Fast Calorimeter Simulation With Machine Learning Techniques

MU Days 2022, GSI

Sebastian Bieringer, Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, William Korcari, Katja Krüger, **Peter McKeown**¹, Lennart Rustige, Imahn Shekhzadeh

¹Deutsches Elektronen-Synchrotron 21.10.2022

peter.mckeown@desy.de

The Strain on HEP Computing Resources

- Ever **increasing demand** for computing resources
 - MC simulation largest fraction
 - Calorimeters most intensive part of detector simulation
- Projected computing resources required far outstrip what will be available
 - E.g HL-LHC
- Generative ML models potentially offer orders of magnitude speed up

WALL CLOCK CONSUMPTION PER WORKFLOW

D. Costanzo, J. Catmore, ATLAS Computing update, LHCC meeting , 2019

The Strain on HEP Computing Resources

- Ever **increasing demand** for computing resources
 - MC simulation largest fraction
 - Calorimeters most intensive part of detector simulation
- Projected computing resources required far outstrip what will be available
 - E.g HL-LHC
- Generative ML models potentially offer orders of magnitude speed up

CMS Collaboration, Offline and Computing Public Results (2021),

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineC omputingResults

Generative Models

- Approach to fast simulation- amplify statistics
- Aim: **augment** full physics-based **GEANT4** simulation by learning a **transfer function**
- Promising solution: generative models
 - Generate new samples following the distribution of original data
 - Map random noise to data
 - Highly parallelizable
 - Conditioning (E.g., E, θ, φ)

Butter et. al, GANplifying event samples, SciPost Phys. 10, 139 (2021)

Challenges for Generative ML Calorimeter Simulations

From Photons to Pions

- Hadronic showers significantly harder to learn than electromagnetic showers
 - **Complex** topologies
 - Large event-to-event fluctuations

Multi-Parameter Conditioning

- **Simultaneous conditioning** on multiple parameters crucial for a general simulation tool
 - Start with **photons**
 - Vary incident energy and angle

Latest Progress

Hadronic Calorimeter Showers

- Achieve significant speedups (CPU/GPU)
- Achieve high degree of fidelity

Hadrons, Better, Faster, Stronger, E. Buhmann, et al. MLST 3 025014 (2022)

Hardware	Simulator	Time / Show	ver $[ms]$	Speed-up
CPU	Geant4	$2684 \pm$	125	$\times 1$
	WGAN BIB-AE	$47.923 \pm 350.824 \pm$	$0.089 \\ 0.574$	$\times 56 \\ \times 8$
GPU	WGAN BIB-AE	$0.264 \pm 2.051 \pm$	$0.002 \\ 0.005$	×10167 ×1309

DESY. | MU Days 2022, GSI | Peter McKeown | 21.10.2022

Latest Progress

Angular Photon Showers

- Simultaneous **Energy and Angular conditioning** demonstrated with high physics performance
 - Publication in preparation

Summary

Achieved

- Generative models hold promise for **fast** simulation of calorimeter showers with **high fidelity**
- Demonstrated high fidelity simulation of **hadronic** showers with generative models
- Demonstrated high fidelity simulation of **photon** showers with **angular and energy conditioning**

Next Steps

- Strategies for dealing with **complex** and **irregular geometries**
- **Integration** into the existing tools (Geant4)
- Full benchmark of **physics performance** after **reconstruction**

Architectures: WGAN

WGAN

- Alternative to classical GAN training; Generator and Critic Networks
- Wasserstein-1 distance as loss with gradient penalty: improve stability
- Addition of auxiliary constrainer network for improved conditioning performance

Architectures: BIB-AE

Bounded-Information Bottleneck Autoencoder (BIB-AE)

- Unifies features of both GANs and VAEs
- Post-Processor network: Improve per-pixel energies; second training
- Multi-dimensional KDE sampling: better modeling of latent space

Voloshynovskiy et. al: Information bottleneck through variational glasses, <u>arXiv:1912.00830</u> (2019)

Buhmann et. al: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, <u>CSBS 5, 13</u> (2021)

Pion Showers: Sim Level Results

layer Z

Results: Visible Energy Sum

• Visible energy is nicely described for different incident angles and energies

DESY. | International Conference on High Energy Physics | Peter McKeown | 08.07.2022

Results: Angular Reconstruction Distributions

• Angular distributions agree well for given incident energies after reconstruction with a PCA

Results: Cell Energy Spectrum

• Post Processor Network retains its ability to correctly describe the cell energy distribution

Latest Progress

Hadronic Calorimeter Showers

• Achieve significant speedups (CPU/GPU)

Hadrons, Better,

Faster, Stronger,

[layers] 20 30

4 00

00 7

4 00

• Achieve high degree of fidelity

Hardware	Simulator	Time / Sł	nower [ms]	Speed-up
CPU	Geant4	2684	± 125	×1
	WGAN BIB-AE	47.923 350.824	$\pm 0.089 \\ \pm 0.574$	×56 ×8
GPU	WGAN BIB-AE	$0.264 \\ 2.051$	± 0.002 ± 0.005	×10167 ×1309

DESY. | MU Days 2022, GSI | Peter McKeown | 21.10.2022

Angular Photon Showers

• Simultaneous **Energy and Angular conditioning** demonstrated with high physics performance

Page 17