Prospects for Constraints on tZc Couplings Using Quantum Interference at Hadron Colliders

15th Annual Helmholtz Alliance Workshop on "Physics at the Terascale" November 29, 2022

Lucas Cremer¹, Johannes Erdmann², Roni Harnik³, Jan Lukas Späh², Emmanuel Stamou¹

¹ TU Dortmund University
 ² RWTH Aachen University
 ³ Fermilab Accelerator Laboratory

Top-Quark Decays in the Standard Model

- Dominant top-quark decay mode: flavour-changing charged current $t \rightarrow W^+ b$
- Tree-level flavour-changing neutral currents (FCNCs) forbidden in SM
 - $\rightarrow~{\rm No}~{\rm decay}~t\rightarrow qB$ possible with neutral boson B
- Branching Ratios of FCNC decays extremely small: GIM-suppression

Searches for FCNCs in the Top-Quark Sector

- LHC is a top-quark factory: more than 10^8 top-quark pairs produced in Run 2 alone! \rightarrow Possibility to search for rare phenomena
- Experimental searches for FCNCs with top quarks important to probe BSM theories
- Any observed signal at the LHC: undeniable manifestation of BSM phyiscs!
- Tight upper limits allow to exclude various models that enhance FCNCs
- Aim to provide alternative approach to improve constraints

Traditional Searches for tZc FCNCs

- Analyes with Run 2 data by ATLAS (CONF-2021-049) and CMS (PAS-TOP-17-017) → Consider FCNC both in decay (top-quark pairs) and production (single top quark)
- \blacksquare Target leptonic decays of the Z boson: three-lepton final state
- 95% upper limits on ${\rm BR}(t \to qZ)$ in the range of $\mathcal{O}(10^{-4})$

A Minimal Model to Describe tZc Couplings and Interference

Add dimension-four operators to SM Lagrangian to induce tZc FCNCs:

$$\mathcal{L}_{tZc} = \frac{1}{2} \overline{t} \left(g_{\mathrm{L}} \mathrm{e}^{\mathrm{i} \theta_{\mathrm{L}}} \gamma^{\mu} P_{\mathrm{L}} + g_{\mathrm{R}} \mathrm{e}^{\mathrm{i} \theta_{\mathrm{R}}} \gamma^{\mu} P_{\mathrm{R}} \right) c Z_{\mu} + \mathrm{h.c.}$$

Interference in top-quark decays when including hadronic $Z \rightarrow b \bar{b}$ decay!

• Choose $g_{\rm R} = 0$ and $\theta_{\rm I} = \pi$ to maximise positive interference

Only consider charm quarks here: interference is CKM-enhanced compared to up quarks

Phase Space Region Enriched in Interference Contribution

- \blacksquare Kinematics of decay illustrated by variables $q_W^2=(p_{\overline{b}}+p_c)^2$ and $q_Z^2=(p_{\overline{b}}+p_b)^2$
- Interference contribution concentrated in narrow on-shell region in invariant mass plane
 - \rightarrow Allows for selections to separate SM, interference and FCNC contributions

Leveraging Quantum Interference for Small Couplings

 Assuming purely statistical uncertainties, exclusion limit of traditional search roughly scales as

$$g_{\rm excl} \sim \frac{1}{\mathcal{L}^{1/4}}$$

since ${\rm BR}(t\to cZ(\to\ell^+\ell^-))\sim g^2$

For interference-based approach and small couplings ($g^2 \ll g$), exclusion limit scales as

$$g_{\rm excl} \sim \frac{1}{\mathcal{L}^{1/2}}$$

due to ${\rm BR}(t \to b \overline{b} c) \sim g$

⇒ Interference-based approach benefits in realm of small couplings and large integrated luminosities!

Simulation Setup and Sample Generation

- Use custom model in MadGraph5 that includes minimal FCNC tZc couplings
- \blacksquare Generating events at $\sqrt{s}=14\,{\rm TeV}$ at leading-order
- Simulate FCNC, interference, and SM contributions to $pp \to t\bar{t} \to b\bar{b}c\,\bar{b}\mu^-\bar{\nu}_{\mu}$ separately
- Reducible backgrounds: SM $t\bar{t}, t\bar{t}b\bar{b}, t\bar{t}c\bar{c}$, and $t\bar{t}Z(\rightarrow b\bar{b})$ (always lepton+jets)
- Do not include parton showering and extensive detector simulation for simplicity \rightarrow Interpret parton-level objects directly as jets, muon and $E_{\rm T}^{\rm miss}$
- Include MC-based smearing of kinematic variables

Event Selection

- Require exactly four jets in central region
 - \rightarrow Suppresses the 8-particle final states very well ($t\bar{t}$ with additional jets)
- Optimised combination of b-tagging working points with MC methods: use 70%70%70%85%
 - $\rightarrow\,$ Signal topology of 3b+1c motivates three tight tags and one loose tag
- Further requirements to achieve realistic fiducial volume (trigger thresholds, $E_{\mathrm{T}}^{\mathrm{miss}}$ selection, ...)

Separating Signal from Background with a Neural Network

- Resolution and jet assignment issues motivate ML to enhance sensitivity
- Multiclass NN: split in pure FCNC, pos. int., neg. int., backgrounds
- Condense four outputs into one discriminant:

$$d = \frac{1 - \alpha_{\rm bkg} - \alpha_{\rm negInt} + \alpha_{\rm posInt} + \alpha_{\rm FCNC}}{2}$$

- \blacksquare Choose best model based on $95\%~{\rm CL}_s$ expected upper limit on g
- \blacksquare Parametrise neural network in g
 - $\rightarrow\,$ Aim to retain sensitivity over large range of couplings

Output Distributions for Large Coupling Value g = 0.2

Output Distributions for Small Coupling Value g = 0.0002

Expected Limit at the HL-LHC

- Expected events for $3000 \, {\rm fb}^{-1}$
- Distribution of background-only expected data changes with g
- Only consider stat. uncertainty on upper limit

$$g_{\rm excl}^{\rm HL-LHC} = 8.6^{+1.5}_{-1.3} \cdot 10^{-3}$$

Same order of magnitude as scaled traditional search $(5.9 \cdot 10^{-3})$

Conclusions and Outlook

- Presented prospects of interference-based searches for $t \rightarrow Zc$ transitions at HL-LHC \rightarrow Heavy-flavour enriched $t\bar{t}$ phase space, using mutliclass parametrised neural network
- Method benefits from high statistics: exp. limit at FCC-hh comparable to traditional search
- Rough projection with 20 ab^{-1} and $t\bar{t}$ cross section at $\sqrt{s} = 100 \text{ TeV}$: $g_{\text{excl}}^{\text{FCC-hh}} = 1.8^{+0.3}_{-0.3} \cdot 10^{-3}$
- Finishing studies and preparing journal submission

Branching ratio and Traditional Limits as a Function of \boldsymbol{g}

- $\blacksquare~95\%~{\rm CL}_s$ limit from ATLAS full Run 2 analysis: CONF-2021-049
- Extrapolated limit for HL-LHC assuming total uncertainty scales as statistical uncertainty

Validation of Sample Generation: Dalitz Plots

- \blacksquare Numerical Simulation with MadGraph5 of different contributions to $t \to b \bar b c$
- Validates model: reproduction of analytical expectations

Smearing of Transverse Momentum of Jets

- Left: Fit of exponential plus inverse function to ATLAS jet resolution values from 2007.02645
- \blacksquare Allows to describe low- and high- $p_{\rm T}$ regions well
- \blacksquare Right: Validation of impact of smearing on leading jet $p_{\rm T}$

Dalitz Plots After Smearing: FCNC and Positive Interference

- Results for full process $pp \to t\bar{t} \to b\bar{b}c\,\bar{b}\mu^-\bar{\nu}_{\mu}$ with invariant mass reconstruction
- Basic idea: choose three quarks as top candidate with three-jet mass closest to m_t
- Then: jet with loosest *b*-tag interpreted as *c*-jet, remaining two jets form *Z*-system
- Finally, m_W given by lowest m_{cb_i}

Dalitz Plots After Smearing: Negative Interference Backgrounds

Showing Separation with Distributions of Discriminant

- Condensation of outputs into single discriminant is successful
- Irreducible SM $t\bar{t} \to b\bar{b}c\,\bar{b}\mu^-\overline{\nu}_\mu$ appears to be most difficult background
- Reducible tt
 t
 remains most important
 background in signal-enriched region

Distributions for Discriminant of the Four Classes

Definition:
$$d = (1 - \alpha_{\rm bkg} - \alpha_{\rm negInt} + \alpha_{\rm posInt} + \alpha_{\rm FCNC})/2$$

 \blacksquare Distributions shown for $g_{\rm excl}^{\rm HL-LHC}=8.6\cdot 10^{-3}$

Illustration of $95\%~{ m CL}_s$ Expected Upper Limit Calculation

- Left: illustration of $CL_s = \frac{CL_{s+b}}{CL_b}$ calculation
- \blacksquare Right: calculation of expected upper limit from ${\rm CL}_s$ value as a function of g

