

LHC projections for the measurement of the Electroweak mixing angle running

Alessandro Vicini, Clara Lavinia Del Pio, <u>Federico Vazzoler</u>, Fulvio Piccinini, Katerina Lipka, Mauro Chiesa, Simone Amoroso

Physics at the Terascale - DESY Hamburg 29/11/2022

The Electroweak mixing angle

Forward-Backward NC DY events

Presence of vector and axial-vector couplings leads to **forward-backward asymmetry** of angular distribution of lepton pairs in DY events

Direct determination of $\sin^2\theta^f_{\rm eff}$ around the Z pole

Template fit procedure to measure $\sin^2 \theta_{eff}^f$

MC samples with different values of $\sin^2 \theta^f_{
m off}$

Measurements of A_{FB} around the Z pole at lepton (hadron) colliders \rightarrow relative precision on $\sin^2 \theta^f_{eff}$ of 0.1(0.2) %

Measurements at the LHC has already reached the same precision as the Tevatron \rightarrow expected big improvement in the nearly future:

- More statistics available (from Run 3 and HL-LHC)
- Improved analysis techniques and PDF constraining methods

Measured value = MC sample

which best fit the data

Ongoing work within the LHCEWWG to quantify uncertainties and theoretical issues in the extraction of $\sin^2 \theta_{eff}^f$ (see EW precision measurements subgroup)

arXiv:1902.05142v2

The EW mixing angle at high-masses

At lepton/hadron colliders $\sin^2 \theta_{\text{eff}}^f$ measured at the Z boson peak \rightarrow at **high-masses** can be used to **probe extra massive gauge bosons**:

- New resonances not visible to direct searches if they have large widths...
- ...but can interfere with SM EW bosons introducing structures in the measured A_{FB}

The CMS Collaboration has recently measured A_{FB} at high-masses \rightarrow extracted exclusion limits For a Z' in the sequential SM

To probe the **presence** of **new physics** outside the Z peak in a **model-independent way**

Need to **compare** the **experimental data** (at high-masses) with theoretical predictions which **include** the **energy dependence of the EW mixing angle**

The energy dependence of $\sin^2 \theta_W$

The EW mixing angle value is expected to show an **energy dependence** which can be **predicted** by the RGE for $\sin^2 \theta_W^{\overline{MS}}(\mu)$ in the \overline{MS} renormalisation scheme (arXiv:hep-ph/0409169v2)

Several measurements at low Q^2 (atomic parity violation) \rightarrow but **no experimental** results on the running of the EW mixing angle at **high energy**

Will it be possible to test the running of $\sin^2 \theta_W$ @ the LHC?

Implementation of $\sin^2 \theta_W^{\bar{MS}}(\mu)$ in POWHEG-BOX

The energy dependence of $\sin^2 \theta_W$ has recently been implemented into POWHEG-BOX <u>Z ew BMNNPV</u>:

- Use an EW input scheme where the EW mixing angle is explicit $(\alpha(\mu), m_Z, \sin^2 \theta_W(\mu))$
- Within this "hybrid" scheme the m_Z value is renormalised to its On-Shell value while the fine structure constant and the EW mixing angle are renormalised in the \overline{MS} scheme, i.e. depend on the energy scale μ
- Predictions used in this work are obtained at an "**improved LO**" with $\alpha(\mu)$ and $\sin^2 \theta_W(\mu)$ as running parameters \rightarrow the matrix element of the NC DY process is expressed as:

Analysis strategy

Extract the expected sensitivity on the running of the EW mixing angle at high energies up to the TeV scale $\rightarrow m_{ll}$ is used as the dynamic energy scale

The choice of EW parameters input scheme for theory predictions is fundamental \rightarrow scheme where $\sin^2\theta_W$ can be varied independently

Use one billion events calculated @ NLOQCD + improved LOEW with POWHEG-BOX, showered with PYTHIA8 to perform a template fit

- Extract the expected sensitivity to $\sin^2 \theta_W^{\bar{MS}}(m_{ll})$ in several mass bin
- Two LHC scenarios considered: Run 3 (300 fb^{-1}) and HL-LHC (3000 fb^{-1})

Analysis strategy

- 1. Pseudo-data generated using the EW parameters values at the Z peak as inputs
- 2. Templates obtained by shifting up/down the expected input value of the EW mixing angle by ± 0.01
- 3. The expected sensitivity $\delta \sin^2 \theta_W^{\overline{MS}}(m_{ll})$ extracted by fitting the pseudo-data using the xFitter fitting tool (arXiv:1410.4412)

Results @ $300 \, \text{fb}^{-1}$ (LHC Run 3)

Results @ $3000 \, \text{fb}^{-1}$ (HL-LHC)

Results @ $3000 \, \text{fb}^{-1}$ (HL-LHC)

Results

The **expected sensitivity @ HL-LHC** compared to the experimental determinations of $\sin^2 \theta_W^{MS}(\mu)$ at lower energies:

Results

The **expected sensitivity @ HL-LHC** compared to the experimental determinations of $\sin^2 \theta_W^{MS}(\mu)$ at lower energies:

Summary

First projections for the LHC measurement of $\sin^2 \theta_W$ at high masses!

Paved the road to **future measurements** of the EW mixing @ the LHC:

- The running of the EW mixing angle is implemented in a a public event generator code (POWHEG-BOX Z ew BMNNPV) \rightarrow allows for extraction of $\sin^2 \theta_W$ at high-energy scale
- This sensitivity study shows that the **HL-LHC** is expected to measure the **energy dependence** of $\sin^2 \theta_W$ with a **precision of few** % up to $\approx 3 \text{ TeV}$ (conservative estimate)

Future improvements:

- From a theoretical perspective predictions using full NLO EW calculations \rightarrow ongoing
- From the phenomenology point of view the impact and constraints of PDFs uncertainties
 →under investigation

Backup

Analysis strategy

Fitted $\frac{d\sigma}{d|yll|dm_{ll}}$ simultaneously for **forward** and **backward** events ~

 $116 < m_{ll} < 150$ $300' < m_{ll} < 50$ $150 < m_{ll} < 200$ $200 < m_{ll} < 300$ $500 < m_{ll} < 1500$ $1500 < m_{ll} < 5000$ Selection cuts intended to **reproduce** a $0.0 < y_{ll} < 2.5$ $0.0 < y_{ll} < 2.5$ realistic measurement scenario: 10^{-} $p_T^l > 40 \,(30) \,\,{\rm GeV}, \,\,|\eta^l| < 2.5$ 10^{-2} 10^{-3} Binning choice to **balance** between ^m_µ 10[−] sensitivity and expected number of events 10^{-2} 10^{-6} m_{ll} : [116, 150, 200, 300, 500, 1500, 5000] 10^{-7} 10^{-} y_{II} : [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.5] Forward Backward 10 15202530 $(|y_{ll}|, m_{ll})$ bin

Emulate detector efficiencies using the in RIVET:

- ATLAS Run2 ID/reco efficiencies and smearing for electrons (Eur. Phys. J. C 79 (2019) 639) and muons used (ATL-PHYS-PUB-2015-037)
- Selection efficiencies: $pprox 50\,\%$ flat as a function of m_{ll} for ee and $\mu\mu$ events

Measurement uncertainties

Measurement uncertainties

- **Expected PDF uncertainties using** ► aMCFast grids convoluted with the NNPDF31 nnlo as 0118 hessian PDF set:
 - **not showed** here but included in the fit
 - reduced in the fitting procedure

Scale uncertainties are not considered \rightarrow expected to be < 0.5 % at NNNLO QCD (JHEP03(2022)116)

$\frac{d\sigma}{d |y|l |dm_{ll}} \text{ for backward } \mu\mu \text{ events}$

$\frac{d\sigma}{d |y|l |dm_{ll}}$ for backward *ee* events

