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§ Most high energy physics analyses rely on a large 
number of simulated proton-proton collisions (= “events”)

§ Higher LHC luminosity (= more events) & detector upgrades 
(= more complex data) à fast simulation techniques 
and R&D needed to stay within computing budget

§ In CMS, two simulation chains (FullSim/FastSim) are used 
that produce output of same dimensionality/structure

INTRODUCTION
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twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

GEN                     à
Event generation

SIM                      à
Detector simulation

DIGI                     à
Digitization

RECO
Reconstruction

FullSim
same e.g., 
MadGraph

GEANT4

same

analyze as if data

FastSim
≈ 15% of 
sim. events

parametrized 
energy loss
x100 faster

use GEN info
x2.5 faster

Ø FullSim: ≈ 100 s/event, FastSim: ≈ 10 s/event

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


§ FastSim advantage in speed comes at the price of decreased accuracy 
in some of the final analysis observables

Ø Aim: increase FastSim accuracy to promote its wider usage

§ Possible FastSim tuning approaches:

§ Internal tuning of functions/parameters (within SIM/RECO)
e.g., denoising showers using ML github.com/cms-denoising/SimDenoising

§ Post-hoc tuning (after NanoAOD)

▪ Reweighting = defining weights for individual events/jets/… 
e.g., DCTR introduced in arXiv:1907.08209

▪ Refining = changing (high-level) observables
e.g., Wasserstein-GAN for air showers in arXiv:1802.03325
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§ Focus on refinement of jet observables e.g.,

§ Magnitude and direction of momentum:
(px, py, pz) à (pT, η, 𝜑)

§ Jet (sub)structure e.g.,

▪ Flavour tagging, here: DeepJet algorithm (DNN, arXiv:2008.10519)

Ø 4 output nodes: b, c, uds, g (softmax activated)

Ø 4 discriminators in NanoAOD: b, c vs. b, c vs. uds+g („CvL“), uds vs. g („QG“)

§ Training sample: SUSY simplified model T1tttt
simulated with FastSim and FullSim 
(same GEN events, 0 PU)

Ø Match jets using ΔR angular criterion 

Ø Jet triplets: (GEN, FastSim, FullSim)

Refining fast simulation using machine learning – Moritz Wolf
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Employ regression neural network to refine FastSim:

§ Input: FastSim variables xFast =  4 DeepJet discriminators

Parameters y = pT
GEN, ηGEN, true hadron flavor (b, c, or light quark/gluon)

§ Output: Refined variables xRefined = 4 DeepJet discriminators 

§ Target: FullSim variables xFull = 4 DeepJet discriminators

REFINING (REGRESSION) – GENERAL IDEA
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§ ResNet-like skip connections à learn only residual corrections

§ Preprocessing: transform input variables/parameters 
(logit-transform in order to center around 0, transform to original 

DeepJet output values, one-hot-encode true hadron flavour)

§ Postprocessing: DeepJet softmax constraint + backtransf.

REFINING (REGRESSION) – NN ARCHITECTURE
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ResNet paper arXiv:1512.03385

https://arxiv.org/abs/1512.03385


§ MSE: output-target pair-based

Ø Correct for deterministic FastSim biases
use MSE/MAE combination („Huber loss“), less sensitive to outliers

§ MMD: distribution-based (primary loss)

Ø Correct for stochastic FastSim biases

REFINING (REGRESSION) – LOSS TERMS
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MAE: mean absolute error (jet-jet pairs)
MSE: mean squared error (jet-jet pairs)
MMD: maximum mean discrepancy (ensembles)

given two samples from P(X) and Q(Y):

n = m = batch size = 4096, 
k: Gaussian kernel (adaptive σ)

NB: include parameters 
in MMD to take account 
of correlations



REFINING (REGRESSION) – LOSS TERMS
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[1] explanatory blog post, [2] original paper

Combine loss terms via MDMM algorithm:

§ Reframe problem as constrained optimization using Lagrangian:
ℒ = 𝑓 𝜃 − 𝜆 ∗ 𝜀 − 𝑔 𝜃 à convergence mathematically formalized

§ Minimize 𝑓(𝜃) (primary loss, „Loss #1“) subject to 𝑔 𝜃 = 𝜀 (additional loss, „Loss #2“)

§ Gradient descent for NN parameters 𝜃, gradient ascent for Lagrange multiplier 𝜆

https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/
https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
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§ Pareto plot: training history in plane of the two loss terms

§ Primary loss: MMD(Refined, FullSim) (horizontal axis)
normalized to MMD(FastSim, FullSim)

§ Constraint: Huber(Refined, FullSim) (vertical axis)

§ Trained for 100 epochs with 500 batches

§ Simple addition not optimal

§ MDMM: scan of different ε values

Ø If ε is too small it can only be reached by 
disregarding MMD

Ø If ε is too large MMD also gets worse because 
jet-jet pairs have to change too much

Ø Choose ε = 0.083
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§ Pareto plot: training history in plane of the two loss terms

§ Primary loss: MMD(Refined, FullSim) (horizontal axis)
normalized to MMD(FastSim, FullSim)

§ Constraint: Huber(Refined, FullSim) (vertical axis)

§ Trained for 100 epochs with 500 batches

§ Simple addition not optimal

§ MDMM: scan of different ε values

Ø If ε is too small it can only be reached by 
disregarding MMD

Ø If ε is too large MMD also gets worse because 
jet-jet pairs have to change too much

Ø Choose ε = 0.083
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b tag binned by working point

loose
10% mis-tag

medium
1% mis-tag

tight
0.1% mis-tag



REFINING (REGRESSION) – LINEAR CORRELATION COEFFICIENTS
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difference 
to FullSim



§ Good performance for evaluation on TTbar
(NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) – VALIDATION IN TTBAR
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SUMMARY
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§ Fast simulation techniques needed to face computing challenges

§ High accuracy of simulation required for most physics analyses

§ Applying ML-based post-hoc refinement to CMS FastSim output (ResNet-like regression NN)

Ø Considerably improved agreement with FullSim output

Ø Improvement in correlations among output observables 
and external parameters

§ Integration into CMS software framework (CMSSW) in the works 
(via ONNX format)

§ Possible extension to other variables/physics objects 
(e.g., FatJet substructure)
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BACKUP
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REFINING (REGRESSION) – ONLY MMD
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REFINING (REGRESSION) – EPS=0.083
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REFINING (REGRESSION) – ONLY MMD
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REFINING (REGRESSION) – ONLY MMD
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CCC = concordance correlation coefficient
“measures the agreement between two variables”



Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.083

30

CCC = concordance correlation coefficient
“measures the agreement between two variables”



Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.085

31

CCC = concordance correlation coefficient
“measures the agreement between two variables”



Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.086
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CCC = concordance correlation coefficient
“measures the agreement between two variables”



REFINING (REGRESSION) – TRAINING SHAPSHOTS (EPS=0.084)
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§ Starting point

§ Normal space
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§ After epoch 100

§ Normal space
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§ Starting point

§ Transformed space
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§ After epoch 100

§ Transformed space



§ Good performance for evaluation on TTbar
(NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) – VALIDATION IN TTBAR (ONLY MMD)
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§ Good performance for evaluation on TTbar
(NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) – VALIDATION IN TTBAR (EPS=0.083)
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REFINING (REGRESSION) – VALIDATION IN TTBAR (EPS=0.083)
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REFINING (REGRESSION) – FATJETS (ONLY MMD)
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REFINING (REGRESSION) – FATJETS (ONLY MMD)
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REFINING (REGRESSION) – FATJETS (ONLY MMD)



§ Jet preselection dR(jet, closest jet) > 0.5 (for GEN, FastSim & FullSim jet individually)

§ NN architecture

§ LeakyReLU negative slope = 0.01

§ Dropout rate = 0.5

§ Loss terms

§ Huber delta = 0.1

§ MMD calculated individually for each class of hadron flavour: MMD = ∑! " #$%. '($). 𝑀𝑀𝐷!

§ MMD Gaussian kernel bandwidth adaptive: MMD = ∑* " { !"#"",
!"
#" ,*",-.*",-..*"}

𝑀𝑀𝐷* , 𝜎. = L2 dist.

§ Training

§ Learning rate = 1e-4 (exponential decay with 𝛾 = 0.96 each epoch)

§ Adamax optimizer

REFINING (REGRESSION) – NETWORK DETAILS
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§ Training on jetFastSim-jetFullSim pairs problematic (stochasticity in simulations)

à instead use measure that compares distributions

§ From Wikipedia:

§ Gaussian kernel:

§ Plot: MMD of different FastSim/FullSim jet batches with varying size (jets defined by pT, η, DeepCSV)

Ø Batchsize must be large enough to get a good estimate

REFINING (REGRESSION) – MMD
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REFINING (REGRESSION) – MDMM ALGORITHM
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image
from [2]

§ Simple approach: add with constant weights

§ Better: Modified Differential Method of Multipliers algorithm: [1] original paper, [2] explanatory blog post

reframe problem as constrained optimization using a Lagrangian: ℒ = 𝑓 𝜃 − 𝜆 ∗ 𝜀 − 𝑔 𝜃

Ø Minimize 𝑓(𝜃) („primary loss“) subject to 𝑔 𝜃 = 𝜀 („additional loss“)

Ø Convergence mathematically formalized, 
steady states are saddle points

Ø Lagrange multiplier 𝜆 is adapted in the training 
along with NN parameters 𝜃

Ø 𝑓(𝜃) and 𝑔 𝜃 depend on each other 
à both can‘t be arbitrarily small at the same time
à have to choose 𝜀 (point along Pareto front)
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§ DCTR approach (Deep neural networks using Classification 
for Tuning and Reweighting, arXiv:1907.08209)

1. Train calibrated NN classifier f(x) to distinguish FastSim from FullSim

2. Define weight w(x) = f(x) / (1 – f(x)) ≈ pFullSim(x) / pFastSim(x)

3. Reweight FastSim by w(x)

§ Input variables: 4 DeepJet discriminator values

§ GEN parameters: pT
GEN, ηGEN, true hadron flavor

§ Simple fully-connected NN: 

§ 3 hidden layers with 64 nodes

§ Binary cross entropy loss

§ Training with 1M jet triplets

REWEIGHTING (DCTR)
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§ Good agreement after reweighting

§ Weights limit statistical power of FastSim
à How to quantify?

§ For a sample with N jets with weights ∑!"#$ 𝑤!

§ Error: 𝛿𝐹𝑎𝑠𝑡0123 = ∑!𝑤!4 = 𝑁 ∗ (𝑅𝑀𝑆4 + H𝑤4)

with 𝑅𝑀𝑆 = -
5
∑!6-5 𝑤! − H𝑤 4

§ Equivalent events: 𝑁78 =
∑$:$

%

∑$:$
% = 5

-; &'(
)*

%

à 𝑁78 events with weight=1 would have same 
relative statistical fluctuation

Ø Loss of max. 5 – 10 %

REWEIGHTING (DCTR)
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§ DeepJet architecture: 6 output nodes with softmax activation function à sum = 1 (arXiv:2008.10519)

§ However, in NanoAOD: 4 (composite) discriminators:

§ btagDeepFlavB := b + bb + lepb

§ btagDeepFlavCvB := c / (c + b + bb + lepb)

§ btagDeepFlavCvL := c / (c + l + g)

§ btagDeepFlavQG := g / (g + l)

à sum != 1

DEEPJET 
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