

gefördert durch das Bundesministerium für Bildung und Forschung

NOVEMBER 29, 2022 15TH ANNUAL MEETING OF THE HELMHOLTZ ALLIANCE "PHYSICS AT THE TERASCALE"

REFINING FAST SIMULATION USING MACHINE LEARNING

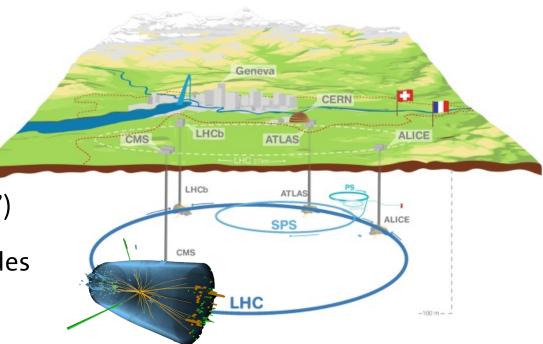
SAMUEL BEIN¹, PATRICK CONNOR¹, KEVIN PEDRO², PETER SCHLEPER¹, <u>MORITZ WOLF¹</u>

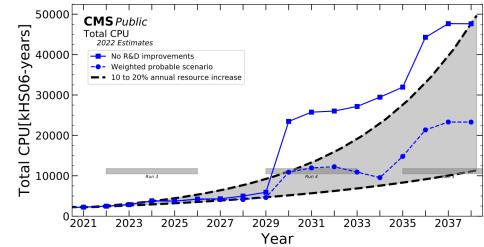
¹UNIVERSITÄT HAMBURG, ²FERMI NATIONAL ACCELERATOR LABORATORY

- Most high energy physics analyses rely on a large number of simulated proton-proton collisions (= "events")
- Higher LHC luminosity (= more events) & detector upgrades (= more complex data) → fast simulation techniques and R&D needed to stay within computing budget
- In CMS, two simulation chains (FullSim/FastSim) are used that produce output of same dimensionality/structure

	GEN → Event generation	SIM → Detector simulation	DIGI	RECO Reconstruction
FullSim	same e.g., MadGraph	GEANT4	same	analyze as if data
FastSim ≈ 15% of sim. events		parametrized energy loss x100 faster		use GEN info x2.5 faster

FullSim: ≈ 100 s/event, FastSim: ≈ 10 s/event





twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Refining fast simulation using machine learning – Moritz Wolf

GEN SIM DIG RECO AOD \rightarrow \rightarrow \rightarrow \rightarrow NanoAOD further Digitization "Analysis Event Detector Reconstruction **Object Data**" simulation processed generation analysis format

50000

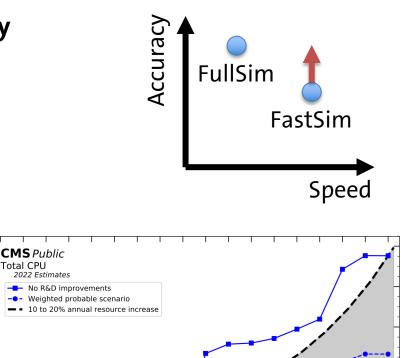
ພັ 40000

20000 CPU[kHS06-

Total 10000

Total CPU

- FastSim advantage in speed comes at the price of decreased accuracy in some of the final analysis observables
- > Aim: increase FastSim accuracy to promote its wider usage
- Possible FastSim tuning approaches:
 - Internal tuning of functions/parameters (within **SIM/RECO**) e.g., denoising showers using ML github.com/cms-denoising/SimDenoising
 - Post-hoc tuning (after NanoAOD)
 - Reweighting = defining weights for individual events/jets/... e.g., DCTR introduced in arXiv:1907.08209
 - Refining = changing (high-level) observables e.g., Wasserstein-GAN for air showers in arXiv:1802.03325



2029

Year

2025

2027

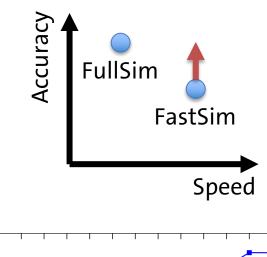
2031

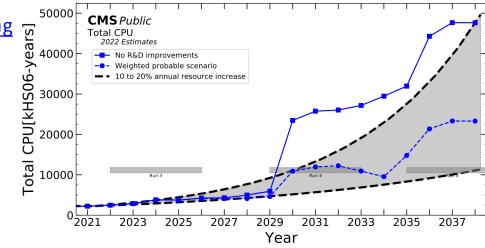
2033

2035

2037

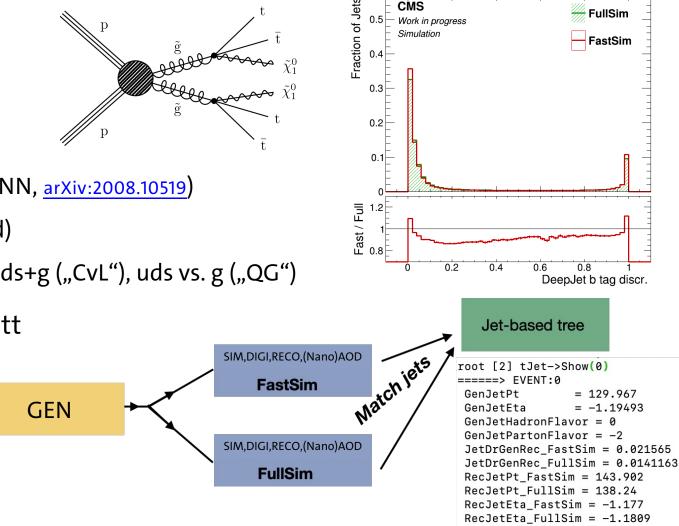
- **GEN** SIM DIG RECO AOD \rightarrow \rightarrow \rightarrow \rightarrow NanoAOD Digitization "Analysis further Event Detector Reconstruction **Object Data**" simulation processed generation analysis format
- FastSim advantage in speed comes at the price of decreased accuracy in some of the final analysis observables
- > Aim: increase FastSim accuracy to promote its wider usage
- Possible FastSim tuning approaches:
 - Internal tuning of functions/parameters (within SIM/RECO) e.g., denoising showers using ML <u>github.com/cms-denoising/SimDenoising</u>
 - Post-hoc tuning (after NanoAOD)
 - Reweighting = defining weights for individual events/jets/... e.g., DCTR introduced in <u>arXiv:1907.08209</u>
 - Refining = changing (high-level) observables
 e.g., Wasserstein-GAN for air showers in <u>arXiv:1802.03325</u>





twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

- Focus on refinement of jet observables e.g.,
 - Magnitude and direction of momentum: $(p_{x_i} p_{y_i} p_z) \rightarrow (p_T, \eta, \varphi)$
 - Jet (sub)structure e.g.,
 - Flavour tagging, here: DeepJet algorithm (DNN, <u>arXiv:2008.10519</u>)
 - ➤ 4 output nodes: b, c, uds, g (softmax activated)
 - ➤ 4 discriminators in NanoAOD: b, c vs. b, c vs. uds+g ("CvL"), uds vs. g ("QG")
- Training sample: SUSY simplified model T1tttt simulated with FastSim and FullSim (same GEN events, 0 PU)
 - \succ Match jets using ΔR angular criterion
 - Jet triplets: (GEN, FastSim, FullSim)

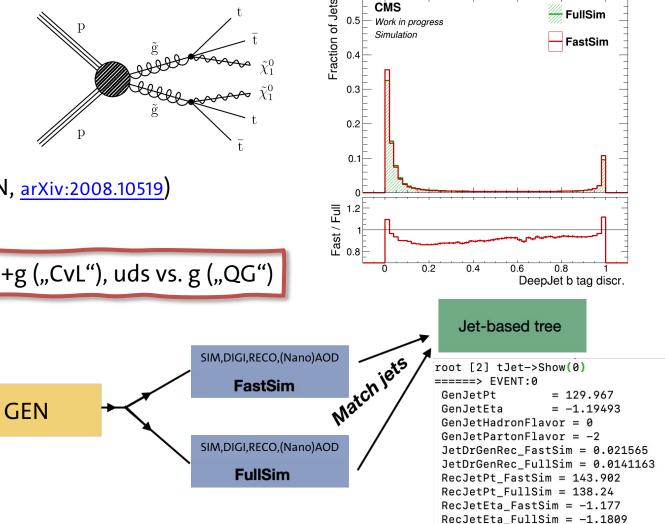


CMS

0.5 Work in progress Simulation

FullSim

- Focus on refinement of jet observables e.g.,
 - Magnitude and direction of momentum: $(p_{x,} p_{y,} p_{z}) \rightarrow (p_{T}, \eta, \varphi)$
 - Jet (sub)structure e.g.,
 - Flavour tagging, here: DeepJet algorithm (DNN, <u>arXiv:2008.10519</u>)
 - > 4 output nodes: b, c, uds, g (softmax activated)
 - > 4 discriminators in NanoAOD: b, c vs. b, c vs. uds+g ("CvL"), uds vs. g ("QG")
- Training sample: SUSY simplified model T1tttt simulated with FastSim and FullSim (same GEN events, 0 PU)
 - ➤ Match jets using ΔR angular criterion
 - Jet triplets: (GEN, FastSim, FullSim)



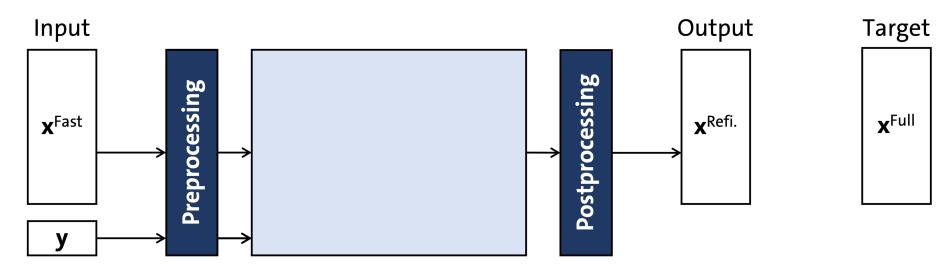
REFINING (REGRESSION) – GENERAL IDEA

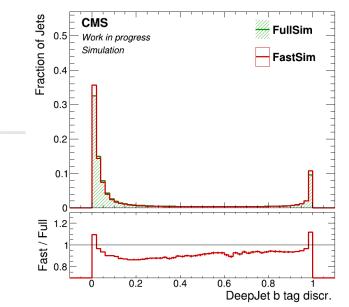
Employ **regression neural network** to refine FastSim:

Input: FastSim variables x^{Fast} = 4 DeepJet discriminators

Parameters $\mathbf{y} = p_T^{\text{GEN}}$, η^{GEN} , true hadron flavor (b, c, or light quark/gluon)

- Output: Refined variables x^{Refined} = 4 DeepJet discriminators
- Target: FullSim variables x^{Full} = 4 DeepJet discriminators





REFINING (REGRESSION) – NN ARCHITECTURE

ResNet paper arXiv:1512.03385

■ ResNet-like skip connections → learn only residual corrections 6 LeakyReLU LeakyReLU Preprocessing: transform input variables/parameters Linea Dropout Dropout (logit-transform in order to center around 0, transform to original DeepJet output values, one-hot-encode true hadron flavour) Identity Postprocessing: DeepJet softmax constraint + backtransf. Output Target Input 4x Residual Block Postprocessing Preprocessing **X**Fast **X**^{Refi.} **X**^{Full} LeakyReLU LeakyReLU Dropout Dropout Identity

MAE: mean absolute error (jet-jet pairs) MSE: mean squared error (jet-jet pairs) MMD: maximum mean discrepancy (ensembles)

REFINING (REGRESSION) – LOSS TERMS

MSE: output-target pair-based

Input

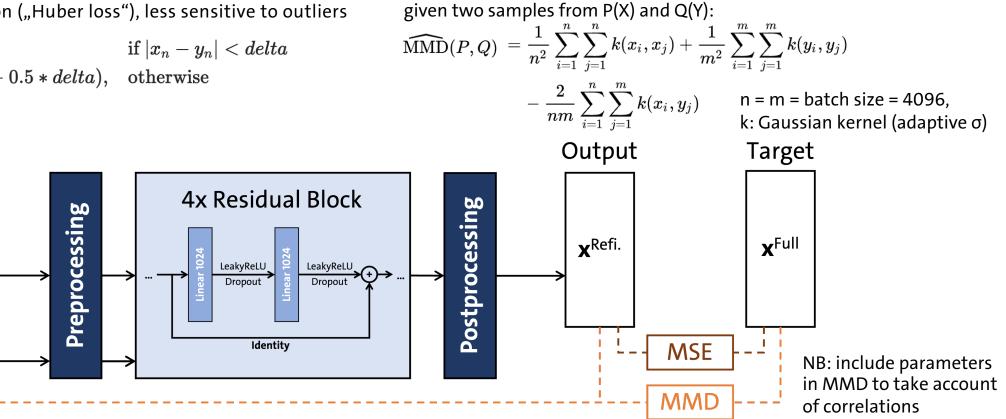
X^{Fast}

Correct for deterministic FastSim biases

use MSE/MAE combination ("Huber loss"), less sensitive to outliers

 $l_n = egin{cases} 0.5(x_n-y_n)^2, & ext{if } |x_n-y_n| < delta \ delta*(|x_n-y_n|-0.5*delta), & ext{otherwise} \end{cases}$

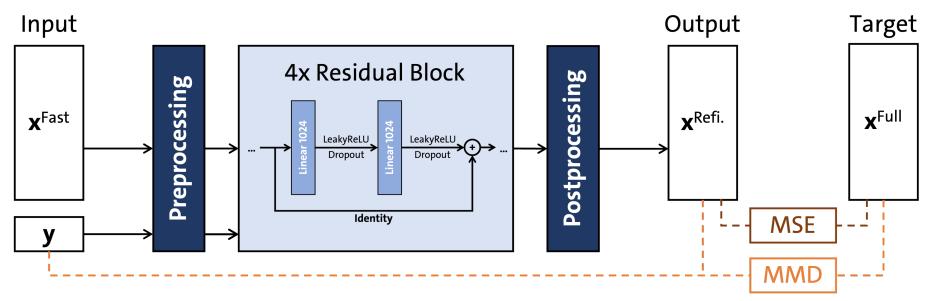
- MMD: distribution-based (primary loss)
 - Correct for stochastic FastSim biases

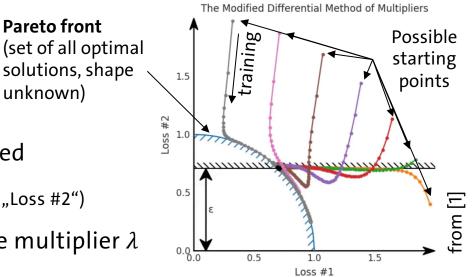


REFINING (REGRESSION) – LOSS TERMS

Combine loss terms via **MDMM algorithm**:

- Reframe problem as **constrained optimization** using **Lagrangian**: $\mathcal{L} = f(\theta) - \lambda * (\varepsilon - g(\theta)) \rightarrow$ convergence mathematically formalized
- Minimize $f(\theta)$ (primary loss, "Loss #1") subject to $g(\theta) = \varepsilon$ (additional loss, "Loss #2")
- Gradient descent for NN parameters θ , gradient ascent for Lagrange multiplier λ



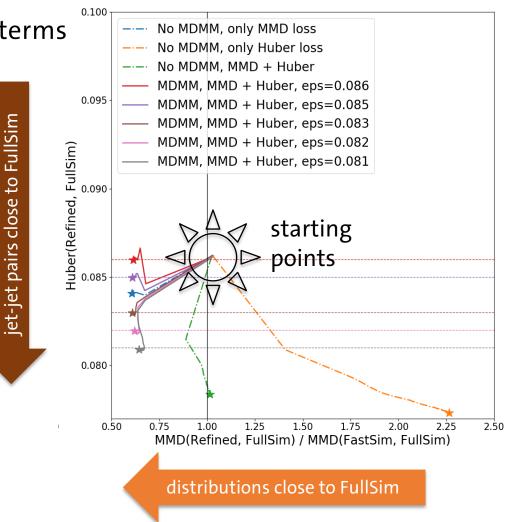


Pareto front

unknown)

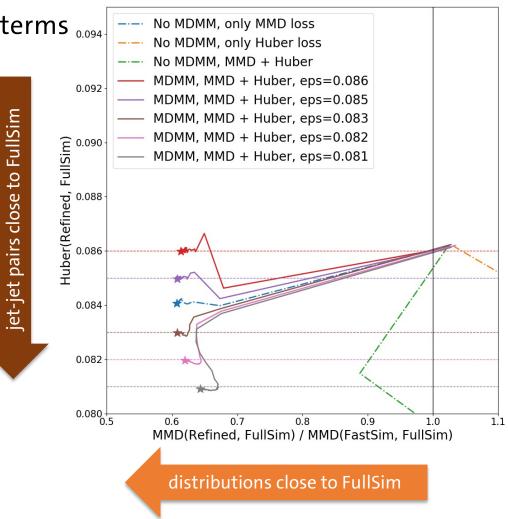
REFINING (REGRESSION) – LOSS TERMS

- **Pareto plot**: training history in plane of the two loss terms
 - Primary loss: MMD(Refined, FullSim) (horizontal axis) normalized to MMD(FastSim, FullSim)
 - Constraint: Huber(Refined, FullSim) (vertical axis)
- Trained for 100 epochs with 500 batches
- Simple addition not optimal
- MDMM: scan of different ε values
 - If ε is too small it can only be reached by disregarding MMD
 - If ε is too large MMD also gets worse because jet-jet pairs have to change too much
 - > Choose ε = 0.083

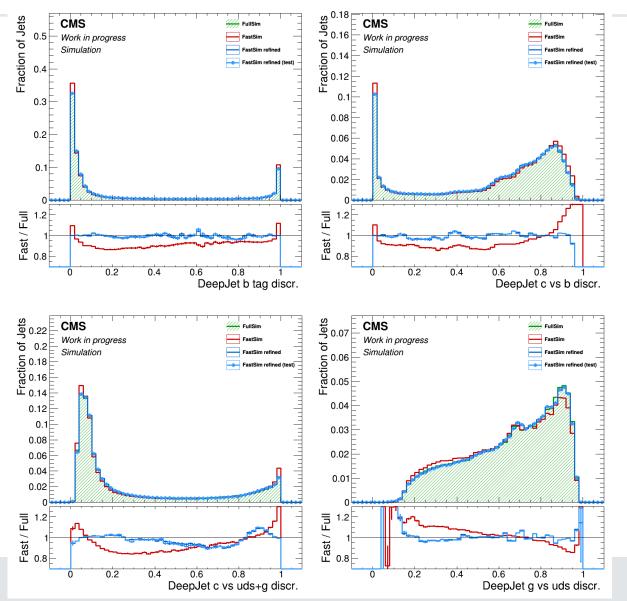


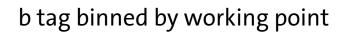
REFINING (REGRESSION) – LOSS TERMS

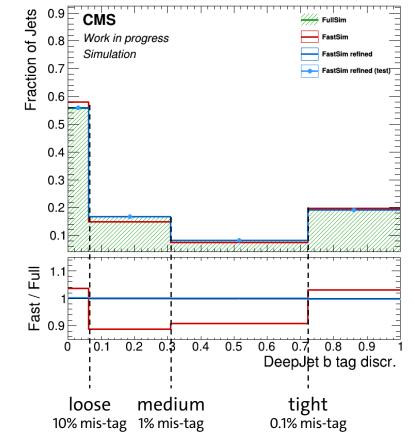
- Pareto plot: training history in plane of the two loss terms 0.094
 - Primary loss: MMD(Refined, FullSim) (horizontal axis) normalized to MMD(FastSim, FullSim)
 - Constraint: Huber(Refined, FullSim) (vertical axis)
- Trained for 100 epochs with 500 batches
- Simple addition not optimal
- MDMM: scan of different ε values
 - If ε is too small it can only be reached by disregarding MMD
 - If ε is too large MMD also gets worse because jet-jet pairs *have to* change too much
 - > Choose ε = 0.083



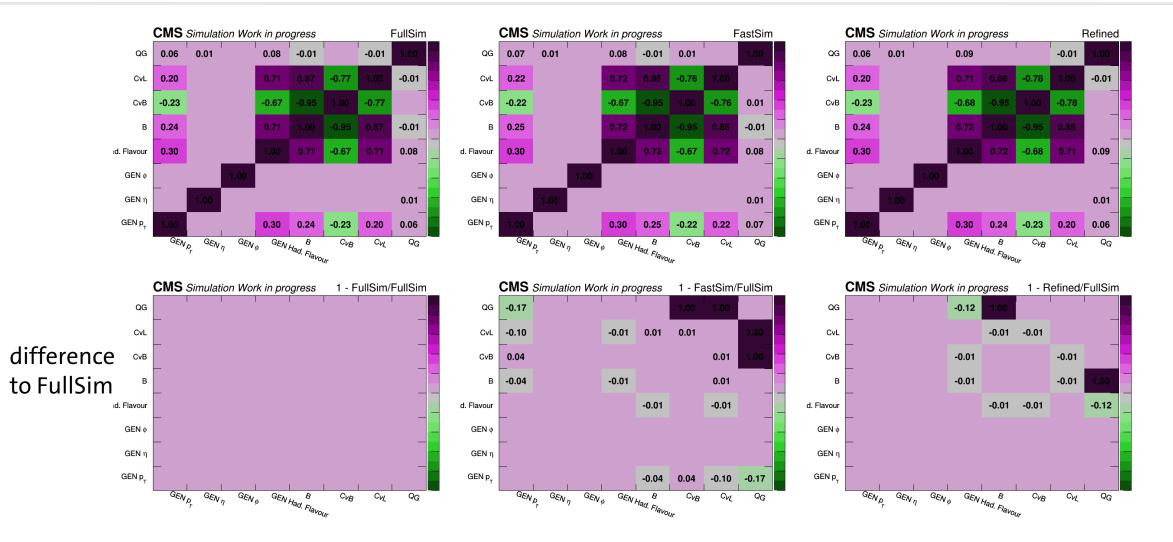
REFINING (REGRESSION) - RESULTS



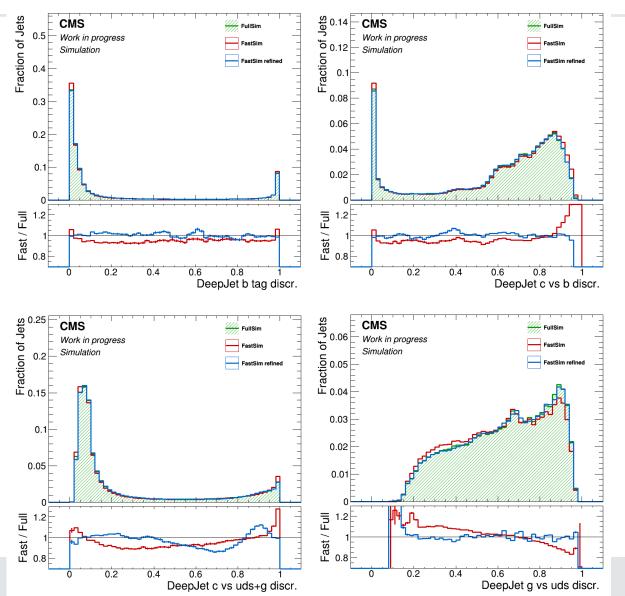




REFINING (REGRESSION) - LINEAR CORRELATION COEFFICIENTS



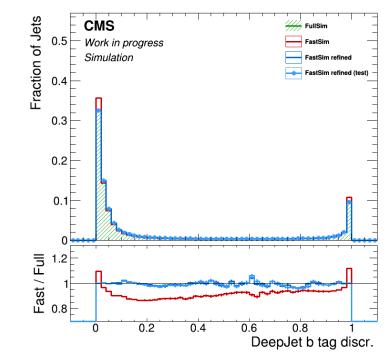
REFINING (REGRESSION) - VALIDATION IN TTBAR



 Good performance for evaluation on TTbar (NN trained on T1tttt SUSY dataset)

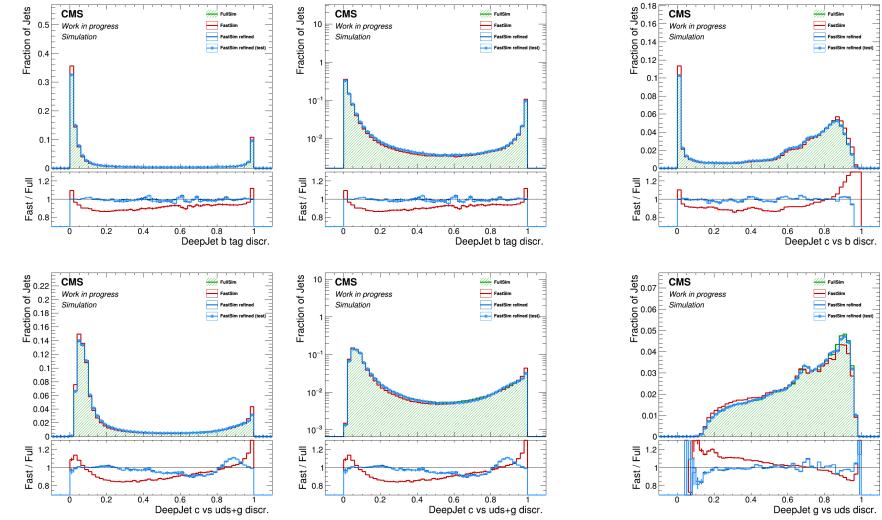
SUMMARY

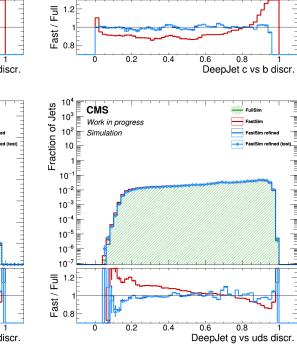
- Fast simulation techniques needed to face computing challenges
- High accuracy of simulation required for most physics analyses
- Applying ML-based post-hoc refinement to CMS FastSim output (ResNet-like regression NN)
 - Considerably improved agreement with FullSim output
 - Improvement in correlations among output observables and external parameters
- Integration into CMS software framework (CMSSW) in the works (via ONNX format)
- Possible extension to other variables/physics objects (e.g., FatJet substructure)



BACKUP

REFINING (REGRESSION) – ONLY MMD





Jets

of

Fraction 1

 10^{3}

10²

10-

10-2

10⁻³

10⁻⁴

10⁻⁵

CMS

Simulation

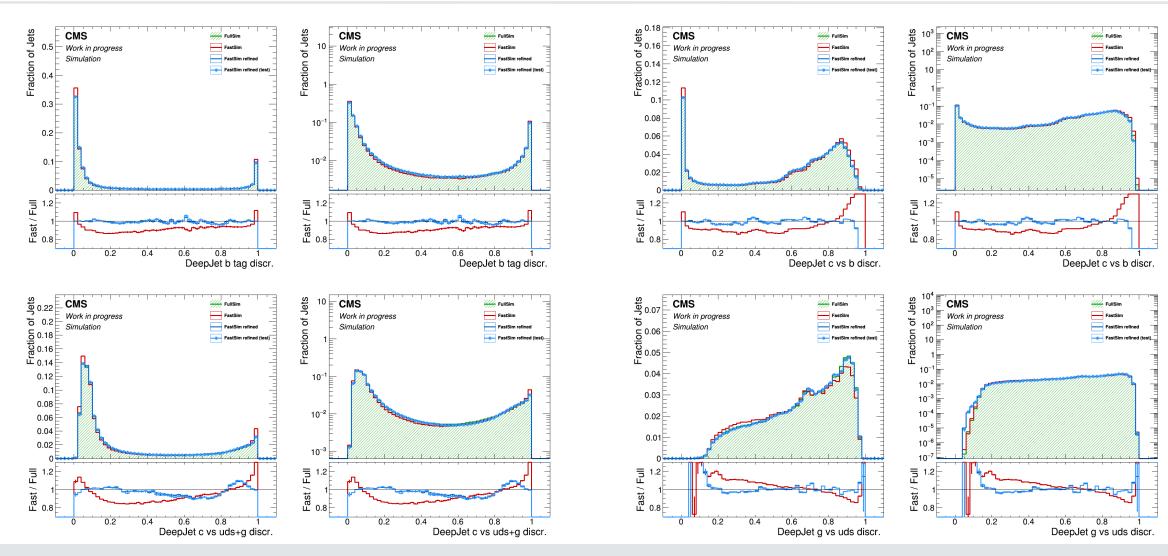
Work in progress

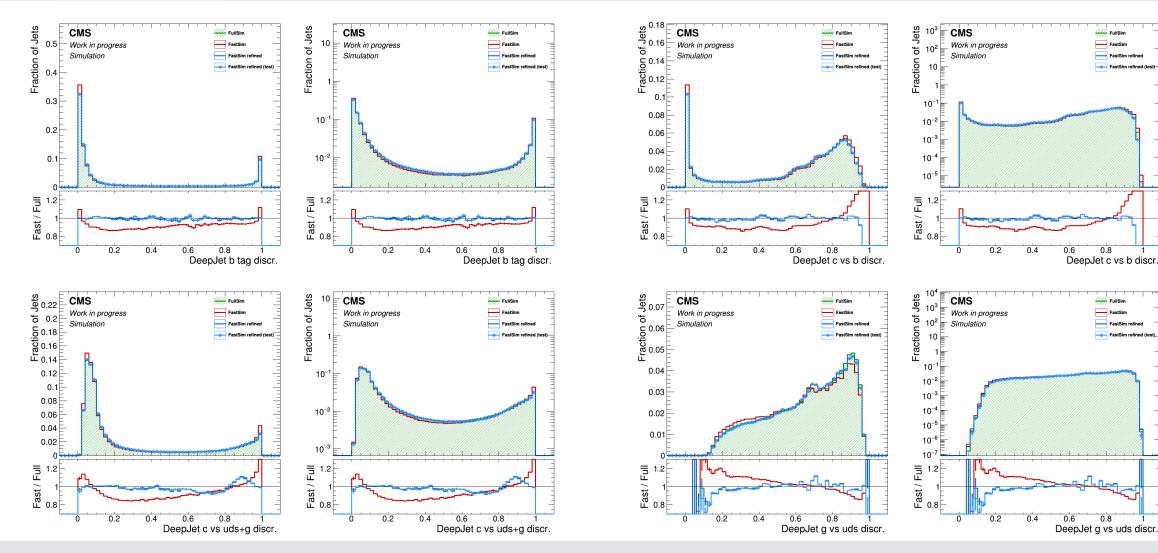
H FullSim

FastSim

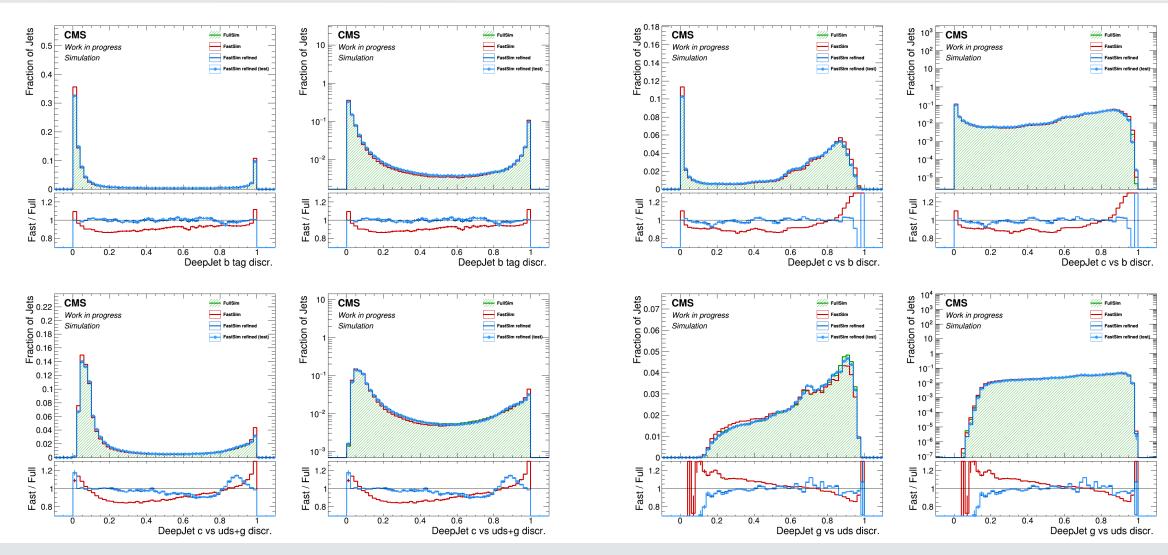
FastSim refine

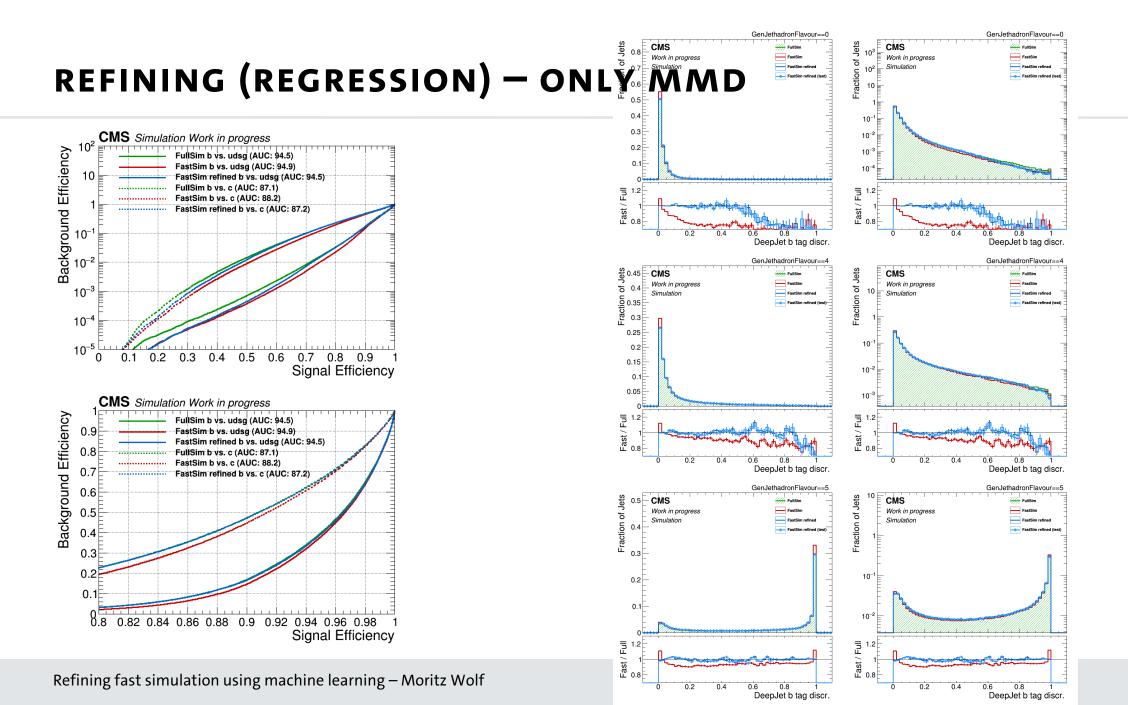
Refining fast simulation using machine learning – Moritz Wolf

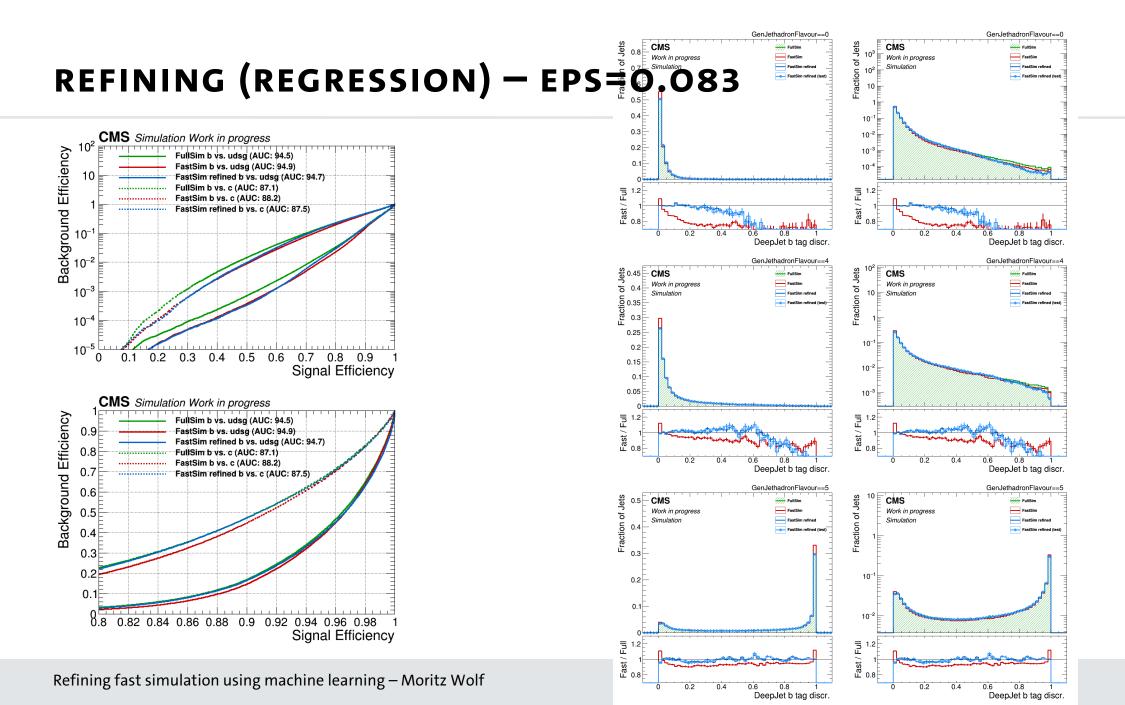


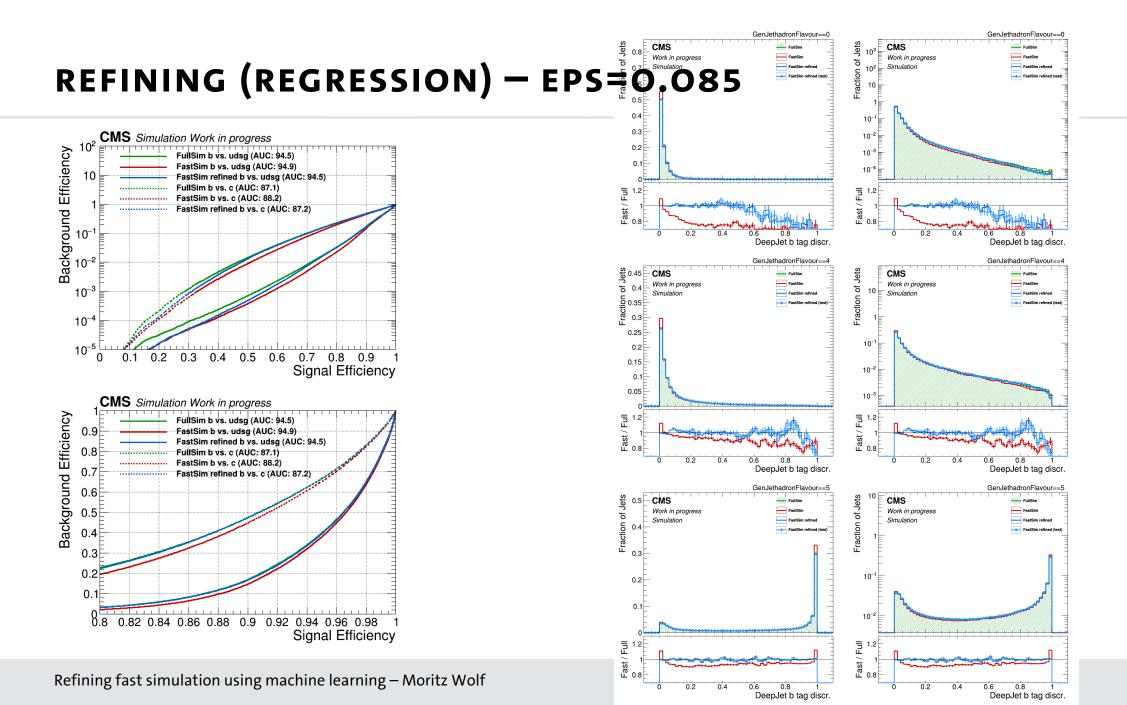


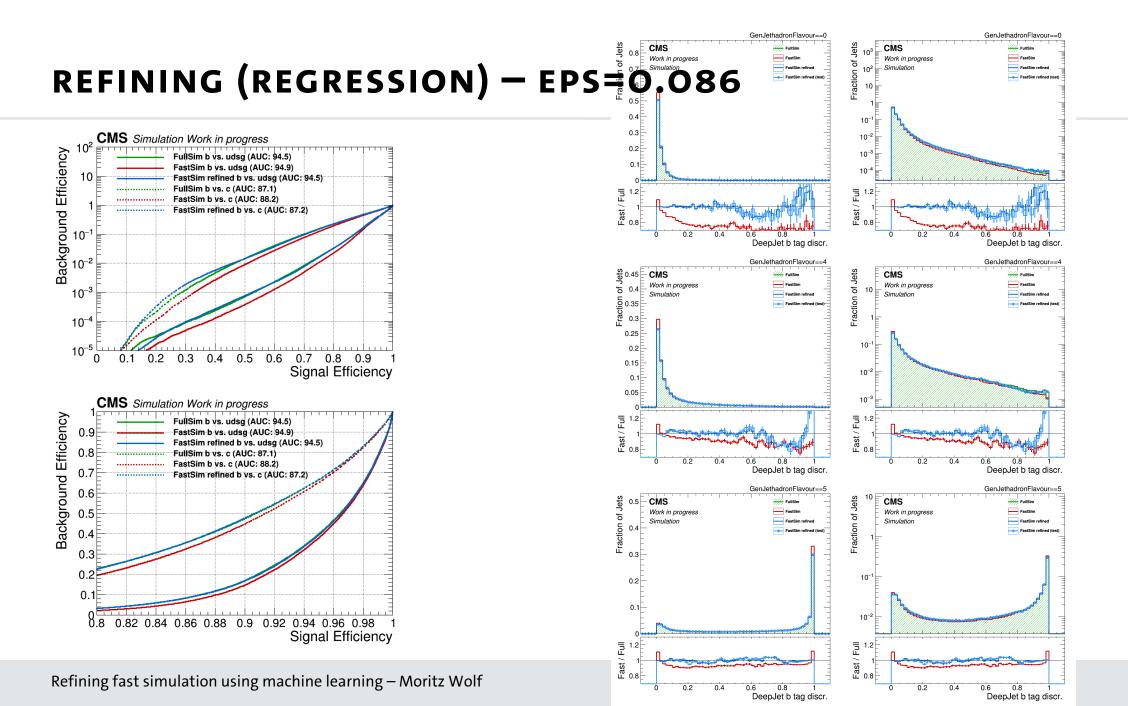
Refining fast simulation using machine learning – Moritz Wolf



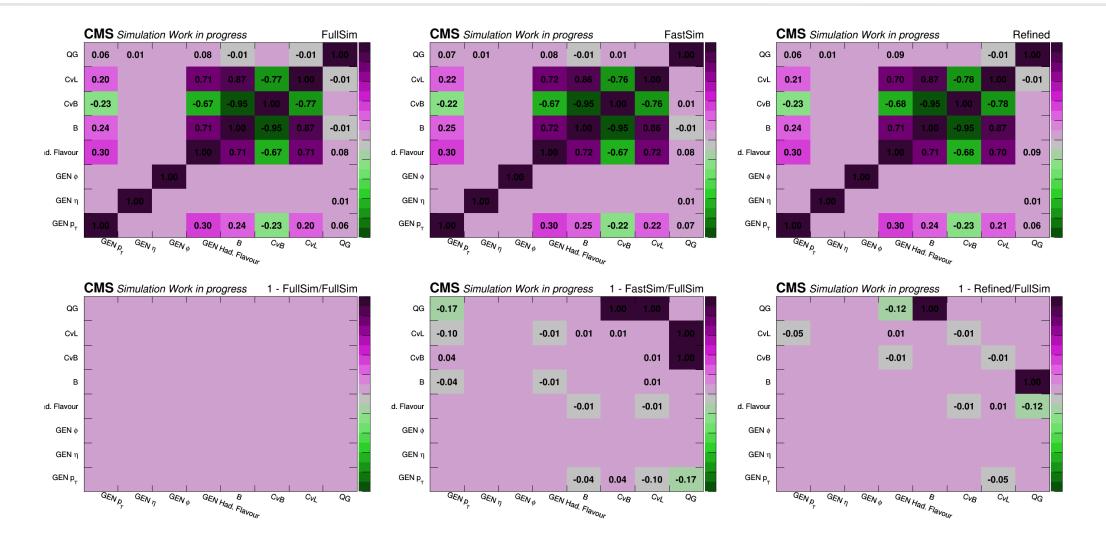


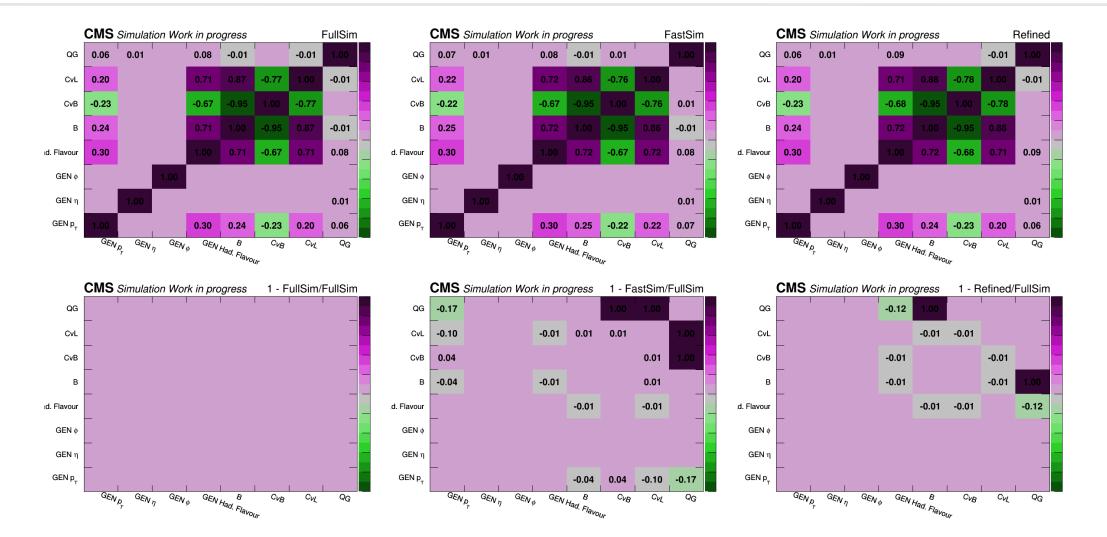


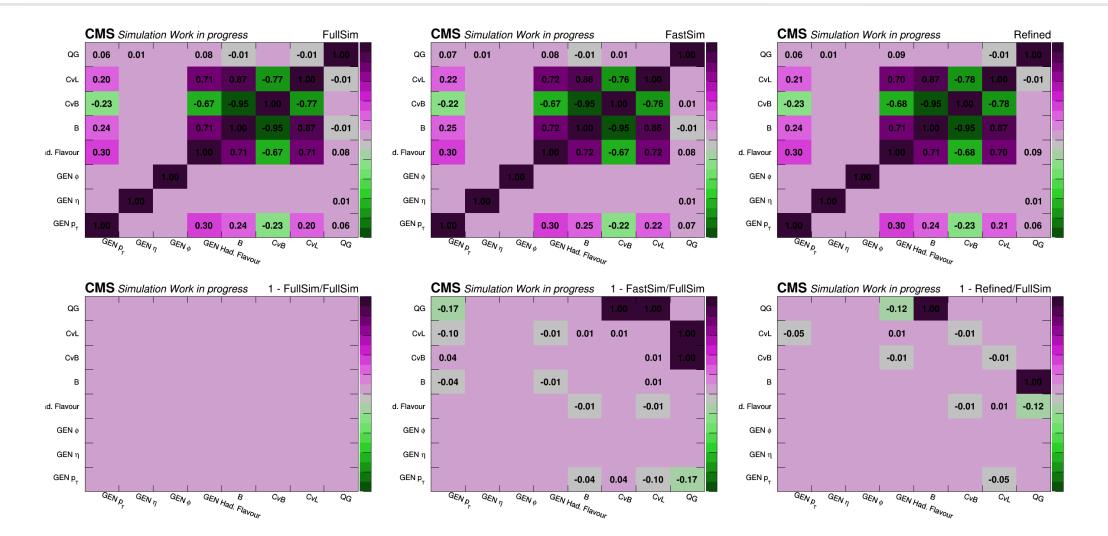


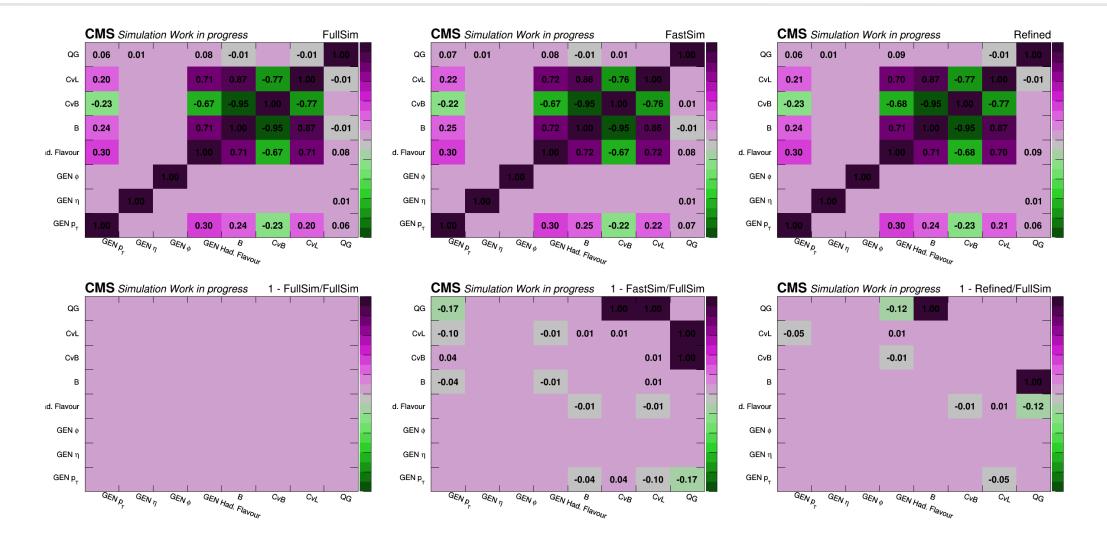


REFINING (REGRESSION) – ONLY MMD



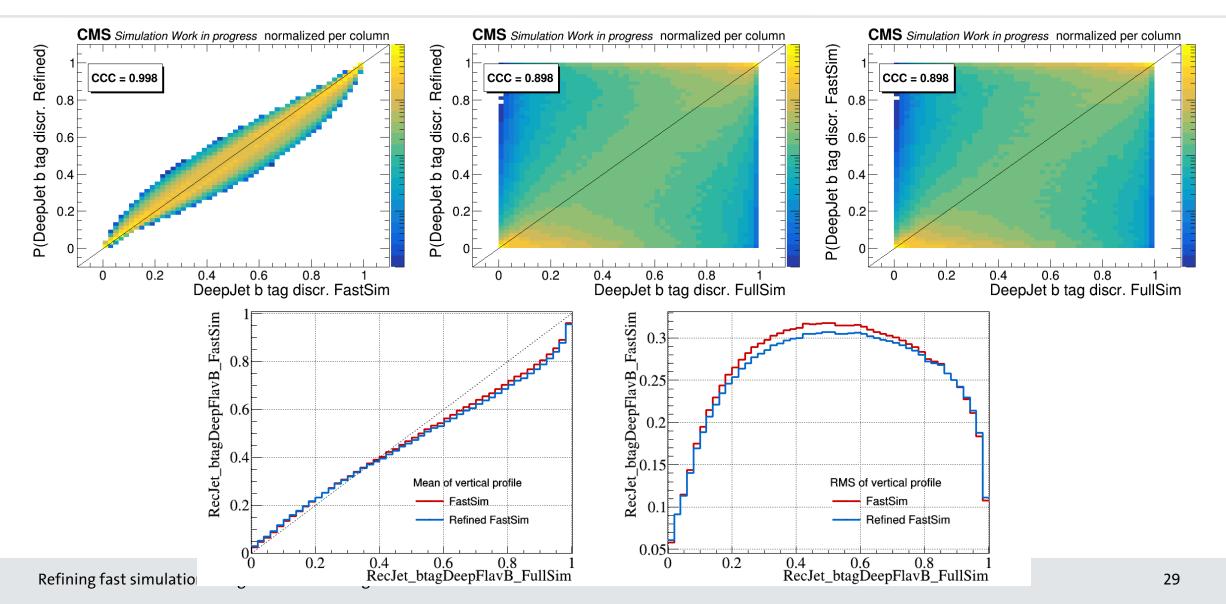




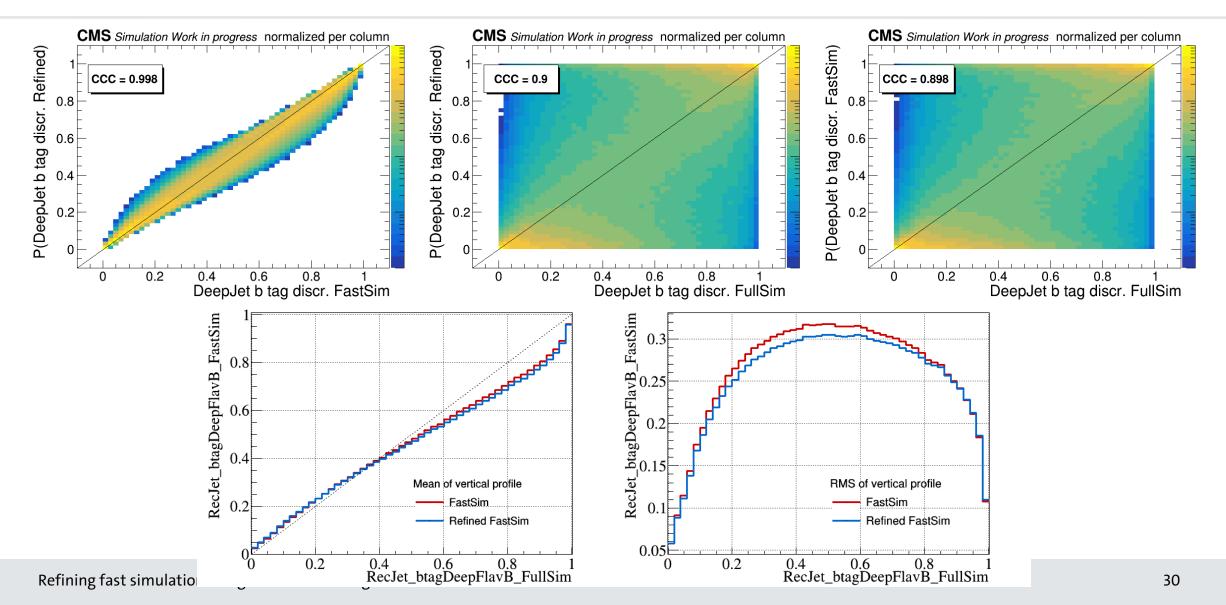


CCC = concordance correlation coefficient "measures the agreement between two variables" $\rho_c = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$

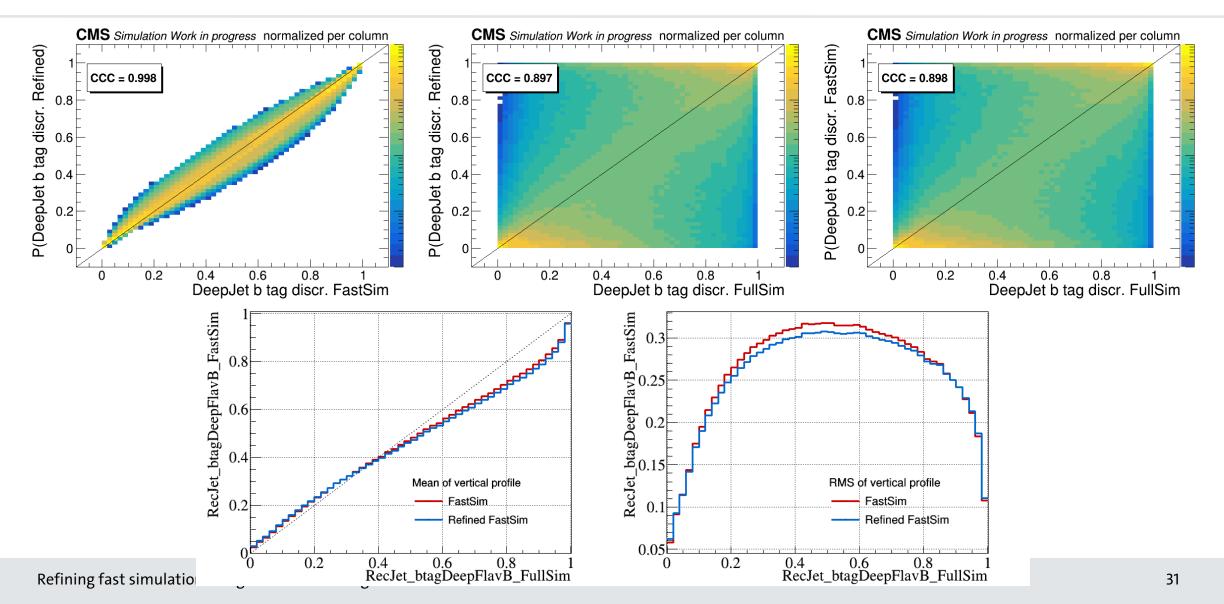
REFINING (REGRESSION) – ONLY MMD



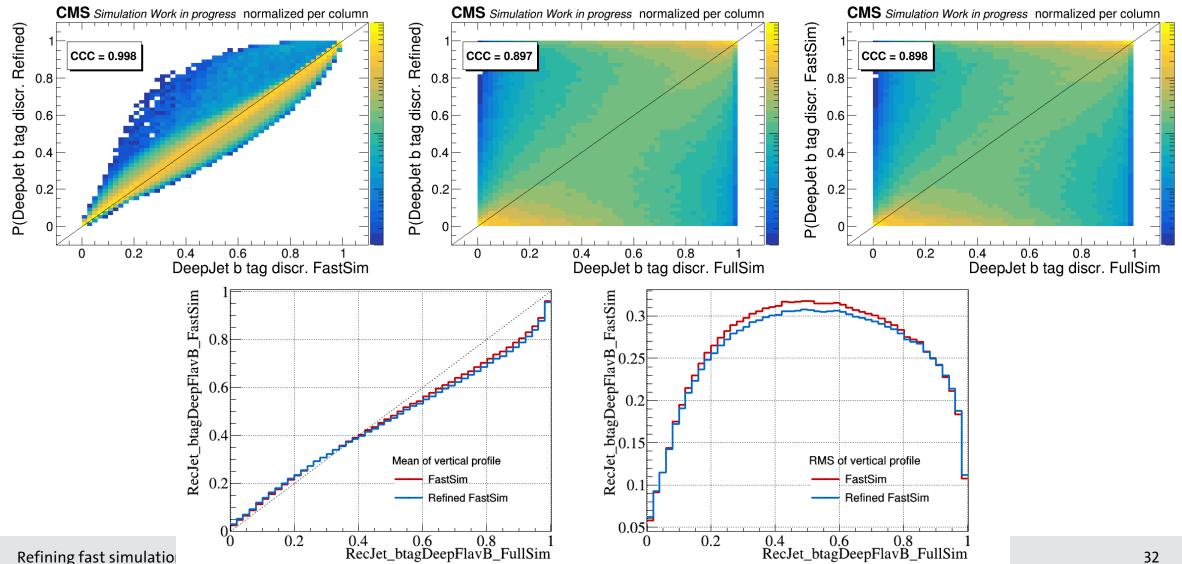
CCC = concordance correlation coefficient "measures the agreement between two variables" $\rho_c = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$



CCC = concordance correlation coefficient "measures the agreement between two variables" $\rho_c = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$

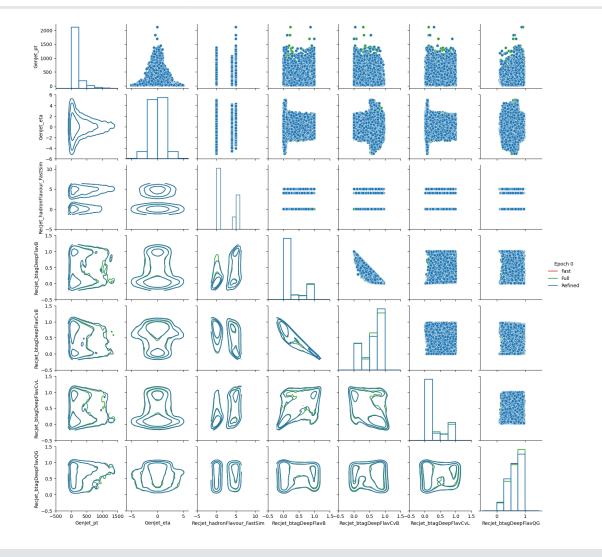


CCC = concordance correlation coefficient "measures the agreement between two variables" $2
ho\sigma_x\sigma_y$ $ho_c= rac{1}{\sigma_x^2+\sigma_y^2+(\mu_x-\mu_y)^2}$



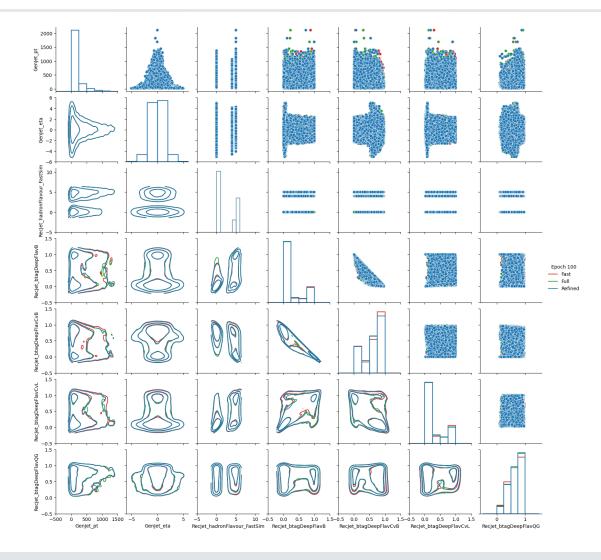
REFINING (REGRESSION) - TRAINING SHAPSHOTS (EPS=0.084)

- Starting point
- Normal space



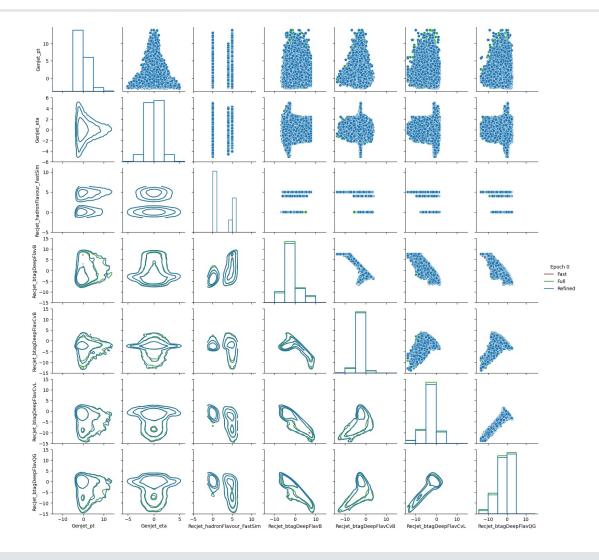
REFINING (REGRESSION) - TRAINING SHAPSHOTS (EPS=0.084)

- After epoch 100
- Normal space



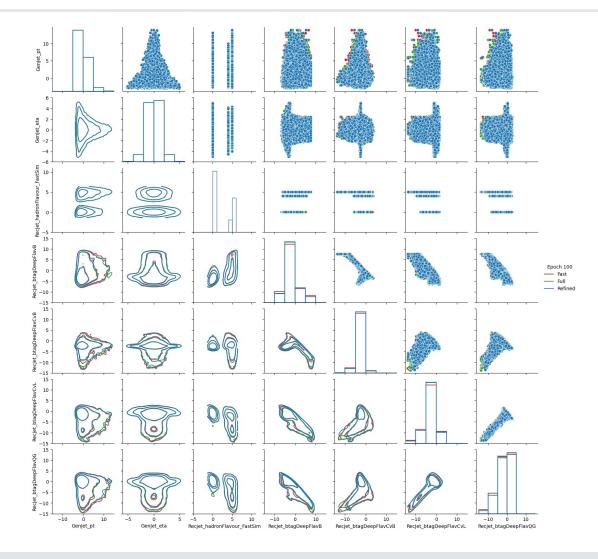
REFINING (REGRESSION) - TRAINING SHAPSHOTS (EPS=0.084)

- Starting point
- Transformed space

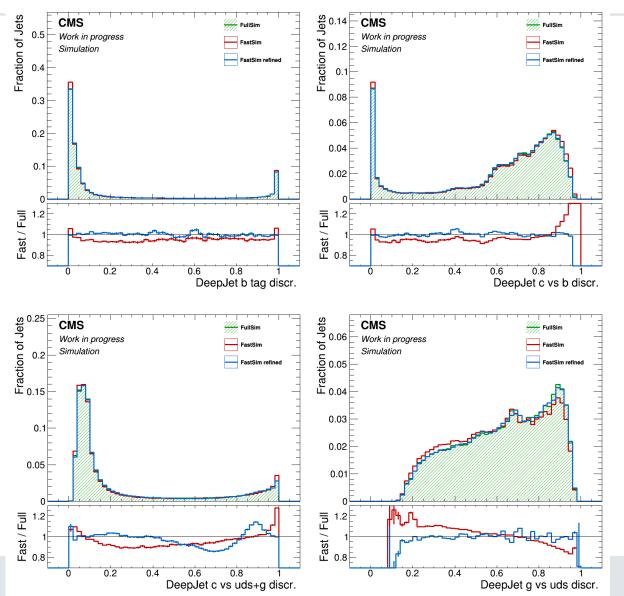


REFINING (REGRESSION) - TRAINING SHAPSHOTS (EPS=0.084)

- After epoch 100
- Transformed space

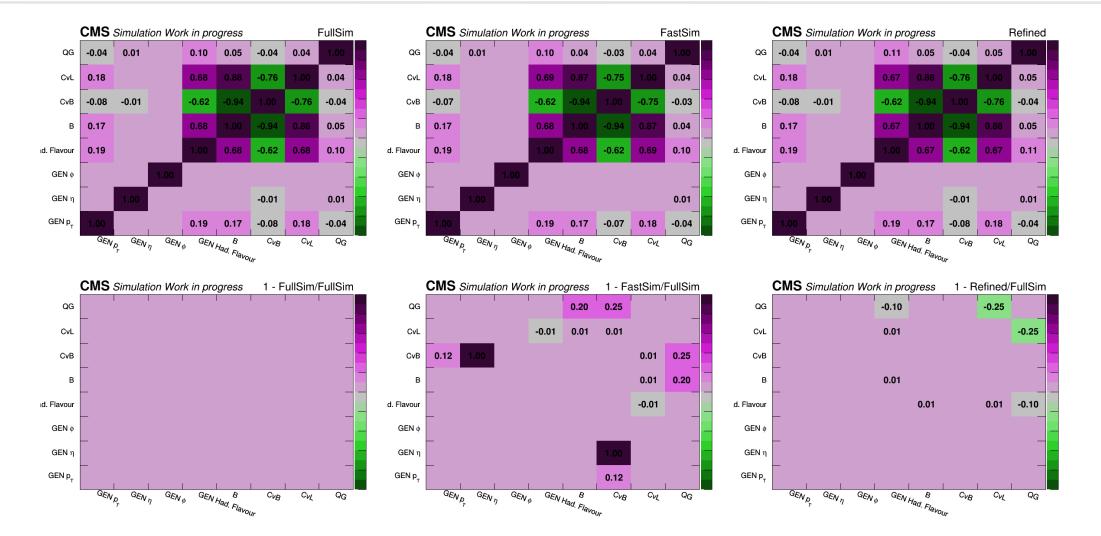


REFINING (REGRESSION) - VALIDATION IN TTBAR (ONLY MMD)

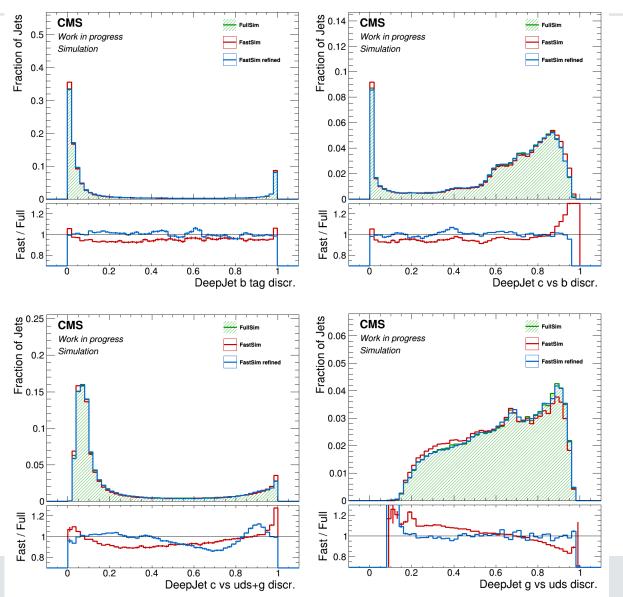


 Good performance for evaluation on TTbar (NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) - VALIDATION IN TTBAR (ONLY MMD)

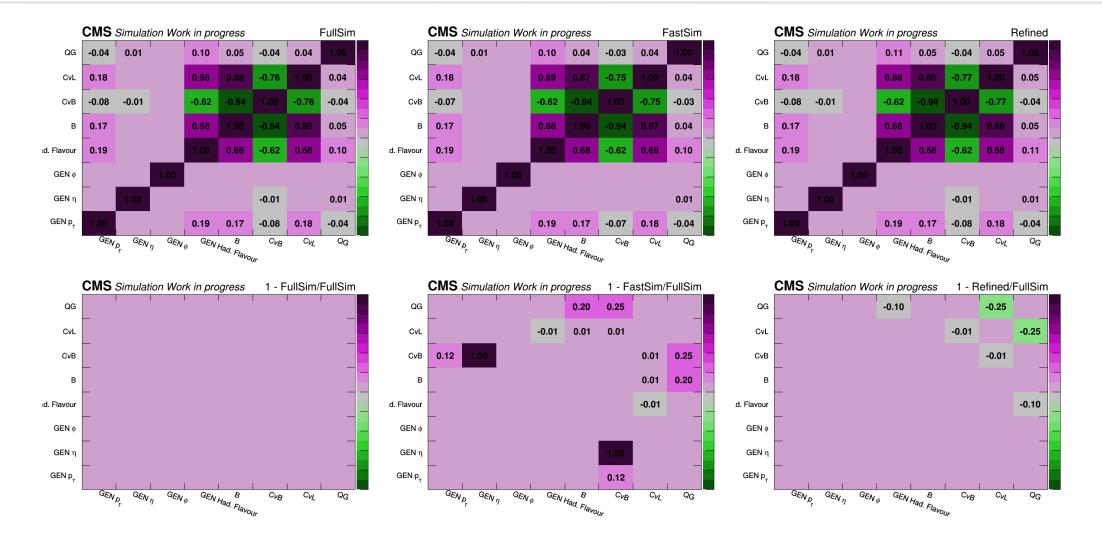


REFINING (REGRESSION) - VALIDATION IN TTBAR (EPS=0.083)

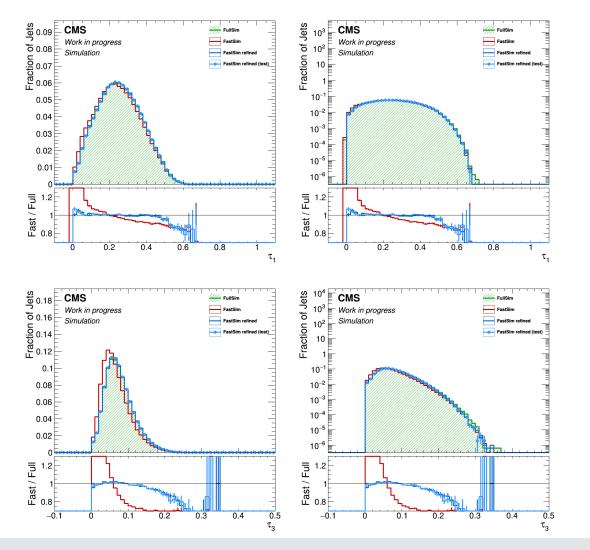


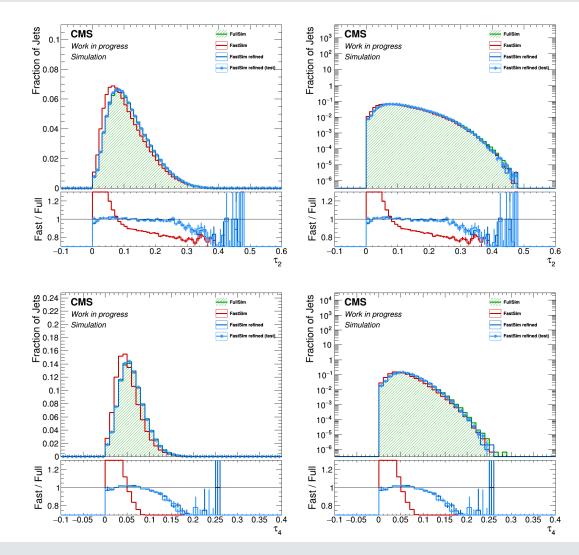
 Good performance for evaluation on TTbar (NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) - VALIDATION IN TTBAR (EPS=0.083)



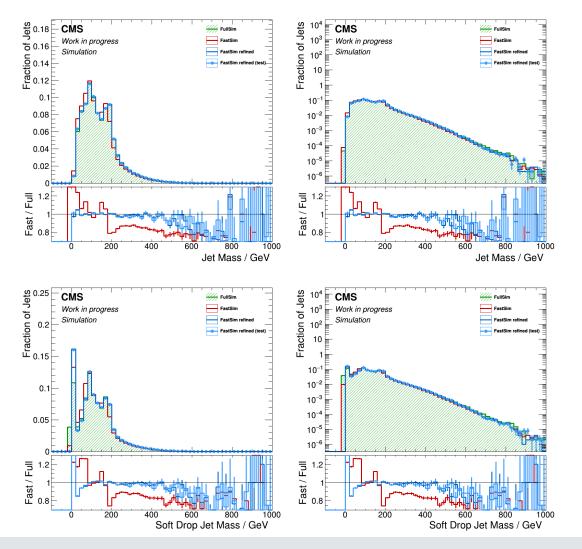
REFINING (REGRESSION) - FATJETS (ONLY MMD)



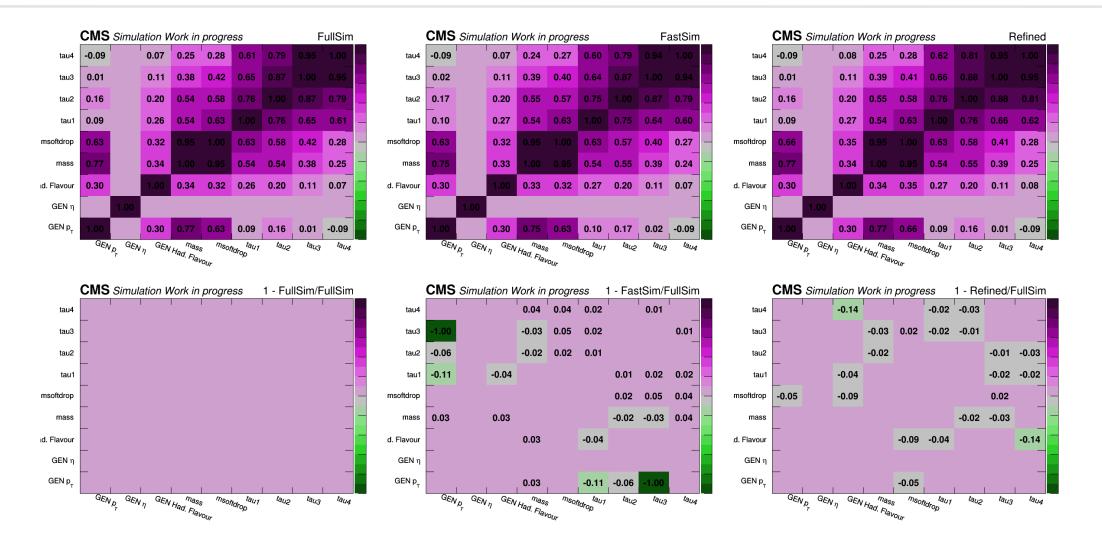


Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – FATJETS (ONLY MMD)



REFINING (REGRESSION) - FATJETS (ONLY MMD)



REFINING (REGRESSION) – NETWORK DETAILS

- Jet preselection dR(jet, closest jet) > 0.5 (for GEN, FastSim & FullSim jet individually)
- NN architecture
 - LeakyReLU negative slope = 0.01
 - Dropout rate = 0.5
- Loss terms
 - Huber delta = 0.1
 - MMD calculated individually for each class of hadron flavour: $MMD = \sum_{i \in had. flav.} MMD_i$
 - MMD Gaussian kernel bandwidth adaptive: $MMD = \sum_{\sigma \in \{\frac{\sigma_0}{100', 10}, \sigma_0, 10\sigma_0, 100\sigma_0\}} MMD_{\sigma}$, $\sigma_0 = \overline{L2 \text{ dist.}}$
- Training
 - Learning rate = 1e-4 (exponential decay with $\gamma = 0.96$ each epoch)
 - Adamax optimizer

Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) - MMD

- Training on jet^{FastSim}-jet^{FullSim} pairs problematic (stochasticity in simulations)
 → instead use measure that compares distributions
- From <u>Wikipedia</u>:

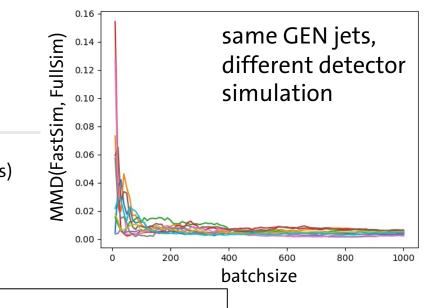
Kernel two-sample test [edit]

Given *n* training examples from P(X) and *m* samples from Q(Y), one can formulate a test statistic based on the empirical estimate of the MMD

$$egin{aligned} \widehat{ ext{MMD}}(P,Q) &= \left\|rac{1}{n}\sum_{i=1}^n arphi(x_i) - rac{1}{m}\sum_{i=1}^m arphi(y_i)
ight\|_{\mathcal{H}}^2 \ &= rac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n k(x_i,x_j) + rac{1}{m^2}\sum_{i=1}^m\sum_{j=1}^m k(y_i,y_j) - rac{2}{nm}\sum_{i=1}^n\sum_{j=1}^m k(x_i,y_j)
ight. \end{aligned}$$

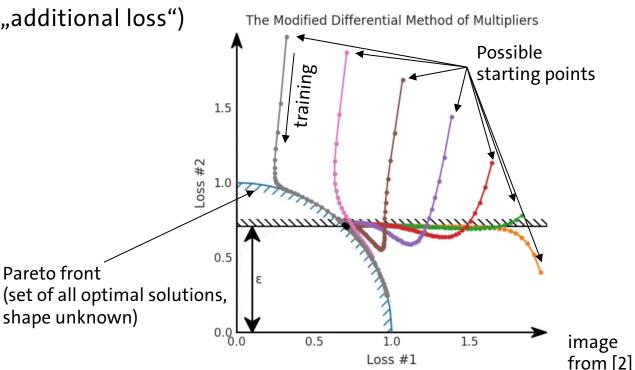
to obtain a two-sample test ^[12] of the null hypothesis that both samples stem from the same distribution (i.e. P = Q) against the broad alternative $P \neq Q$.

- Gaussian kernel: $k(x, x') = \exp\left(-\frac{1}{2\sigma^2}||x x'||^2\right)$
- Plot: MMD of different FastSim/FullSim jet batches with varying size (jets defined by p_T, η, DeepCSV)
 - > **Batchsize** must be large enough to get a good estimate



REFINING (REGRESSION) – MDMM ALGORITHM

- Simple approach: add with constant weights
- Better: Modified Differential Method of Multipliers algorithm: [1] <u>original paper</u>, [2] <u>explanatory blog post</u> reframe problem as constrained optimization using a Lagrangian: $\mathcal{L} = f(\theta) - \lambda * (\varepsilon - g(\theta))$
 - > Minimize $f(\theta)$ ("primary loss") subject to $g(\theta) = \varepsilon$ ("additional loss")
 - Convergence mathematically formalized, steady states are saddle points
 - > Lagrange multiplier λ is adapted in the training along with NN parameters θ
 - *f*(θ) and *g*(θ) depend on each other
 → both can't be arbitrarily small at the same time
 → have to choose ε (point along Pareto front)



REWEIGHTING (DCTR)

- DCTR approach (Deep neural networks using Classification) for Tuning and Reweighting, <u>arXiv:1907.08209</u>)
 - Train calibrated NN classifier f(x) to distinguish FastSim from FullSim

of Jets 0.3

Fraction 52.0

0.2

0.15

0.1

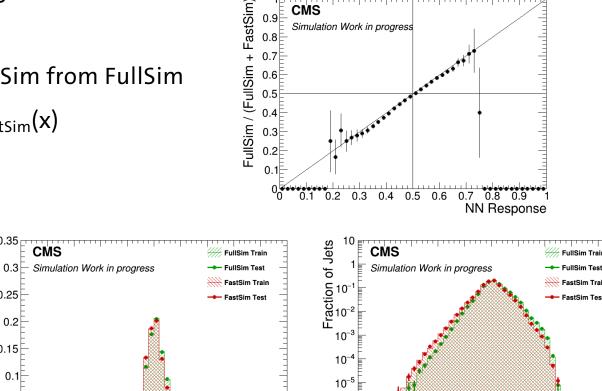
0.05

CMS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NN Response

- Define weight w(x) = f(x) / $(1 f(x)) \approx p_{FullSim}(x) / p_{FastSim}(x)$
- Reweight FastSim by w(x) 3.
- Input variables: 4 DeepJet discriminator values
- GEN parameters: p_T^{GEN}, η^{GEN}, true hadron flavor
- Simple fully-connected NN:
 - 3 hidden layers with 64 nodes
 - Binary cross entropy loss
- Training with 1M jet triplets



 10^{-6}

 10^{-7}

0

0.1 0.2 0.3 0.4 0.5 0.6

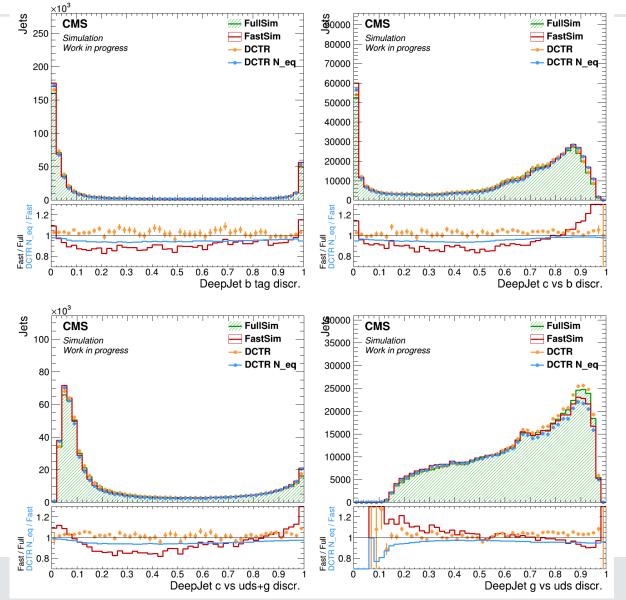
CMS

0.9E

0.7 0.8 0.9

NN Response

REWEIGHTING (DCTR)



- Good agreement after reweighting
- Weights limit statistical power of FastSim
 → How to quantify?
- For a sample with N jets with weights $\sum_{i=1}^{N} w_i$

• Error:
$$\delta Fast_{DCTR} = \sqrt{\sum_{i} w_i^2} = \sqrt{N * (RMS^2 + \overline{w}^2)}$$

with $RMS = \frac{1}{N} \sum_{i=1}^{N} (w_i - \overline{w})^2$

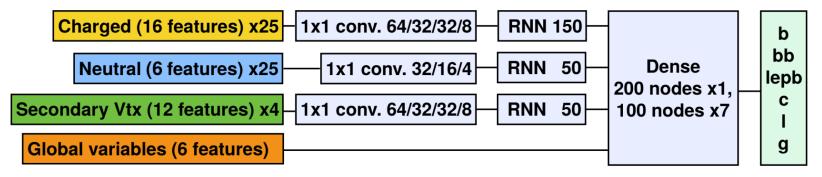
• Equivalent events: $N_{eq} = \frac{(\sum_i w_i)^2}{\sum_i w_i^2} = \frac{N}{1 + (\frac{RMS}{\overline{w}})^2}$

 $\rightarrow N_{eq}$ events with weight=1 would have same relative statistical fluctuation

➢ Loss of max. 5 − 10 %

DEEPJET

• DeepJet architecture: 6 output nodes with **softmax** activation function \rightarrow sum = 1 (<u>arXiv:2008.10519</u>)



- However, in NanoAOD: 4 (composite) discriminators:
 - btagDeepFlavB := b + bb + lepb
 - btagDeepFlavCvB := c / (c + b + bb + lepb)
 - btagDeepFlavCvL := c / (c + l + g)
 - btagDeepFlavQG := g / (g + l)

→ sum != 1