First results from inclusive jet measurement with Ultra-Legacy Run 2 data

Valentina Guglielmi, Patrick L.S. Connor, Katerina Lipka, Simone Amoroso, Roman Kogler Terascale15, 29.11.2022

Definition of observables & Motivation

- Cross section measurement of inclusive jets
 - *Inclusive jets:* for each jet of each event, we fill p_T and y histograms
- Goal:
 - QCD test: comparison of differential cross sections to theory predictions
 - Fit *PDFs* and α_s
- **Full Run2:**
 - Higher accumulated luminosity \rightarrow opens up new corners of phase space
 - Final scale factors & more refined corrections \rightarrow improved precision

CMS (pb/GeV) ₽ d²a/dp.

 $d^2\sigma$

JHEP 02 (2022) 142

2

Jets as a probe of QCD

- Jet production is a **flagship SM measurement:**
 - Sensitive to α_S and gluon distribution at high momentum fraction x:

$$\sigma_{pp \to jet+X} = \sum_{ij} f_i(x_1, \mu_F) f_j(x_2, \mu_F) \times \sigma_{ij}\left(x_1, x_2, \alpha_S(\mu), \frac{Q^2}{\mu_R}, \frac{Q^2}{\mu_F}\right)$$
PDFs

- Improve PDFs precision at high x
- Extract α_{s}

gg fusion dominant qq and qg at high- p_T

x and Q^2 ranges probed by jet production at LHC

Jets as a probe of new physics

Perform indirect beyond SM searches \rightarrow jets at high-*pT*

- New phenomena described in Effective Field Theory (EFT):
 - 4-quark "contact interactions" (CI)

• Check BSM effects are not absorbed into $PDFs \rightarrow$ fit the PDFs simultaneously with σ_{SMEFT}

$$L_{SMEFT} = L_{SM} + \frac{2\pi}{\Lambda^2} \sum_{n} c_n O_n$$

c_n: Wilson Coefficient (= effective coupling) Λ : energy scale of new physics O_n : 6-dimension operators

Goal of the measurement

- Goal: Measure inclusive jet double differential cross section \bullet
 - **Full Run2:** 2016-17-18 samples \bullet

•
$$L = 138 \, fb^{-1}, \sqrt{s} = 13 TeV$$

- Anti- k_t clustering algorithm with $\mathbf{R} = 0.4$ (& $\mathbf{R} = 0.8$)
- **Datasets (latest reconstructions):** lacksquare
 - **Data:** */JetHT/Run201*UL*/MINIAOD & /ZeroBias/Run201*-UL*/MINIAOD* \bullet
 - \bullet

MC (Pythia Flat sample): /QCD_Pt-15to7000_TuneCP5_Flat_13TeV_pythia8/RunIISummer20UL*MiniAOD

Calibration procedure in a nutshell

- **Event selection at detector and hadron level:**
 - Rapidity region: |y| < 3.0
 - Jet $p_T > \sim 30 \text{ GeV}$
- **Event-by-event or jet-by-jet corrections**

• Monte Carlo (MC):

1. Jet veto maps & Missing Energy **Transverse (MET)** filters

- 2. **JET** corrections (jet energy scale and jet energy resolution smearing)
- 3. **Pile-up correction:** work in progress

• Data:

- 1. Jet veto maps & MET filters
- 2. Jet energy scale corrections
- 3. Prefiring weight correction (2016 - 2017)

1. Jet veto maps & MET filters

√ Jet veto maps:

- **Certain detector regions damaged** (not well simulated) \rightarrow excluded both from data and MC
- Jet veto maps describe regions with an excess of jets in data
- If a region have an excess of jets in one era \rightarrow jets in this region removed from whole year

√ MET filters:

- MET \longrightarrow 0 for pure QCD jet measurement
- MET mostly arising from experimental effects
- Series of selections based on MET

Missing Energy Transverse (MET) $E_{T}^{miss} = |p_{T}^{miss}|$

2017 jet veto map

3. Pile-up corrections (for MC)

- Pile-up profile corrections: MC usually produced with slightly overestimated PU
 - → Correction applied to match data PU profile

3. Prefiring weight correction

Prefiring study

- It affects only 2016-2017
- belonging to the previous bunch crossing:
 - **Rule:** No two consecutive bunch crossings can both fire the trigger!
 - Consequences:
 - If some jets of the event affected by prefiring issue \rightarrow event discarded

• Certain jets in the forward region ($2.0 < |\eta| < 3.0$) wrongly considered by Level-1 trigger as

• Confusion only at trigger level \rightarrow apply a weight to compensate for the efficiency loss

Prefiring calibration maps

Two possibilities:

1. Average probability map

- BUT: time dependence is not accounted for
- **2. Maps for different eras:**
 - BUT: only limited statistics available for each era

- Corrections applied on data:
 - inverse of weight w

GeV

450

300

250

200

150

 $W = 1 - prob_{pref}$

Average 2016

MapsPerEra 2017 era B

NB w for only one jet, if more jets probabilities have to be combined

Average 2017

MapsPerEra 2017 era F

Trigger strategy for data samples

- certain threshold is required in the event
 - - \rightarrow to collect enough events down to low p_T
 - Triggers have increasing prescales as a function of p_T
- **Trigger strategy:**
 - Triggering on leading jet present in |y| < 2.5

 - + ZeroBias trigger for |y| > 2.5 or p_T < lowest jet trigger threshold

Prescaled single-jet triggers: at least one jet with p_T^{jet} at the High Level Trigger (HLT) larger than a

AK4 HLT_PFJet_* with * = 40,60,80,140,200,260,320,400,450, (500) for 2016 (2017-18)

Normalising event by event with prescales, with turn-on points at nearly 100% of efficiency

Trigger methods

- **Emulation trigger:**
 - ~ Reference trigger method, whereas test trigger is emulated instead of directly checked if it has fired
 - Check when a trigger of higher-adjacent th fired, using previous th trigger as reference
- **Tag and Probe method (TnP):**
 - Using events with di-jet final state and checking when only one or both should have fired the trigger
 - For first threshold: HLT40
 - Cross-check and to estimate uncertainties

$$\epsilon = \frac{N(test\ emulated\ |\ ref\ fired)}{N(ref\ fired)}$$

$$\epsilon = \frac{N(probe \mid tag)}{N(tag)}$$

Emulation and TnP trigger efficiency curves for 2017 data

Interpretation

- **Inclusive jets** powerful tool to constraint α_{s} , PDFs and to search for \bullet new physics: see recent measurement (JHEP 2022, 142 (2022))
- 1. Our measurement at 13 TeV will improve uncertainties respect to previous measurements:
 - **Statistics** (not very important) due to higher accumulated luminosity \bullet
 - **Systematics** (very important) due to: \bullet
 - Most recent sample reconstruction \bullet
 - Most recent scale factors
 - More refined corrections
- 2. Combine new measurement with ones of Run1 at 7, 8 TeV to improve:
 - \rightarrow PDF constraints, sensitive to different *x*-range & Q^2

 $\rightarrow \alpha_{\rm S}$ and contact interaction precision

Summary and conclusion

- Presented first look at inclusive jets full Run2 data in CMS:
 - Jet veto maps & MET filters, Prefiring corrections investigated
 - PU corrections: work in progress

• Prospects:

- Comparison with predictions
- Perform the unfolding
- Check compatibility with theory (and correlation with dijet mass)
- Interpretation: extract most precise measurement of α_S

un2 data in CMS: rections investigated

elation with dijet mass) rement of α_S

Thank you

DESY.

3. Pile-up corrections (for MC)

- Pile-Up (PU) cleaning: remove MC events at very low p_T where pileup jets with high p_T contribute with large weight
 - \rightarrow artificial effect, only due to our way of generating pile-up

- **Pile-up profile corrections:** MC usually produced with slightly overestimated PU
 - \rightarrow Correction applied to match data PU profile

Prefiring Results

Differences for 16/17:

- 1-4 rap bins: ~1-2%
- 5 rap bin: ~5/15%
- 6 rap bin: ~20%

Remark:

 Map per Era correction smaller than Average map correction

19

Conclusion prefiring study

- **Improve the correction** w.r.t. the official recommendations, as: \bullet
 - One single correction not enough to cover the various effects
 - Correction binning coarser than measurement's one
- **Next step:** smooth function of maps per era (continuous in p_T) \bullet
 - To avoid edge effects
 - To ensure smoothness of final results
- Preliminary study done, but in the future: lacksquare
 - Try to derive again maps
 - Try to derive smooth function directly from data

Interpretation

- **Inclusive jets** powerful tool to constraint α_{s} , PDFs and to search for new physics \bullet
- - **Statistics** (not very important) due to higher accumulated luminosity
 - **Systematics** (very important) due to most recent sample reconstruction and more refined corrections
- 2. Combine new measurement with ones of Run1 at 7, 8 (and 2.76) TeV to improve:
 - \rightarrow PDF constraints
 - $\rightarrow \alpha_{\rm S}$ and contact interaction precision
 - 1. Preliminary study at NNLO:
 - 1. FastNLO grid at NLO + QCD k-factors
 - 2. **Previous analysis** (done with 2016 EOY)

1. Our measurement at 13 TeV will improve uncertainties respect to previous measurements:

Work in Progress	
Data at 13 TeV	Data at 7+13 TeV
α_s: 0.1170 ± 0.0014	α_s: 0.1180 ± 0.0011
Total χ²: 1321 / 1118 (~1.18)	Total χ²: 1491 / 1251 (~1.19

✓ Only Fit uncertainties (Hessian method): statistics and systematics of data and fitted PDF parameter uncertainties

!! Not model and PDF parametrisation uncertainties

Fit setup Xfitter Interpretation

- + 7-13 TeV Inclusive jet cross-section datasets
- Data divided in ~20 bins of pT (~[97GeV, 3103GeV]) in 4 bins of rapidity (|y|<0.5, 0.5<|y|<1, 1 < |y| < 1.5, 1.5 < |y| < 2
- Starting energy scale: **Q0** = **1.9 GeV**
- PDF parametrization: parametrization scans following the approach of the HERAPDF2 paper
- TheorExpr = 'F*kF*NP*EW' (FastNLO, QCD kFactor, non perturbative correction, ew correction) defines the factors that goes into cross section computation For 7 TeV data, QCD and EW factors are taken from repository NNPDF, computed by **NNLOJET** at HThat QCD scale

Interpretation

- Goal: fit of *PDFs* and α_s at NNLO
- Data:
 - HERA I+II Dis datasets
 - Inclusive jet cross-section datasets at 7+8+13 TeV (R=0.7)
- Now: only 7+13 TeV, with FastNLO grid at NLO
- TheorExpr = $F_{NLO} * k_F^{QCD} * NP * EW$ defines the factors that goes into cross section computation
- Next step: \rightarrow Grid at NNLO TheorExpr = $F_{NNLO} * NP * EW$

Fit Results

Interpratation

- Change in the central value of $\alpha_{\rm S}$
- Uncertainty reduction of $\alpha_{\rm S}$ variable
- Good reduced χ^2

Data at 13 TeV	Data at 7+13 TeV
α_s:	α_s:
0.1170 ± 0.0014	0.1180 ± 0.0011
Total χ²:	Total χ²:
1321 / 1118 (~1.18)	1491 / 1251 (~1.19)

