15th Annual Workshop Physics at the Terascale

First measurement of the tt production cross section at 13.6 TeV

Laurids Jeppe on behalf of the CMS collaboration

29.11.2022 | CMS-PAS-TOP-22-012

Introduction

- Run 3 is ongoing!
 - \sim ~ 39 fb⁻¹ already delivered by LHC
 - \sim ~ 36 fb⁻¹ recorded by CMS
- New center-of-mass energy of 13.6 TeV
- σ_{tt} expected to rise to 921 pb (from 834 pb in Run 2)
- Early opportunity to...
 - Explore physics at the new energy frontier
 - Check CMS performance in Run 3!

- 1.20 fb⁻¹ +/- 6% of certified data
 - ◆ Collected from July 27th to August 3rd
 - Luminosity value: from emittance scans, crosschecked via Z boson counting

Analysis strategy

DESY.

- New technique designed for early data
 - ... but can also be adapted for future high-precision measurements

- Profile likelihood fit to constrain exp. uncertainties *in situ* where possible
 - Channel combination constrains lepton ID & b tag efficiencies
 - \rightarrow split into five channels: ee, $\mu\mu$, e μ , e+jets, μ +jets
 - Advantage for early data: no need to rely on some time-consuming general-purpose calibration

Lepton selection

- DESY.
- Overall offline scale factors (SF) depend on lepton kinematics, but these variables are not needed for a simple cross section measurement → efficiencies enter in acceptance only
- Synchronize selection cuts between dilepton, lepton+jets channels
- In this case, dependence on lepton kinematics integrates out, and offfline efficiencies ϵ_{μ} and ϵ_{e} factorize:

- * Channel combination distinguishes the effect of lepton ID efficiencies from σ_{tt}
- Lepton scale factors can be estimated in situ in the fit no need for general-purpose efficiency studies

Object selection

- * Leptons: $p_T > 35$ GeV, $|\eta| < 2.4$
 - tight cut-based ID, ported from Run 2 (70% signal efficiency)
- $\diamond~$ Jets: AK4 jets, $p_{T} > 30$ GeV, $|\eta| < 2.4$
 - b-tagging: DeepJet algorithm
- $\ \ \, m_{II}>20\ GeV$
- No use of MET, no kinematic reconstruction

dilepton

- 2 leptons
- opposite sign
- At least 1 jet

ee, µµ only:

- At least 1 b-jet
- cut Z window

lepton+jets

- 1 lepton
- At least 3 jets
- At least 1 b-jet

Corrections and backgrounds

Jet energy correction

- Lepton+jets channel: define hadronic W with two leading non-btagged jets
- Use dijet mass to check & correct jet p_⊤ agreement

Nonprompt / QCD background

- Data-driven method using lepton isolation
 & 1 jet sideband
- Relevant for lepton+jets

Control plots: dilepton

Post-fit lepton SF applied

Note: we are looking for slopes and major mismodelings

Control plots: dilepton

29.11.2022

Control plots: lepton+jets

Analysis binning

DESY.

- Channels defined by
 - lepton content
 - \rightarrow further separated by
 - b jet content
 - \rightarrow coarsely binned in
 - ♦ N_{jet}

29.11.2022

• Final binning shown (pre-fit)

Note: no lepton & b-jet SF applied, no lepton uncertainties

Statistical Methods

DESY

- Likelihood fit
 - Statistical fluctuations:
 - \rightarrow Poisson distribution
 - Normalization uncertainties:
 - \rightarrow log-normal distribution
 - Binned shape effects:
 - \rightarrow Template morphing
 - Lepton scale factors:
 - \rightarrow Floating parameters (flat pdf)

$$\mathcal{L} = \prod_{\text{bin}} \mathcal{L}_{\text{bin}} , \ \mathcal{L}_{\text{bin}} = \Gamma \Big[n_{\text{obs}}^{\text{bin}} \Big| \, r \, s^{\text{bin}}(\{\theta_i\}) + b^{\text{bin}}(\{\theta_i\}) \Big] \times \prod_i p_i(\theta_i)$$

 $\Gamma[n|\lambda] = \frac{\lambda^n e^{-\lambda}}{n!} \qquad \begin{array}{l} s = \text{signal} \\ b = \text{background} \\ \{\theta_i\} = \text{nuisances} \\ p_i(\theta_i) = \text{penalties} \end{array}$

Jet calibrations:

- Only preliminary calibrations available for 2022 data
- We use a coarse calibration based on hadronic W mass for the main fit
- Run 2 jet uncertainties + difference w.r.t preliminary calibrations added as an external uncertainty

Result

$\sigma_{t\bar{t}} = 887^{+43}_{-41}(stat + syst) \pm 53(lumi)pb$

Conclusion

- First look at top quark physics at the new energy frontier!
- Novel measurement technique using multiple channels to constrain efficiencies in situ
- Published: CMS-PAS-TOP-22-012
- Aim for paper soon!

$\sigma_{t\bar{t}} = 887^{+43}_{-41}(stat + syst) \pm 53(lumi)pb$

29.11.2022

Backup

29.11.2022

Corrections and backgrounds

Pileup

- Experimental reweighting approach to 3 pileup-related variables:
 - Number of good vertices
 - Tracker energy flux
 - Calorimeter energy flux

Drell-Yan normalization

- DY background depends on b-jet multiplicity
- Check against data-driven estimate from inside the Z window
- Correction consistent with unity

Trigger efficiency

- Tag & Probe for single lepton triggers
 - ◆ Tag: loose ID lepton (90% efficiency) passing trigger
 - Probe: tight ID lepton (70% efficiency), as in selection
 - \diamond Coarsely binned in p_{T} and $|\eta|$
- Trigger efficiencies \approx 95% for electrons and 90% for muons
- Scale factors are applied to the rest of the analysis

Non-prompt (NP) normalization

- QCD/non-prompt background modeled via ABCD method in lepton+jets channels
- Lepton isolation: invert iso requirement included in lepton ID to define sideband / control region (CR)
- Use 1-jet bin as orthogonal CR to apply ABCD method \rightarrow Derive fake rate in 1 jet CR, apply to shape from iso sideband
- Simplest model w/ constant fake rates for e and μ:

$$N_{NP}^{SR} = (N_{data}^{CR} - N_{MC}^{CR}) \times \frac{(N_{data}^{SR,1j} - N_{MC}^{SR,1j})}{(N_{data}^{CR,1j} - N_{MC}^{CR,1j})}$$

• But: signal contamination in CR!

29.11.2022

Non-prompt (NP) normalization

- Signal contamination might introduce circularity since cross section is unknown
- Use modified ABCD method to get around this:
 - Take only ratio f_{B/A} of signal in CR/SR from MC
 - Use yield in SR and ratio to eliminate signal CR yield
- Final formula:

$$N_{A}^{QCD} = \frac{N_{B}^{tot} - N_{B}^{MCbg} - f_{B/A}(N_{A}^{tot} - N_{A}^{MCbg})}{1 - f_{B/A}R_{fake}} R_{fake}$$

29.11.2022

Drell Yan normalization

DESY.

- Compare events with $m_{\ell\ell}$ inside/outside Z-peak sideband: $R_{in/out} = N_{in}/N_{out}$
- + Use weaker assumption than standard $R_{\mbox{\tiny in/out}}$

$$\frac{(R_{in/out}^{\geq 1b})_{data}}{(R_{in/out}^{\geq 1b})_{MC}} = \frac{(R_{in/out}^{0b})_{data}}{(R_{in/out}^{0b})_{MC}} \longrightarrow SF = \frac{(N_{out}^{\geq 1b})_{data}}{(N_{out}^{\geq 1b})_{MC}} = \frac{(N_{in}^{\geq 1b})_{data}}{(N_{in}^{\geq 1b})_{MC}} \frac{(R_{in/out}^{0b})_{MC}}{(R_{in/out}^{0b})_{data}}.$$

• Drell Yan data content:

$$N_{data} = N_{data}^{\ell\ell} - 0.5 N_{data}^{e\mu} k_{\ell\ell}, \quad \text{where} \ k_{ee} = \frac{1}{k_{\mu\mu}} = \sqrt{\frac{N_{data}^{ee}}{N_{data}^{\mu\mu}}}$$

29.11.2022

Uncertainties

Externalized:

lumi, Winter22 JES

Included in Likelihood fit:

hood fit:			implementation	treatment	tt	Single t	Drell Yan	diboson	W+jets
Dominant experimental		lepton ID	unconstrained	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		JES	shape	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		b tag SF	shape	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		light mistag SF	shape	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		Pileup	shape	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		Trigger SF	shape	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		PDF ($+\alpha_S$)	normalized shape	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Dominant theory		ME scale	normalized shape	uncorrelated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		PS scale	normalized shape	correlated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
		h₋damp	dedicated sample	signal only	\checkmark	_	_	_	_
		BG cross sec*	normalization	uncorrelated	\checkmark	15%	20%	30%	30%
			•						

*also 20% on NP background

b tag scale factors

- No b tag scale factors applied to nominal. Instead: estimate in situ
- b tag efficiency varies between data & MC as a function of jet kinematics
- However, our binning integrates over kinematics
 - Get template for flat b tag variation from first principles
 - The expected bin content follows a simple binomial distribution

$$\epsilon_b^{N_{\mathrm{b-tag}}} \left(1-\epsilon_b\right)^{N_{\mathrm{b-jet}}-N_{\mathrm{b-tag}}}$$

 $N_{\mbox{\tiny b-tag}} = number \mbox{ of } b \mbox{ tagged jets,}$

 N_{b-jet} = number of true b-jets in event acceptance region

• 10% uncertainty on efficiency: intentionally wide

b tag scale factors

• The distribution of N_{b-jet} is taken from MC to derive templates

- This method takes into account that in many cases, the "missing" b-jets in tt events are outside acceptance
- It also handles well samples which do not generally have 2 truth-level b jets

• Same "binomial" strategy applied for light jet mis-tagging