarrow \mu\mu\mu)$	<21×10-9	<46×10-9	<3×10-9	<3×10-9		

Belle II Physics book


Belle results and prospects presented today by Racha Cheaib

4 **Belle II:** $B \rightarrow Kvv$

- ▶ One of the first flavour publications with Belle II: ▶ PRL 127 181802 (2021)
- Upper limit on the branching fraction of $B^+ \rightarrow K^+ v v$
- Improved analysis methods: using properties of other *B* meson in the $B\bar{B}$ event

4 Where do we stand

- Updates of flavour anomaly measurements with full Run 1 + Run 2 are ongoing
- Run 3 already started at LHCb: commissioning a brand new detector has a lot of challenges • LHCb Upgrade
- Important complementary results from Belle II to come
- HL-LHC: expecting even better precision of measurements

observable	LHCb 2025	Belle II	LHCb Upgrade II
$R(D^*)$	0.0072	0.005	0.002
$R(J/\psi)$	0.071	-	0.02
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	34%	-	10%
$R_K (1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.025	0.036	0.007
$R_{K^*}(1 < q^2 < 6 \text{GeV}^2/c^4)$	0.031	0.032	0.008

5 Outline

Introduction

2 Lepton universality

3 Rare decays

4 Semileptonic decays

5 Summary

5 Summary

- Rare B and semileptonic decays are an excellent test bench for New Physics effects
- Limited number of measurements up to now, but updates in preparation
- The LHC Run 3 data has potential to distentangle the tensions
- ▶ LHCb, Belle II, ATLAS and CMS have a lot to say in near future
- Still: flavour physics remains exciting to follow

Thank you!

BACKUP SLIDES

Full angular distribution $B \rightarrow D^* l v$

$$\begin{aligned} \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{l}d\cos\theta_{d}d\chi} &= \frac{3G_{F}^{2}|V_{cb}|^{2}}{256(2\pi)^{4}m_{B}^{3}} q^{2} \left(1 - \frac{m_{l}^{2}}{q^{2}}\right)\sqrt{\lambda_{D^{*}}} \times B(D^{*} \to D\pi) \times \left\{ (|H_{+}|^{2} + |H_{+}|^{2})\left(1 + \cos^{2}\theta_{l} + \frac{m_{l}^{2}}{q^{2}}\sin^{2}\theta_{l}\right)\sin^{2}\theta_{D} + 2\left[|H_{+}|^{2} - |H_{-}|^{2}\right]\cos\theta_{l}\sin^{2}\theta_{D} + \\ &+ 4|H_{0}|^{2} \left(\sin^{2}\theta_{l} + \frac{m_{l}^{2}}{q^{2}}\cos^{2}\theta_{l}\right)\cos^{2}\theta_{D} + 4|H_{l}|^{2} \frac{m_{l}^{2}}{q^{2}}\cos^{2}\theta_{D} - \\ &- 2\beta_{l}^{2} \left(Re[H_{+}H_{-}^{*}]\cos2\chi + Im[H_{+}H_{0}^{*} - H_{-}H_{0}^{*}]\sin2\chi\right)\sin^{2}\theta_{l}\sin^{2}\theta_{D} - \\ &- \beta_{l}^{2} \left(Re[H_{+}H_{0}^{*} + H_{-}H_{0}^{*}]\cos\chi; -Im[H_{+}H_{0}^{*} + H_{-}H_{0}^{*}]\sin\chi\right);\sin2\theta_{l}\sin2\theta_{D} - \\ &- Re[H_{+}H_{0}^{*} - H_{-}H_{0}^{*} - \frac{m_{l}^{2}}{q^{2}}(H_{+}H_{t}^{*} + H_{-}H_{t}^{*})]\cos\chi\sin\theta_{l}\sin2\theta_{D} - \\ &- 2Im[H_{+}H_{0}^{*} + H_{-}H_{0}^{*} - \frac{m_{l}^{2}}{q^{2}}(H_{+}H_{t}^{*} + H_{-}H_{t}^{*})]\sin\chi\sin\theta_{l}\sin2\theta_{D} + \\ &+ 8Re[H_{0}H_{t}^{*}] \frac{m_{l}^{2}}{q^{2}}\cos\theta_{l}\cos^{2}\theta_{D} \right\}, \beta_{l}(q^{2}) = \sqrt{1 - \frac{m_{l}^{2}}{q^{2}}}, H(q^{2}) = \tilde{e}^{\mu*} \langle D^{*}(\epsilon)|J_{\mu}|\bar{B}\rangle \end{aligned}$$