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Reducing the Strain on HEP Computing Resources

• MC simulation (Geant4) is computationally expensive

• Calorimeters most intensive part of detector simulation

• Major bottleneck e.g. HL-LHC

• Generative models potentially offer orders of 
magnitude speed up 
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CMS Collaboration, Offline and Computing Public Results 
(2021), 
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineC
omputingResults

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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Common Generative Models
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Variational Autoencoder (VAE)

Generative Adversarial Network (GAN)

•  Models studied:

• Wasserstein GAN (WGAN)

• Bounded Information Bottleneck 
Autoencoder (BIB-AE)

• VAE1: Encoder-decoder structure

• GAN2: Adversarial feedback from 
discriminator

1 D.P. Kingma, M. Welling. Auto-encoding 
Variational Bayes (2014), arXiv:1312.6114

2 Ian Goodfellow et. al., Generative Adversarial 
Nets (2014),  arXiv:1406.2661

https://arxiv.org/abs/1312.6114?source=post_page---------------------------
https://arxiv.org/abs/1406.2661
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The BIB-AE
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Bounded-Information Bottleneck Autoencoder 

● Unifies features of both GANs and VAEs

● Post-Processor network: Improve per-pixel energies; second training

● Multi-dimensional KDE sampling: better modeling of latent space

Voloshynovskiy et. al: Information 
bottleneck through variational glasses, 
arXiv:1912.00830 (2019)

Buhmann et. al: Getting High: High 
Fidelity Simulation of High Granularity 
Calorimeters with High Speed, 
CSBS 5, 13 (2021)

https://arxiv.org/abs/1912.00830
https://link.springer.com/article/10.1007/s41781-021-00056-0
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Challenges for Generative ML Calorimeter Simulations

From Photons to Pions
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Multi-Parameter Conditioning 
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• Hadronic showers significantly harder to learn 
than electromagnetic showers

• Complex topologies 

• Large event-to-event fluctuations

• Simultaneous conditioning on multiple 
parameters crucial for a general simulation tool

• Start with photons

• Vary incident energy and angle
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Latest Progress

• Achieve significant speedups (CPU/GPU)

• Achieve high degree of fidelity 

Hadronic Calorimeter Showers

Hadrons, Better, Faster, Stronger,
E. Buhmann, et al. 
MLST 3 025014 (2022)

https://iopscience.iop.org/article/10.1088/2632-2153/ac7848
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Latest Progress
Angular Photon Showers

• Simultaneous Energy and Angular conditioning 
demonstrated while maintaining strong physics 
performance

• Publication in preparation
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Results: Energy resolution Sim vs Rec
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Summary

Achieved

• Generative models hold promise for fast simulation of showers in 
high granularity calorimeters with high fidelity

• Demonstrated high fidelity simulation of hadronic showers with 
generative models

• Demonstrated high fidelity simulation of photon showers with 
angular and energy conditioning
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Next Steps

• Strategies for dealing with complex and irregular geometries

• Integration into the existing tools (Geant4)

• Full benchmark of physics performance after reconstruction
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Backup
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Architectures: WGAN
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WGAN

• Alternative to classical GAN training; Generator and Critic Networks

• Wasserstein-1 distance as loss with gradient penalty: improve stability

• Addition of auxiliary constrainer network for improved conditioning performance
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Latent Space sampling
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Buhmann et. al: Decoding Photons: Physics in the 
Latent Space of a BIB-AE Generative Network, 
EPJ Web of Conferences 251, 03003 (2021)

● Relaxing regularisation of latent space allows more 
information to be stored

– Latent space deviates from a Normal distribution

● Employ density estimation to produce latent sample (e.g. 
KDE)

● Improve modeling of shower shape (center of gravity)

https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03003/epjconf_chep2021_03003.html
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Pion Showers: Sim Level Results
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Pion correlations
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Angle and Energy Conditioning
• Multi-parameter conditioning essential to generalise simulation tool

• Normalising Flow for latent sampling- fast sampling with multiple 
conditioning parameters

• Flow generates latent variables + Esum given angle and energy

• Additional energy sum conditioning in Post Processor- rescale per 
shower energy to pin down energy sum

| 5th Round Table on Deep Learning at DESY | Peter McKeown | 25.11.2022
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Results: Angular resolution- Sim vs Reco
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Results: Visible Energy Sum- Sim vs Reco 
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Results: Cell Energy Spectrum
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● Post Processor Network retains its ability to correctly describe the cell energy distribution
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Results: Energy linearity Sim vs Rec
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Results: Energy resolution Sim vs Rec
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