Quantum Computing meeting update 10.10.2022

Trackfitting

- Idea: If two tracks overlap, choose the one with the better chi2
- Goal: lose small percentages in efficiency but reduce fake rate considerably
- Plots shown (Data only for 1BX!!):
 - Measure for overlapping tracks: Shared number of hits per xi
 - Efficiency before and after chi2 filtering
 - Fake rate before and after chi2 filtering
 - Additional measure: duplication rate

Efficiency: ³/₄ hits have to come from same particle

Problem: Two or more 4-hit xplets can be true for the same particle \rightarrow increase the efficiency

Solution: count correctly reconstructed particles instead of correct hits (no multiple counting)

Fake rate is harder to define: If 100 are true, with 80 unique, & 30 false, is the fake rate then: 30/130 or 30/110?

Fake rate now (fake/all found) + duplication rate (20/80)

Generated tracks: N^{generated} $\frac{3}{4}$ definition: 2 tracks 4/4 definition: 1 track

simulation:

Efficiency

N.^{matched}

tracks

tracks

3 simulated particles:

- One leaves the detector after two hit (not "detectable" in 3/4 or 4/4 definition
- One leaves after 3 hits: detectable only with $\frac{3}{4}$ definition)
- One goes through all layers: detectable in all scenarios

Matching 4/4 definition example:

Found: one true, one false: efficiency 100%: 1 true matched/1 generated tracks

Matching 3/4 definition example:

Found: 3 true, 0 false tracks, **BUT** 2 true particle tracks (unique), 0 false tracks: efficiency 100%: 2 true matched/2 generated tracks

Fake rate =	N tracks N tracks
4/4 definition:	Trivial, fake rate= (N [tracks != 4 same particle hits])/ (all matched tracks)
3/4 definition:	Case1 (previous): fake rate= (N [tracks != 3 same particle hits]) (all matched tracks INCLUDING multiple true tracks) Case2 (as discussed in the meeting):
	fake rate= (N [tracks != 3 same particle hits]) (all matched tracks EXCLUDING multiple true tracks)

Before fitting: Efficiency ³/₄ unique vs. all (multiple counting)

Efficiency before fitting: 4/4 vs unique 3/4

Duplication rate for ³/₄ definition

Duplication rate= unique true/ all true

Unique: one particle can have only one true track

Before fitting: Fake rate - small increase in frate for case2

Case 1: including true duplicates

Case 2: excluding true duplicates

Fake rate: Chi2 filtering to reduce overlaps

Efficiency: Chi2 filtering to reduce overlaps

ξ