Generative Models for Fast Simulation of Electromagnetic and Hadronic Showers in Highly Granular Calorimeters

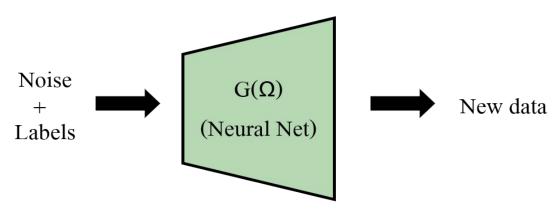
Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Daniel Hundhausen, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüger, **Peter McKeown**¹, Lennart Rustige

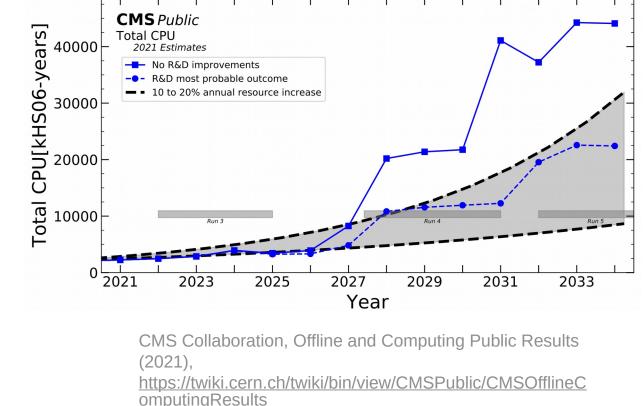
¹Deutsches Elektronen-Synchrotron 25.11.2022

peter.mckeown@desy.de

Reducing the Strain on HEP Computing Resources

- MC simulation (Geant4) is computationally expensive
 - **Calorimeters** most intensive part of detector simulation
- Major bottleneck e.g. **HL-LHC**
- Generative models potentially offer orders of magnitude speed up

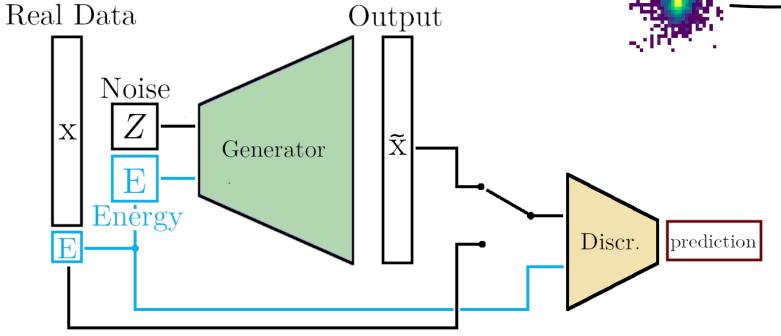




Common Generative Models

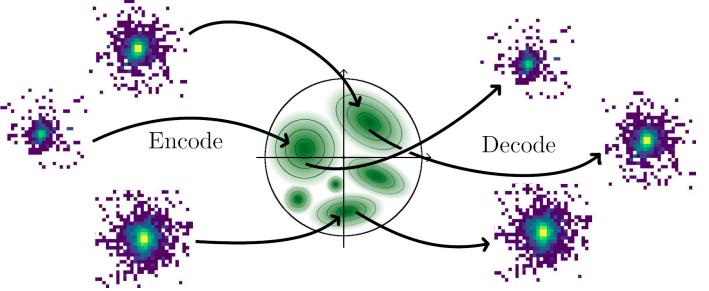
- **VAE**¹: Encoder-decoder structure
- **GAN**²: Adversarial feedback from discriminator

Generative Adversarial Network (GAN)



ial feedback from

Variational Autoencoder (VAE)



- Models studied:
 - Wasserstein GAN (WGAN)
 - Bounded Information Bottleneck
 Autoencoder (BIB-AE)

¹D.P. Kingma, M. Welling. Auto-encoding Variational Bayes (2014), <u>arXiv:1312.6114</u>

² Ian Goodfellow et. al., Generative Adversarial Nets (2014), <u>arXiv:1406.2661</u>

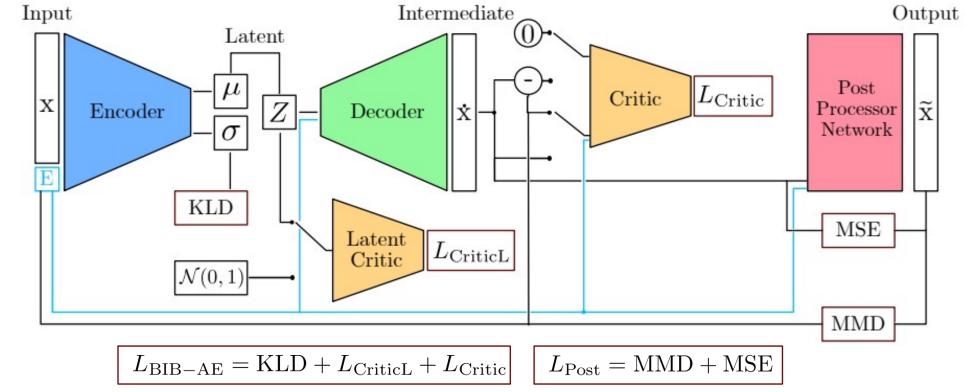
The BIB-AE

Bounded-Information Bottleneck Autoencoder

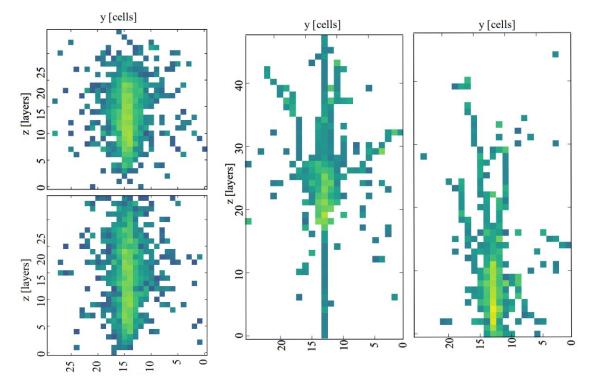
- Unifies features of both GANs and VAEs
- **Post-Processor** network: Improve per-pixel energies; second training
- Multi-dimensional KDE sampling: better modeling of latent space

Voloshynovskiy et. al: Information bottleneck through variational glasses, <u>arXiv:1912.00830</u> (2019)

Buhmann et. al: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, <u>CSBS 5, 13</u> (2021)

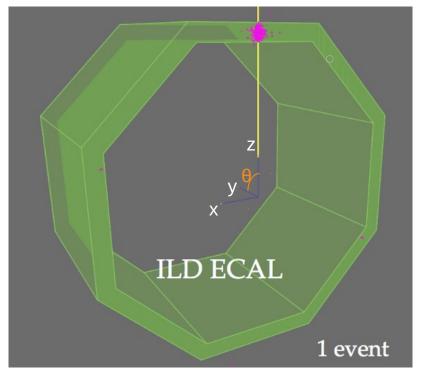


Challenges for Generative ML Calorimeter Simulations



From Photons to Pions

- **Hadronic** showers significantly harder to learn than electromagnetic showers
 - **Complex** topologies
 - Large event-to-event fluctuations



Multi-Parameter Conditioning

- **Simultaneous conditioning** on multiple parameters crucial for a general simulation tool
 - Start with **photons**
 - Vary incident energy and angle

Latest Progress

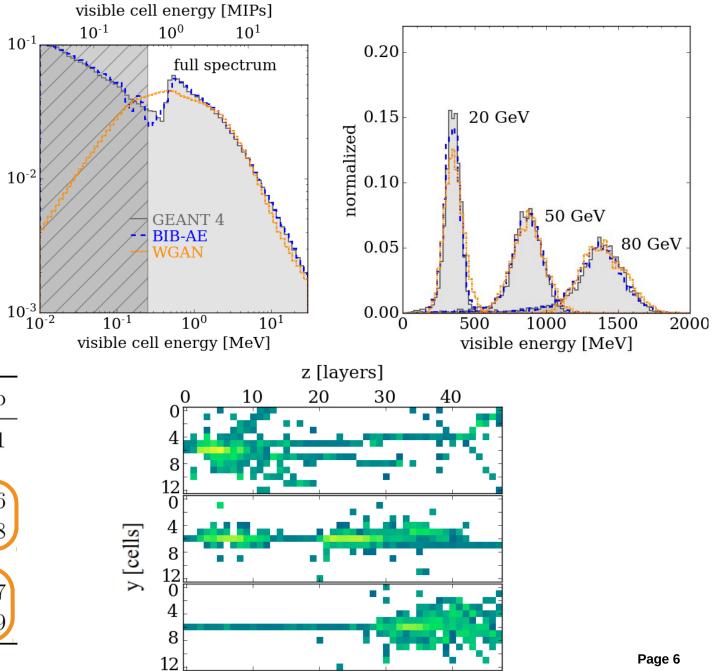
Hadronic Calorimeter Showers

- Achieve **significant speedups** (CPU/GPU) • normalized
- Achieve high degree of fidelity •

Hadrons, Better, Faster, Stronger, E. Buhmann, et al. MLST 3 025014 (2022)

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	×1
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	$\times 56 \times 8$
GPU	WGAN BIB-AE	0.264 ± 0.002 2.051 ± 0.005	×10167 ×1309

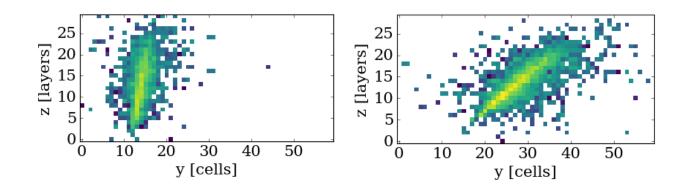
DESY. | 5th Round Table on Deep Learning at DESY | Peter McKeown | 25.11.2022

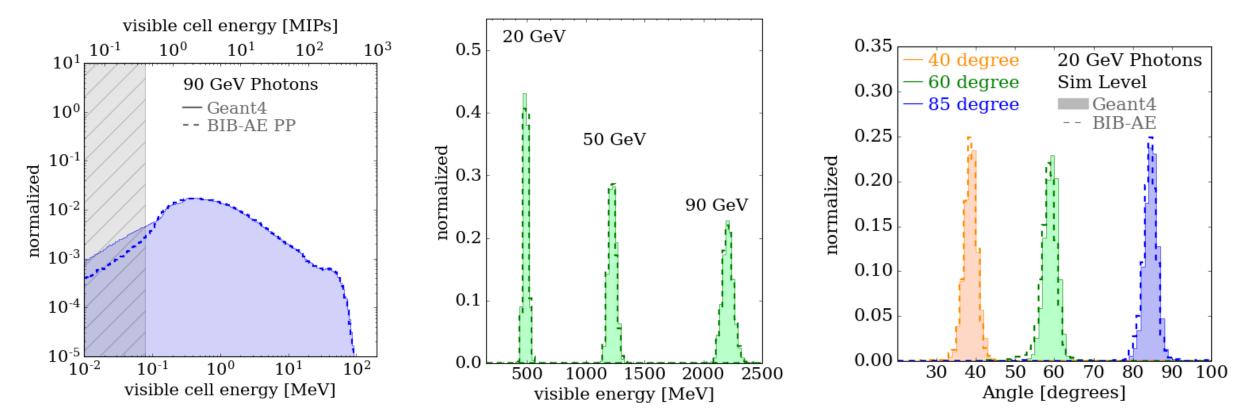


Latest Progress

Angular Photon Showers

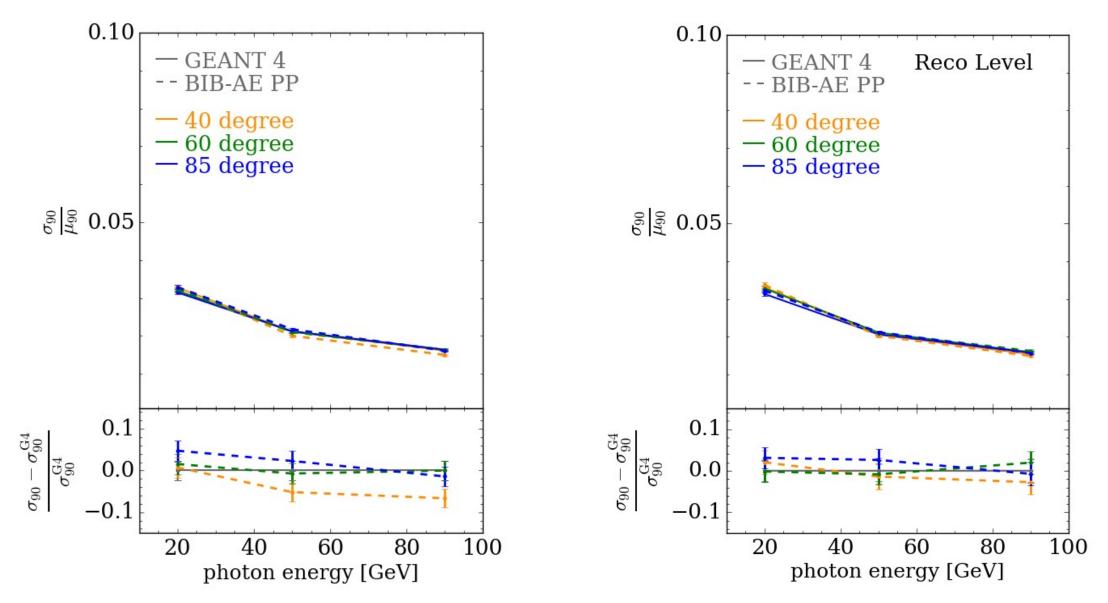
- Simultaneous **Energy and Angular conditioning** demonstrated while maintaining strong physics performance
 - Publication in preparation





DESY. | 5th Round Table on Deep Learning at DESY | Peter McKeown | 25.11.2022

Results: Energy resolution Sim vs Rec

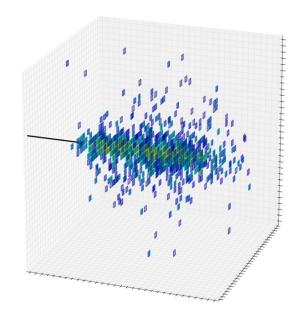


Achieved

- Generative models hold promise for fast simulation of showers in high granularity calorimeters with high fidelity
- Demonstrated high fidelity simulation of hadronic showers with generative models
- Demonstrated high fidelity simulation of photon showers with angular and energy conditioning

Next Steps

- Strategies for dealing with **complex** and **irregular geometries**
- **Integration** into the existing tools (Geant4)
- Full benchmark of **physics performance** after **reconstruction**

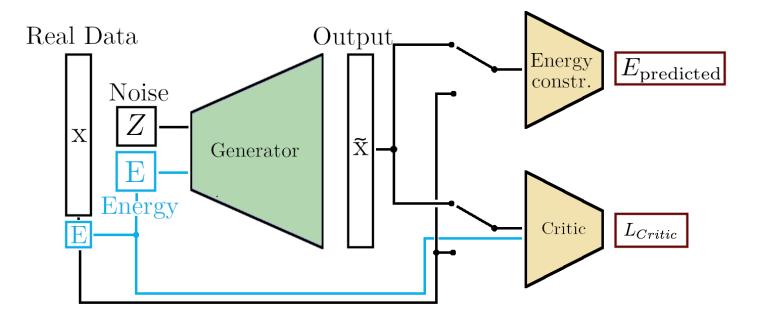




Architectures: WGAN

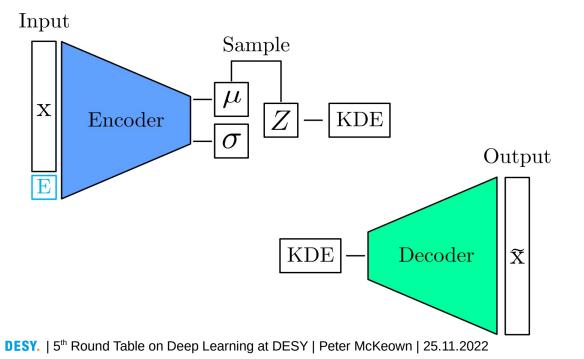
WGAN

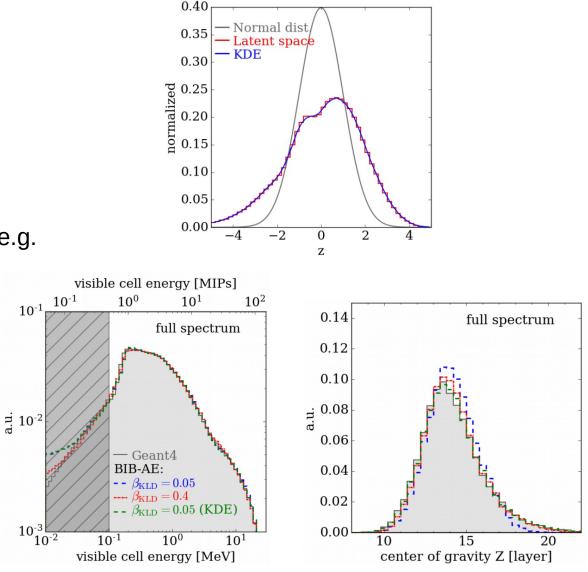
- Alternative to classical GAN training; Generator and Critic Networks
- Wasserstein-1 distance as loss with gradient penalty: improve stability
- Addition of auxiliary constrainer network for improved conditioning performance



Latent Space sampling

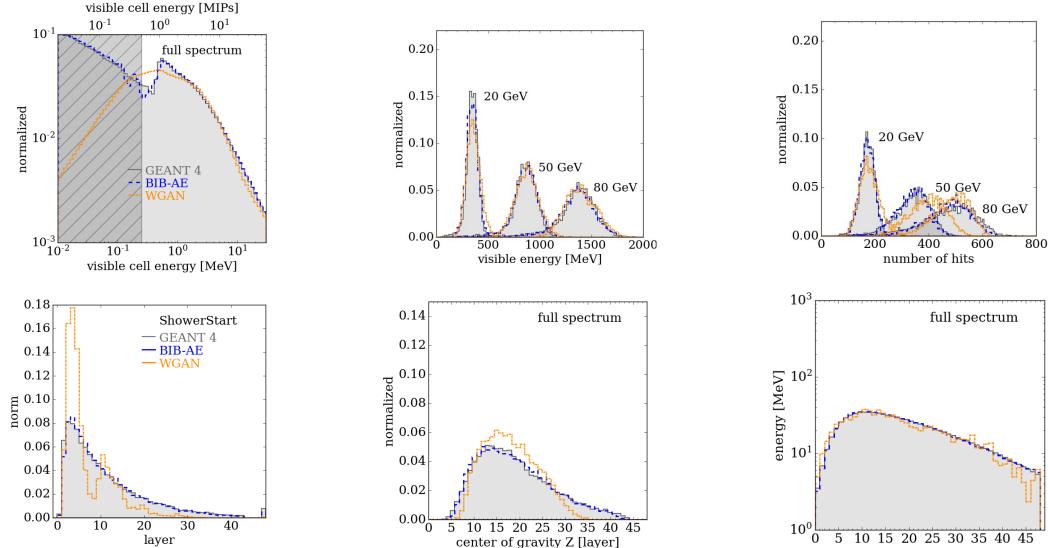
- **Relaxing regularisation** of latent space allows more information to be stored
 - Latent space deviates from a Normal distribution
- Employ density estimation to produce latent sample (e.g. KDE)
- Improve modeling of shower shape (center of gravity)





Buhmann et. al: Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network, EPJ Web of Conferences 251, 03003 (2021)

Pion Showers: Sim Level Results



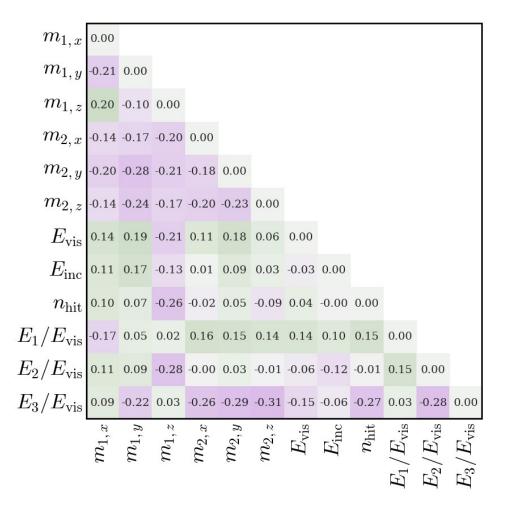
layer Z

Pion correlations

GEANT4 - BIB-AE

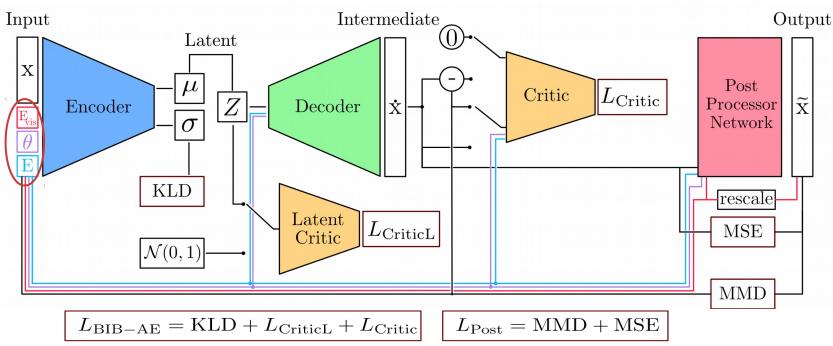
$m_{1,x}$	0.00											
$m_{1,y}$	-0.00	0.00										
$m_{1,z}$	-0.01	-0.04	0.00									
$m_{2,x}$	-0.08	-0.00	-0.06	0.00								
$m_{2,y}$	-0.10	-0.03	-0.05	0.01	0.00							
$m_{2,z}$	-0.06	0.01	-0.06	-0.08	-0.05	0.00						
$E_{\rm vis}$	0.03	-0.02	-0.01	0.09	0.09	0.06	0.00					
$E_{\rm inc}$	0.01	-0.03	-0.00	0.08	0.09	0.06	-0.01	0.00				
$n_{ m hit}$	0.03	-0.02	-0.02	0.13	0.14	0.06	0.00	-0.01	0.00			
$E_1/E_{\rm vis}$	0.00	0.03	0.00	0.04	0.04	0.04	0.01	0.00	0.02	0.00		
$E_2/E_{\rm vis}$	-0.01	-0.00	-0.03	0.02	-0.02	0.01	-0.02	-0.02	-0.01	0.02	0.00	
$E_3/E_{\rm vis}$	-0.01	-0.04	0.00	-0.07	-0.04	-0.07	0.00	0.01	-0.01	-0.00	-0.03	0.00
	$n_{1,x}$	$n_{1,y}$	$m_{1,z}$	$n_{2,x}$	$n_{2,y}$	$n_{2,z}$	$E_{ m vis}$	$E_{ m inc}$	$n_{ m hit}$	$E_{ m vis}$	$/E_{ m vis}$	$E_3/E_{ m vis}$
	ĩ	I	l	ĩ	I	l				$E_1/$	$E_2/$	$E_3/$

GEANT4 - WGAN

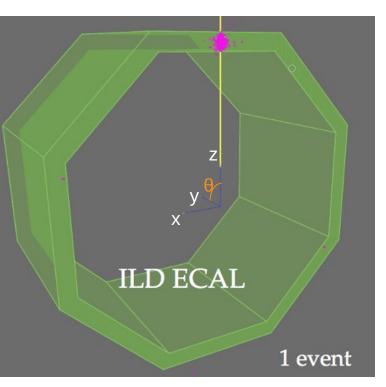


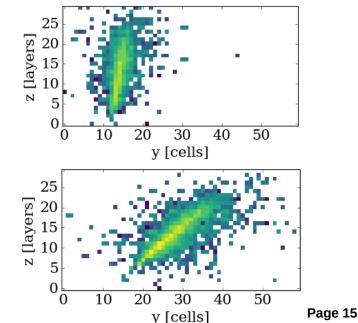
Angle and Energy Conditioning

- Multi-parameter conditioning essential to generalise simulation tool
- Normalising Flow for latent sampling- fast sampling with multiple conditioning parameters
- Flow generates latent variables + Esum given angle and energy
- Additional **energy sum** conditioning in Post Processor- rescale per shower energy to pin down energy sum

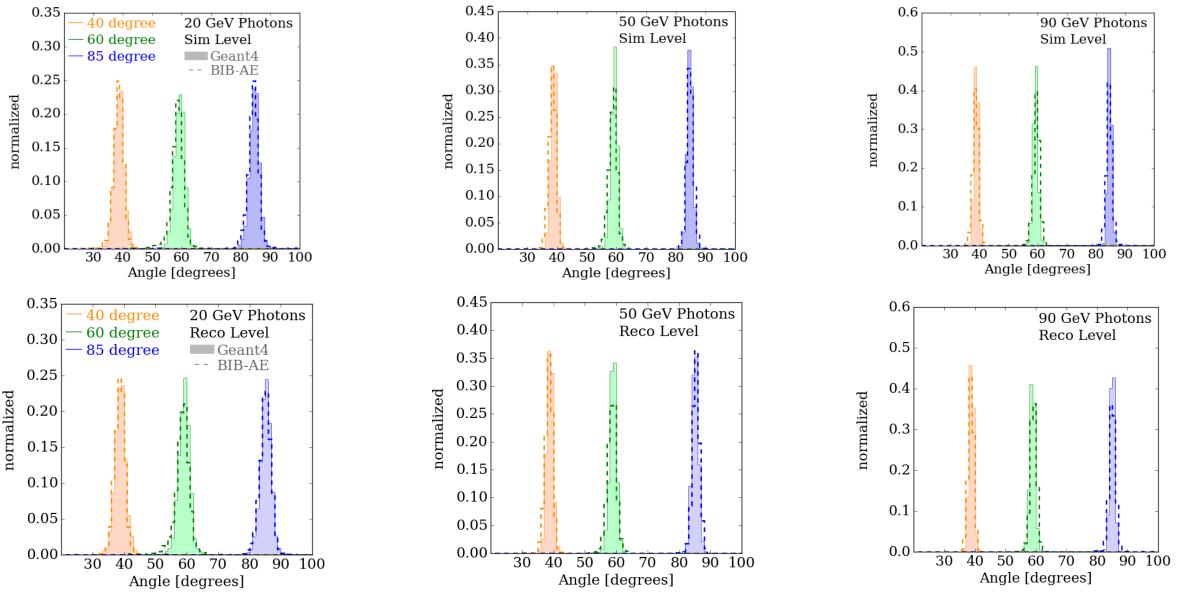


DESY. | 5th Round Table on Deep Learning at DESY | Peter McKeown | 25.11.2022



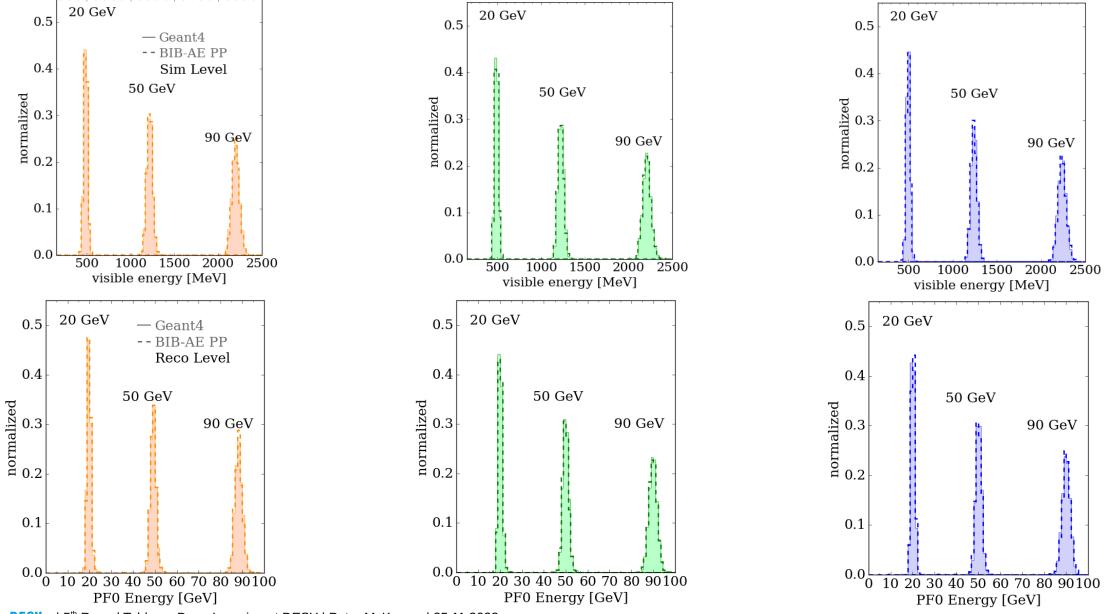


Results: Angular resolution- Sim vs Reco



DESY. | 5th Round Table on Deep Learning at DESY | Peter McKeown | 25.11.2022

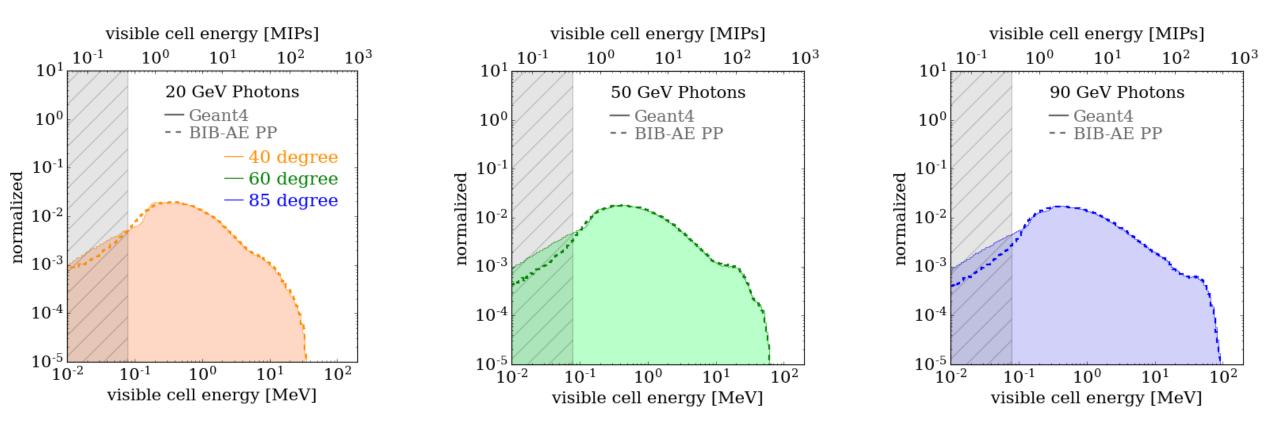
Results: Visible Energy Sum- Sim vs Reco



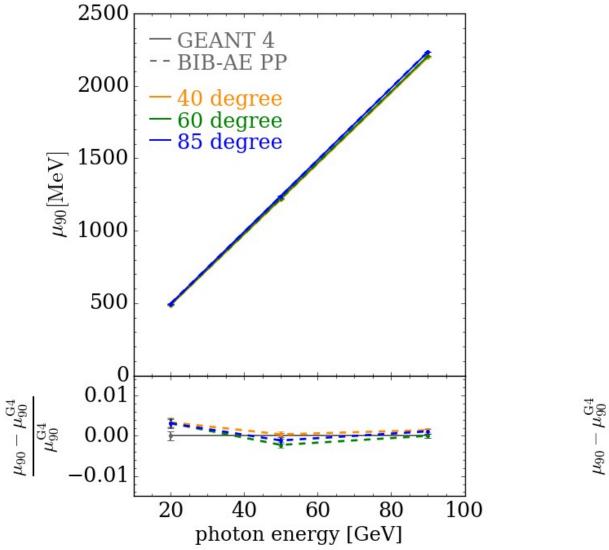
DESY. | 5th Round Table on Deep Learning at DESY | Peter McKeown | 25.11.2022

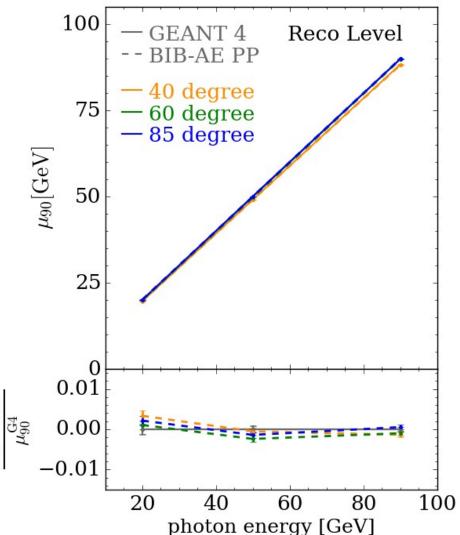
Results: Cell Energy Spectrum

• Post Processor Network retains its ability to correctly describe the cell energy distribution



Results: Energy linearity Sim vs Rec





Results: Energy resolution Sim vs Rec

