
REFINING FAST SIMULATION USING MACHINE LEARNING
S A M U E L B E I N 1 , P A T R I C K C O N N O R 1 , K E V I N P E D R O 2 , P E T E R S C H L E P E R 1 , M O R I T Z W O L F 1

1 U N I V E R S I T Ä T H A M B U R G , 2 F E R M I N A T I O N A L A C C E L E R A T O R L A B O R A T O R Y

N O V E M B E R 2 9 , 2 0 2 2
1 5 T H A N N U A L M E E T I N G O F T H E H E L M H O L T Z A L L I A N C E " P H Y S I C S A T T H E T E R A S C A L E "

§ Most high energy physics analyses rely on a large
number of simulated proton-proton collisions (= “events”)

§ Higher LHC luminosity (= more events) & detector upgrades
(= more complex data) à fast simulation techniques
and R&D needed to stay within computing budget

§ In CMS, two simulation chains (FullSim/FastSim) are used
that produce output of same dimensionality/structure

INTRODUCTION

Refining fast simulation using machine learning – Moritz Wolf 1

twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

GEN à
Event generation

SIM à
Detector simulation

DIGI à
Digitization

RECO
Reconstruction

FullSim
same e.g.,
MadGraph

GEANT4

same

analyze as if data

FastSim
≈ 15% of
sim. events

parametrized
energy loss
x100 faster

use GEN info
x2.5 faster

Ø FullSim: ≈ 100 s/event, FastSim: ≈ 10 s/event

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

§ FastSim advantage in speed comes at the price of decreased accuracy
in some of the final analysis observables

Ø Aim: increase FastSim accuracy to promote its wider usage

§ Possible FastSim tuning approaches:

§ Internal tuning of functions/parameters (within SIM/RECO)
e.g., denoising showers using ML github.com/cms-denoising/SimDenoising

§ Post-hoc tuning (after NanoAOD)

▪ Reweighting = defining weights for individual events/jets/…
e.g., DCTR introduced in arXiv:1907.08209

▪ Refining = changing (high-level) observables
e.g., Wasserstein-GAN for air showers in arXiv:1802.03325

INTRODUCTION

2

GEN à
Event
generation

SIM à
Detector
simulation

DIGI à
Digitization

RECO à
Reconstruction

AOD à
“Analysis
Object Data”

NanoAOD
further
processed
analysis format

Ac
cu

ra
cy

Speed

FullSim

FastSim

Refining fast simulation using machine learning – Moritz Wolf

twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

https://github.com/cms-denoising/SimDenoising
https://arxiv.org/abs/1907.08209
https://arxiv.org/abs/1802.03325
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

§ FastSim advantage in speed comes at the price of decreased accuracy
in some of the final analysis observables

Ø Aim: increase FastSim accuracy to promote its wider usage

§ Possible FastSim tuning approaches:

§ Internal tuning of functions/parameters (within SIM/RECO)
e.g., denoising showers using ML github.com/cms-denoising/SimDenoising

§ Post-hoc tuning (after NanoAOD)

▪ Reweighting = defining weights for individual events/jets/…
e.g., DCTR introduced in arXiv:1907.08209

▪ Refining = changing (high-level) observables
e.g., Wasserstein-GAN for air showers in arXiv:1802.03325

INTRODUCTION

3

GEN à
Event
generation

SIM à
Detector
simulation

DIGI à
Digitization

RECO à
Reconstruction

AOD à
“Analysis
Object Data”

NanoAOD
further
processed
analysis format

Ac
cu

ra
cy

Speed

FullSim

FastSim

Refining fast simulation using machine learning – Moritz Wolf

twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

https://github.com/cms-denoising/SimDenoising
https://arxiv.org/abs/1907.08209
https://arxiv.org/abs/1802.03325
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

INTRODUCTION

4

§ Focus on refinement of jet observables e.g.,

§ Magnitude and direction of momentum:
(px, py, pz) à (pT, η, 𝜑)

§ Jet (sub)structure e.g.,

▪ Flavour tagging, here: DeepJet algorithm (DNN, arXiv:2008.10519)

Ø 4 output nodes: b, c, uds, g (softmax activated)

Ø 4 discriminators in NanoAOD: b, c vs. b, c vs. uds+g („CvL“), uds vs. g („QG“)

§ Training sample: SUSY simplified model T1tttt
simulated with FastSim and FullSim
(same GEN events, 0 PU)

Ø Match jets using ΔR angular criterion

Ø Jet triplets: (GEN, FastSim, FullSim)

Refining fast simulation using machine learning – Moritz Wolf

GEN

SIM,DIGI,RECO,(Nano)AOD

SIM,DIGI,RECO,(Nano)AOD

https://arxiv.org/abs/2008.10519

INTRODUCTION

5

§ Focus on refinement of jet observables e.g.,

§ Magnitude and direction of momentum:
(px, py, pz) à (pT, η, 𝜑)

§ Jet (sub)structure e.g.,

▪ Flavour tagging, here: DeepJet algorithm (DNN, arXiv:2008.10519)

Ø 4 output nodes: b, c, uds, g (softmax activated)

Ø 4 discriminators in NanoAOD: b, c vs. b, c vs. uds+g („CvL“), uds vs. g („QG“)

§ Training sample: SUSY simplified model T1tttt
simulated with FastSim and FullSim
(same GEN events, 0 PU)

Ø Match jets using ΔR angular criterion

Ø Jet triplets: (GEN, FastSim, FullSim)

Refining fast simulation using machine learning – Moritz Wolf

GEN

SIM,DIGI,RECO,(Nano)AOD

SIM,DIGI,RECO,(Nano)AOD

https://arxiv.org/abs/2008.10519

Employ regression neural network to refine FastSim:

§ Input: FastSim variables xFast = 4 DeepJet discriminators

Parameters y = pT
GEN, ηGEN, true hadron flavor (b, c, or light quark/gluon)

§ Output: Refined variables xRefined = 4 DeepJet discriminators

§ Target: FullSim variables xFull = 4 DeepJet discriminators

REFINING (REGRESSION) – GENERAL IDEA

Refining fast simulation using machine learning – Moritz Wolf 6

§ ResNet-like skip connections à learn only residual corrections

§ Preprocessing: transform input variables/parameters
(logit-transform in order to center around 0, transform to original

DeepJet output values, one-hot-encode true hadron flavour)

§ Postprocessing: DeepJet softmax constraint + backtransf.

REFINING (REGRESSION) – NN ARCHITECTURE

Refining fast simulation using machine learning – Moritz Wolf 7

ResNet paper arXiv:1512.03385

https://arxiv.org/abs/1512.03385

§ MSE: output-target pair-based

Ø Correct for deterministic FastSim biases
use MSE/MAE combination („Huber loss“), less sensitive to outliers

§ MMD: distribution-based (primary loss)

Ø Correct for stochastic FastSim biases

REFINING (REGRESSION) – LOSS TERMS

Refining fast simulation using machine learning – Moritz Wolf 8

MAE: mean absolute error (jet-jet pairs)
MSE: mean squared error (jet-jet pairs)
MMD: maximum mean discrepancy (ensembles)

given two samples from P(X) and Q(Y):

n = m = batch size = 4096,
k: Gaussian kernel (adaptive σ)

NB: include parameters
in MMD to take account
of correlations

REFINING (REGRESSION) – LOSS TERMS

Refining fast simulation using machine learning – Moritz Wolf 9

Pareto front
(set of all optimal
solutions, shape
unknown)

Possible
starting
pointstr

ai
ni

ng

fr
om

 [1
]

[1] explanatory blog post, [2] original paper

Combine loss terms via MDMM algorithm:

§ Reframe problem as constrained optimization using Lagrangian:
ℒ = 𝑓 𝜃 − 𝜆 ∗ 𝜀 − 𝑔 𝜃 à convergence mathematically formalized

§ Minimize 𝑓(𝜃) (primary loss, „Loss #1“) subject to 𝑔 𝜃 = 𝜀 (additional loss, „Loss #2“)

§ Gradient descent for NN parameters 𝜃, gradient ascent for Lagrange multiplier 𝜆

https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/
https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf

REFINING (REGRESSION) – LOSS TERMS

10

starting
points

distributions close to FullSim

je
t-

je
t p

ai
rs

 c
lo

se
 to

 F
ul

lS
im

Refining fast simulation using machine learning – Moritz Wolf

§ Pareto plot: training history in plane of the two loss terms

§ Primary loss: MMD(Refined, FullSim) (horizontal axis)
normalized to MMD(FastSim, FullSim)

§ Constraint: Huber(Refined, FullSim) (vertical axis)

§ Trained for 100 epochs with 500 batches

§ Simple addition not optimal

§ MDMM: scan of different ε values

Ø If ε is too small it can only be reached by
disregarding MMD

Ø If ε is too large MMD also gets worse because
jet-jet pairs have to change too much

Ø Choose ε = 0.083

REFINING (REGRESSION) – LOSS TERMS

11

distributions close to FullSim

je
t-

je
t p

ai
rs

 c
lo

se
 to

 F
ul

lS
im

Refining fast simulation using machine learning – Moritz Wolf

§ Pareto plot: training history in plane of the two loss terms

§ Primary loss: MMD(Refined, FullSim) (horizontal axis)
normalized to MMD(FastSim, FullSim)

§ Constraint: Huber(Refined, FullSim) (vertical axis)

§ Trained for 100 epochs with 500 batches

§ Simple addition not optimal

§ MDMM: scan of different ε values

Ø If ε is too small it can only be reached by
disregarding MMD

Ø If ε is too large MMD also gets worse because
jet-jet pairs have to change too much

Ø Choose ε = 0.083

REFINING (REGRESSION) – RESULTS

12

b tag binned by working point

loose
10% mis-tag

medium
1% mis-tag

tight
0.1% mis-tag

REFINING (REGRESSION) – LINEAR CORRELATION COEFFICIENTS

13Refining fast simulation using machine learning – Moritz Wolf

difference
to FullSim

§ Good performance for evaluation on TTbar
(NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) – VALIDATION IN TTBAR

14

SUMMARY

15

§ Fast simulation techniques needed to face computing challenges

§ High accuracy of simulation required for most physics analyses

§ Applying ML-based post-hoc refinement to CMS FastSim output (ResNet-like regression NN)

Ø Considerably improved agreement with FullSim output

Ø Improvement in correlations among output observables
and external parameters

§ Integration into CMS software framework (CMSSW) in the works
(via ONNX format)

§ Possible extension to other variables/physics objects
(e.g., FatJet substructure)

Refining fast simulation using machine learning – Moritz Wolf

BACKUP

16Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – ONLY MMD

Refining fast simulation using machine learning – Moritz Wolf 17

REFINING (REGRESSION) – EPS=0.083

Refining fast simulation using machine learning – Moritz Wolf 18

REFINING (REGRESSION) – EPS=0.085

Refining fast simulation using machine learning – Moritz Wolf 19

REFINING (REGRESSION) – EPS=0.086

Refining fast simulation using machine learning – Moritz Wolf 20

Refining fast simulation using machine learning – Moritz Wolf 21

REFINING (REGRESSION) – ONLY MMD

Refining fast simulation using machine learning – Moritz Wolf 22

REFINING (REGRESSION) – EPS=0.083

Refining fast simulation using machine learning – Moritz Wolf 23

REFINING (REGRESSION) – EPS=0.085

Refining fast simulation using machine learning – Moritz Wolf 24

REFINING (REGRESSION) – EPS=0.086

REFINING (REGRESSION) – ONLY MMD

25Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.083

26Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.085

27Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.086

28Refining fast simulation using machine learning – Moritz Wolf

Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – ONLY MMD

29

CCC = concordance correlation coefficient
“measures the agreement between two variables”

Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.083

30

CCC = concordance correlation coefficient
“measures the agreement between two variables”

Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.085

31

CCC = concordance correlation coefficient
“measures the agreement between two variables”

Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – EPS=0.086

32

CCC = concordance correlation coefficient
“measures the agreement between two variables”

REFINING (REGRESSION) – TRAINING SHAPSHOTS (EPS=0.084)

Refining fast simulation using machine learning – Moritz Wolf 33

§ Starting point

§ Normal space

REFINING (REGRESSION) – TRAINING SHAPSHOTS (EPS=0.084)

Refining fast simulation using machine learning – Moritz Wolf 34

§ After epoch 100

§ Normal space

REFINING (REGRESSION) – TRAINING SHAPSHOTS (EPS=0.084)

Refining fast simulation using machine learning – Moritz Wolf 35

§ Starting point

§ Transformed space

REFINING (REGRESSION) – TRAINING SHAPSHOTS (EPS=0.084)

Refining fast simulation using machine learning – Moritz Wolf 36

§ After epoch 100

§ Transformed space

§ Good performance for evaluation on TTbar
(NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) – VALIDATION IN TTBAR (ONLY MMD)

37

REFINING (REGRESSION) – VALIDATION IN TTBAR (ONLY MMD)

38Refining fast simulation using machine learning – Moritz Wolf

§ Good performance for evaluation on TTbar
(NN trained on T1tttt SUSY dataset)

REFINING (REGRESSION) – VALIDATION IN TTBAR (EPS=0.083)

39

REFINING (REGRESSION) – VALIDATION IN TTBAR (EPS=0.083)

40Refining fast simulation using machine learning – Moritz Wolf

Refining fast simulation using machine learning – Moritz Wolf 41

REFINING (REGRESSION) – FATJETS (ONLY MMD)

Refining fast simulation using machine learning – Moritz Wolf 42

REFINING (REGRESSION) – FATJETS (ONLY MMD)

43Refining fast simulation using machine learning – Moritz Wolf

REFINING (REGRESSION) – FATJETS (ONLY MMD)

§ Jet preselection dR(jet, closest jet) > 0.5 (for GEN, FastSim & FullSim jet individually)

§ NN architecture

§ LeakyReLU negative slope = 0.01

§ Dropout rate = 0.5

§ Loss terms

§ Huber delta = 0.1

§ MMD calculated individually for each class of hadron flavour: MMD = ∑! " #$%. '($). 𝑀𝑀𝐷!

§ MMD Gaussian kernel bandwidth adaptive: MMD = ∑* " { !"#"",
!"
#" ,*",-.*",-..*"}

𝑀𝑀𝐷* , 𝜎. = L2 dist.

§ Training

§ Learning rate = 1e-4 (exponential decay with 𝛾 = 0.96 each epoch)

§ Adamax optimizer

REFINING (REGRESSION) – NETWORK DETAILS

Refining fast simulation using machine learning – Moritz Wolf 44

§ Training on jetFastSim-jetFullSim pairs problematic (stochasticity in simulations)

à instead use measure that compares distributions

§ From Wikipedia:

§ Gaussian kernel:

§ Plot: MMD of different FastSim/FullSim jet batches with varying size (jets defined by pT, η, DeepCSV)

Ø Batchsize must be large enough to get a good estimate

REFINING (REGRESSION) – MMD

47

batchsize

M
M

D
(F

as
tS

im
, F

ul
lS

im
) same GEN jets,

different detector
simulation

Refining fast simulation using machine learning – Moritz Wolf

https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions

Pareto front
(set of all optimal solutions,
shape unknown)

Possible
starting points

tr
ai

ni
ng

REFINING (REGRESSION) – MDMM ALGORITHM

49

image
from [2]

§ Simple approach: add with constant weights

§ Better: Modified Differential Method of Multipliers algorithm: [1] original paper, [2] explanatory blog post

reframe problem as constrained optimization using a Lagrangian: ℒ = 𝑓 𝜃 − 𝜆 ∗ 𝜀 − 𝑔 𝜃

Ø Minimize 𝑓(𝜃) („primary loss“) subject to 𝑔 𝜃 = 𝜀 („additional loss“)

Ø Convergence mathematically formalized,
steady states are saddle points

Ø Lagrange multiplier 𝜆 is adapted in the training
along with NN parameters 𝜃

Ø 𝑓(𝜃) and 𝑔 𝜃 depend on each other
à both can‘t be arbitrarily small at the same time
à have to choose 𝜀 (point along Pareto front)

Refining fast simulation using machine learning – Moritz Wolf

https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/

§ DCTR approach (Deep neural networks using Classification
for Tuning and Reweighting, arXiv:1907.08209)

1. Train calibrated NN classifier f(x) to distinguish FastSim from FullSim

2. Define weight w(x) = f(x) / (1 – f(x)) ≈ pFullSim(x) / pFastSim(x)

3. Reweight FastSim by w(x)

§ Input variables: 4 DeepJet discriminator values

§ GEN parameters: pT
GEN, ηGEN, true hadron flavor

§ Simple fully-connected NN:

§ 3 hidden layers with 64 nodes

§ Binary cross entropy loss

§ Training with 1M jet triplets

REWEIGHTING (DCTR)

50Refining fast simulation using machine learning – Moritz Wolf

https://arxiv.org/abs/1907.08209

§ Good agreement after reweighting

§ Weights limit statistical power of FastSim
à How to quantify?

§ For a sample with N jets with weights ∑!"#$ 𝑤!

§ Error: 𝛿𝐹𝑎𝑠𝑡0123 = ∑!𝑤!4 = 𝑁 ∗ (𝑅𝑀𝑆4 + H𝑤4)

with 𝑅𝑀𝑆 = -
5
∑!6-5 𝑤! − H𝑤 4

§ Equivalent events: 𝑁78 =
∑$:$

%

∑$:$
% = 5

-; &'(
)*

%

à 𝑁78 events with weight=1 would have same
relative statistical fluctuation

Ø Loss of max. 5 – 10 %

REWEIGHTING (DCTR)

52

§ DeepJet architecture: 6 output nodes with softmax activation function à sum = 1 (arXiv:2008.10519)

§ However, in NanoAOD: 4 (composite) discriminators:

§ btagDeepFlavB := b + bb + lepb

§ btagDeepFlavCvB := c / (c + b + bb + lepb)

§ btagDeepFlavCvL := c / (c + l + g)

§ btagDeepFlavQG := g / (g + l)

à sum != 1

DEEPJET

57Refining fast simulation using machine learning – Moritz Wolf

https://arxiv.org/abs/2008.10519

