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SEARCHING FOR THE NEEDLE IN THE LHC HAYSTACK e gt in CUS
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Artur Lobanov
ML @ L1 Trigger in CMS
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ML@L1T: JET AND EVENT CLASSIFICATION ey S THgger in QS

® Our group’s subjects of studies:
Jet identification based on jet constituents (in CT)
Event classification based on topology (in GT) ———

Q/Q9

t=lUJg—QqQqq

Inherently both are based on the object “topology”

@ Jet classification:

- PU vs light vs heavy-flavour jet etc.

® Event classification:

Go beyond simple correlations and learn kinematics
using Machine Learning (ML)

Separate signal(s) vs. background (“MinBias”)

® ML-approach effectiveness already proven “offline”




ML ToPoLOGY TRIGGERS M@ Tigrn o

e Traditional L1 triggers: 1-4 particles, filter on energy + kinematical correlations

Mostly general purpose, recently more signal-targeted (e.g. B->mumu)
@ ML approaches based on ~full event information = all detected “particles” (@L1)

Target inaccessible signal-phase: soft final states, unusual signatures etc.

@ Classifier: “supervised ML” @ Anomaly detection: “unsupervised ML”

Event classification: - Event classification:
signal vs background reject background-like events

Model-dependent - Model-Independent

High purity - Low purity

<1 |... ML-powered traditional trigger ... novel approach (impossible w/o ML)!
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ML ToPoLOGY TRIGGER VS STANDARD APPROACH e gt in CUS

@ Benchmark signal: HH > bbWW (semi-leptonic) -> soft decay products
@ NN should be complementary to “existing” L1 Trigger menu, e.g. single lepton triggers

- Train/evaluate NN trigger only on phase-space not covered by single lepton

- NN added efficiency: > 25% at 10kHz -> 60% total gain (wrt 30GeV single ele.)
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ANOMALY DETECTION @ L1T M@ Tigrn o

© New approach in triggering: detect anomalies with ML model taught on background only

encoder decoder
>  «

latent space

® Based on ML auto-encoders:
- Encoder compresses input, decoder reconstructs the input from the latent space
- Trained with mean squared error (MSE) loss of input and output

Good reconstruction performance for data similar to the training set

Bad reconstruction for data different to the training set
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o Validate autoencoder (AE) by checking reconstructed variable distributions
e Use “AE loss” as discriminating variable on trigger level

o Background will dominate: low trigger rate - low false positive rate (and signal eff)
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JET IDENTIFICATION 51 oo i
® Contributed to new study of Graph-based NNs for Jet  e—— | HLSl*lML (WIP__)
Tagging using synthetic dataset w/ HLS4ML team AN A :

GNNs profit from larger N of constituents

@ In CMS L1T: investigating Jet tagging in “CT” system 6_ / _

JetID could be used for “simple” jet triggers or - | |

as input to GT Topo Triggers o NS Work 1 rocres " bconstvens
Studied different jet ID problems for low-pT jets 0351 VBF H>inv
(untriggered) o.30-

Looking into NN Topo trigger for VBF H>Inv
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HARDWARE DEMONSTRATION

e 1T algorithms run on powerful FPGASs, e.g. Xilinx VU9P
Fast 1/0 (25Gb/s) for 1T data transfer

Large FPGA “memory” useful for storing complex
algorithms, e.g. Neural Network weights

@ While CMS host board “Serenity” in R&D, use commercial
“development kit” for demonstrator setup:

VCU118 kit hosts same FPGA as Serenity and provides
fast interfaces to PC (optics or PCle)

Using the setup to test & run algorithms in a realistic
FPGA environment
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ML@FPGA RESOURCES

e Collaborating on algorithm development and
hardware demonstration: i I
- HLS4ML team (M. Pierini et al) NN in cyan g - f .
z:j ceoac SejiZ;'r»iil'E_Ll':I_'E-%r:ie-z.-l ‘ ‘i | . | :1
~ CMS Global Trigger teams (H. Sakulin, M. Jeitler) | "z

@ FPGA implementation of NN with HLS4ML
In the CMS UT firmware architecture

@ Performance and resource usage promising!

- Latency ~50ns -> good for Run3 already!

-~ Resources: ~ few % for of FPGA

@ Targeting first tests of Topo and Anomaly
Triggers for LHC Run3 soon!
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https://fastmachinelearning.org/hls4ml/
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1yt Lobancy
SUMMARY

e ML enhances physics sensitivity throughout HEP experiments’ data flow

ML arrives in “online” (trigger) systems of e.g. the CMS experiment

® Performing proof-of-concept of ML algorithms for the CMS L1T in several areas:
Topology trigger: promising performance for various benchmark signals
Jet identification: benchmarks promising, exploring “realistic” CMS datasets
Anomaly Detection: advancing this novel approach in trigger systems

@ First hardware demonstrations achieved in HL-LHC system (w/ CERN teams)

@ Targeting first real implementation of Topo & Anomaly Triggers in Run3 already!

W/ O
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OUTLOOK: ML@FPGA + ASIC? M@ Tigrn o

e ML@FPGA also potential as co-processor -> larger ML models in HLT/Reconstr.
o ML@ASIC -> potential to revolutionise HEP experiment design? (cf. HGCAL ASIC)

] KHz
: High-Level Offline
. trigger reconstruction
Computing fime
High-level
100 ms ls analysis
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TEAM: ML @ L1-TRIGGER IN CMS

Project lead @ Artur Lobanov (postdoc)
Pls @ Johanes Haller, Gregor Kasieczka (Prof)
Higgs expert @ Matthias Schroeder (Staff)

Topo trigger @ Finn Labe (PhD), Ihor Komarov (MSc v),
Karla Kleinboelting (BSc v)

Jet identification @ Philipp Rincke (MSc), Karim El-Morabit (pd)
Anomaly detection @ Sven Bollweg (PhD), Lars Emmrich (BSc), KEM

N / O
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MULTIPLE SIGNALS WITH ONE NN?

DESY Al Roundtable 11.2022

Artur Lobanov
ML @ L1 Trigger in CMS

@ Can one use one NN topo trigger for processes with similar signatures?
- E.g. HH > bbWW (SM and BSM), ttbar (bWbW), HH > hadronic

@ NN trained on similar processes performs similar to NN trained on the signal itself

- Hints that NN largely learns background minbias [—> anomaly detection!]
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ML @ L1 Trigger in CMS

CORRELATOR AND GLOBAL TRIGGER DESY Al Roundiable 112022

@ Correlator Trigger (CT, new in L1T) e

:Track Trig

Using Particle Flow to reconstruct and identify
all particles using all sub-detectors

Outputs: e/y/mu/taus/jets and MissingET

Latency: ~3 ps (ID: <1 ps)

Hcal Barrel

© Global Trigger (GT)

Receives objects from all L1T systems

Computes correlations or other algorithms Correlator Trigger architecture

Latency: ~1 s
o Powerful FPGAs and increased latency enable the use of complex/expensive algorithms
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s.| - Bringing Machine Learning to the L1 Trigger!
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FPGAS: WORKHORSE OF THE CMS L1T e & g n
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HH FOR HL-LHC
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ML @ L1 Trigger in CMS
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. . Whad
e Two ML L1T algorithms already shown as PoC in L1T TDR for HL-LHC
© Our target signal: HH - one of the showcases for HL-LHC ---}}--( Wgep
e An indirect handle for the analysis sensitivity is the HH invariant mass: mun AN}

© Low mpuy likely results in softer objects -> trigger limited region (see kink Ky ~5)
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR-18-019/index.html
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TowARDS USAGE OF ML ToPOTRIGGERS

Artur Lobanov
ML @ L1 Trigger in CMS
DESY Al Roundtable 11.2022

e Estimating effect of NN topo trigger @ L1 on analysis

> 1.0
[Reusing existing Run-2 setup] s |
5 038
@ NN performance with Run-2 inputs similar to HL-LHC: 2 |
- Larger PU <> better trigger resolution | _
- Prospect of using ML TopoTrigger for Run3? ool e e
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PHASE2 GT INTEGRATION

Artur Lobanov
ML Topo Triggers @ LT
L1T Weekly 12.5.22

e Collaboration with P2GT team for integration of NN in demonstrator

@ Gabirele Bortolato implemented the NN algos
in the P2GT FW for Serenity (in EMP-FWK)

@ Resource/latency/performance as expected

© Agreement for (Q)Keras/HLS/FPGA
inference of NN trigger algorithm

- Towards emulation in CMSSW using HLS4ML?
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NN label | LUT | FF | DSP | latency|ns| | Latency|clk]
3 layers | 3484 | 1858 0 33.33 16
2 layers | 3059 | 2046 0 29.17 14
1 layer 3845 | 2887 13 295.00 12
4 nodes | 1444 | 1308 4 22.92 11
Table 4: 480MHz target clock, implementation numbers
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R 3 GT ML Topo ?rrit;gret:tgnm
U N D EM 0 11T Weekly 12.5.22

® First discussions with uGT team about demonstration in Run3 uGT test crate
- NN resource usage @40MHz: 1% of Virtex7 / Il =25 ns / latency = 50 ns - OK!

© Profiting from preparatory work for Anomaly Trigger (synergy!)

uGT firmware ready to integrate NN algorithm [Herbert Bergauer]

Next steps:

Train NN on Run3 samples
Integrate NN IP into uGT FW
Emulation in CMSSW?

Implement FW In test crate
TEST rates @P5

External conditions

N / O
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