Increased CP sensitivity with a neural network constructed observable in an effective Higgs-gluon coupling

Henning Bahl, Elina Fuchs, Marco Menen

Physics at the Terascale

DESY Hamburg, 29.11.2022

Motivation: Baryogenesis

• Observed baryon asymmetry of the universe (BAU) found to be $Y_B^{obs} = (8.59 \pm 0.08) * 10^{-11}$ [Planck Collaboration, arXiv:1807.06209]

Sakharov conditions for baryogenesis:

[A. D. Sakharov (1967)]

- 1. Baryon number violation
- 2. Charge (C) and charge-parity (CP) violation
- 3. Deviation from thermal equilibrium
- \rightarrow BSM Higgs sectors can help fulfill conditions: 2HDM, MSSM etc.

[Basler et al., arXiv:2108.03580], [Athron et al., arXiv:1908.11847]

Challenge: Need enough CP violation \rightarrow important to find constraints

b

The Higgs characterisation model

- Higgs ϕ assumed to be mixed CP state
- Modifiers for Higgs couplings: c_i , \tilde{c}_i i: SM particles
- SM obtained for $c_i = 1$, $\tilde{c}_i = 0$
- Measurable: $g_i^2 = ac_i^2 + b\tilde{c}_i^2$, $\tan \alpha_i = \frac{\tilde{c}_i}{c_i}$
- New effective couplings: $\mathcal{L}_{HC} \supset -\frac{1}{4} \left(c_g G^a_{\mu\nu} G^{a,\mu\nu} + \tilde{c}_g G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) \phi$

Contains SM quark loops + potential heavy new particles

" κ –framework:" $c_i = \kappa_{H,i} \cos \alpha$ $\tilde{c}_i = \kappa_{A,i} \sin \alpha$

Why CP sensitivity is important

Sensitivity to CP violation has direct effect on the constraints

Example: Direct sensitivity to CP violation in $H \rightarrow \tau \tau$ decay [CMS Collaboration, arxiv:2110.04836] [ATLAS Collaboration, ATLAS-CONF-2022-032]

Measurement of angle between τ decay planes in Higgs rest frame

$$d\Gamma(H \to \tau^+ \tau^-) \sim 1 - \cos(\phi_{CP} - 2\alpha_{\tau})$$
[Berge et al., arXiv:1410.6362]

"CP-mixing angle"

Why CP sensitivity is important

Comparison of constraints in indirect vs direct measurement:

Building a CP-odd observable

$$\mathcal{L}_{HC} \supset -\frac{1}{4} \left(\mathbf{c}_{g} G^{a}_{\mu\nu} G^{a,\mu\nu} + \tilde{\mathbf{c}}_{g} G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) \phi$$

Size of coupling modifiers visible in gluon-fusion cross section:

$$\sigma_{ggF} \propto c_g^2 \left| \mathcal{M}_{ggF}^{CP-even} \right|^2 + \tilde{c}_g^2 \left| \mathcal{M}_{ggF}^{CP-odd} \right|^2 \quad \left\} \quad \text{CP-even} \\ + 2c_g \tilde{c}_g \Re \left[\mathcal{M}_{ggF}^{CP-even} \mathcal{M}_{ggF}^{CP-odd^*} \right] \quad \left\} \quad \text{CP-odd}$$

\rightarrow CP-odd contribution gives asymmetry in CP-sensitive observables

Building a CP-odd observable

- Simulate events for $gg \rightarrow Hjj$ (signal) and VBF, VH (background) with $H \rightarrow \gamma\gamma$ and detector simulation
- Effective $H\gamma\gamma$ coupling assumed to be SM-like
- Train classifier for signal-background separation

Building a CP-odd observable

- Interference events were generated separately
- Train classifier for CP-structure separation \bullet
- CP-odd observable: $O_{NN} = P_+ P_ \bullet$ **Probability for**

positive interference

Probability for negative interference

Idea from [Bhardwaj et al., arXiv:2112.05052] & [Clarke-Hall et al., arXiv:2202.05143]

CP sensitivity: distributions

gg → Hjj "Traditional" CP observable: [Englert et al., arXiv:1203.5788] 0.4 $\Delta \phi_{jj} = \phi_{j1} - \phi_{j2}; \eta_{j1} > \eta_{j2}$ 0.3 *dσ/dΔφ_{jj}* [rad/fb] Preliminary Asymmetry in cross section could be measurable 0.1 \rightarrow Constraints on CP violation 0.0 \rightarrow Not full kinematics -3 -2 -1 0 1 $\Delta \phi_{ii}$

2

CP-odd

CP-even

CP sensitivity: distributions

Input for neural network:

E, p_T , η and ϕ of reconstructed Higgs and two leading order jets \rightarrow Full kinematics

Additionally: m_{jj} , $\Delta \phi_{jj}$, $\Delta \eta_{jj}$ \rightarrow Not needed but make training faster

CP sensitivity: Limits

Limits from $\Delta \phi_{ii}$ Δ χ^2 SM $L = 139 \text{fb}^{-1}$ 1.0 BF Ellipse in c_g , \tilde{c}_g plane due 68% CL Preliminary 95% CL to different contributions 0.5 to σ_{ggF} \tilde{c}_{g} 0.0 Neither large values of \tilde{c}_{q} , -0.5 nor large $c_g \cdot \tilde{c}_g$ mixing disfavored -1.0-1.0-0.50.0 0.5 1.0 C_{g}

Note: Large \tilde{c}_{g} disfavored in VBF-like events: [arXiv:2104.12152]

10

- 8

- 6

4

- 2

- 0

CP sensitivity: Limits

Note: Large \tilde{c}_{g} disfavored in VBF-like events: [arXiv:2104.12152]

CP sensitivity: Limits

NN unable to differentiate c_g^2 and \tilde{c}_g^2 terms

- Most CP information in *qq* initial states
- Jets in gg and gq states from gluon radiation → washout of CP distribution
- Most qq events have same topology as
 VBF → discarded as background

 \Rightarrow Need analysis in ggF and VBF region

Backup slides

Full HC Lagrangian

$$\begin{split} \mathcal{L}_{J=0} &= -\sum_{f=t,b,\tau} \overline{\Psi}_{f} \big(c_{f} g_{Hff} + i \tilde{c}_{f} g_{Aff} \gamma_{5} \big) \Psi_{f} \phi \\ &+ \Big\{ c_{V} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \\ &- \frac{1}{4} [c_{\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + \tilde{c}_{\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu}] \\ &- \frac{1}{4} [c_{Z\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + \tilde{c}_{Z\gamma} g_{AZ\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu}] \\ &- \frac{1}{4} [c_{g} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \tilde{c}_{g} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu}] \\ &- \frac{1}{4} [c_{Z} Z_{\mu\nu} Z^{\mu\nu} + \tilde{c}_{Z} Z_{\mu\nu} \tilde{Z}^{\mu\nu}] \\ &- \frac{1}{2} \frac{1}{\Lambda} [c_{W} W_{\mu\nu}^{+} W^{-\mu\nu} + \tilde{c}_{W} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu}] - \cdots \} \phi \end{split}$$

CP violation is visible as a shift in the angle between the τ decay planes

[Berge et al., arXiv:1410.6362]

$$d\Gamma(H\to\tau^+\tau^-)\sim 1-\cos(\phi_{CP}-2\alpha_\tau)$$

Marco Menen, LUH / PTB Braunschweig

Cuts

Applied cuts

```
N_i \geq 2, N_{\gamma} \geq 2
110 \le m_{\gamma\gamma} \le 140 \,[\text{GeV}]
|\eta_{j}| \le 2.5, |\eta_{\gamma}| \le 2.5
p_{\tau}^{J} > 20 \text{GeV}
p_T^{\gamma 1}/m_{\gamma \gamma} > 0.35
p_T^{\gamma 2}/m_{\gamma \gamma} > 0.25
\Delta \eta_{ii} \leq 3.5
m_{ii} \leq 500 \text{GeV}
```

Usage

Construct CP variable & reconstruct Higgs Exclude non-Higgs background Simulate covered detector area Exclude very soft jets

Exclude photons from $q \overline{q}$ -background

Reduce VBF background in data

Kinematic variables – Higgs

Kinematic variables – Jet 1

Marco Menen, LUH / PTB Braunschweig

Kinematic variables – Jet 2

Marco Menen, LUH / PTB Braunschweig

Kinematic variables – Other

Marco Menen, LUH / PTB Braunschweig

NN learning parameters

28.11.2022

Initial state CP information

Marco Menen, LUH / PTB Braunschweig

Limits at HL-LHC

28.11.2022