ML ALGORITHMS @ FPGA IN THE CMS LEVEL-1 TRIGGER Sven Bollweg, Karim El-Morabit, Finn Labe, Johannes Haller, Gregor Kasieczka, Artur Lobanov, Lars Emmrich, Matthias Schroeder

Uni Hamburg, Institut für Experimentalphysik

DESY AI Roundtable | 25.11.2022

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

SEARCHING FOR THE NEEDLE IN THE LHC HAYSTACK

Probability decreasing

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

LHC collides protons every 25 ns (40MHz)

BACKGROUND"

A W/Z boson is produced every 10 milliseconds

A Higgs boson is produced every 100 seconds

"SIGNAL"

CMS LEVEL-1 TRIGGER

Processing data and reconstructing physics objects ~9us

Decision on event ~1us

3

Artur Lobanov | UH ML @ L1 Trigger in CMS | DESY AI Roundtable 11.2022 |

ML@L1T: JET AND EVENT CLASSIFICATION

- **Our group's subjects of studies:**
 - Jet identification based on jet constituents (in CT)
 - Event classification based on topology (in GT)
 - Inherently both are based on the object "topology"
- Jet classification:
 - PU vs light vs heavy-flavour jet etc.
- **Event classification:**
 - Go beyond simple correlations and learn kinematics using Machine Learning (ML)
 - Separate signal(s) vs. background ("MinBias")
- **ML-approach effectiveness already proven "offline"**

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

ML TOPOLOGY TRIGGERS

- Traditional L1 triggers: 1-4 particles, filter on energy + kinematical correlations Mostly general purpose, recently more signal-targeted (e.g. B->mumu)
- ML approaches based on ~full event information = all detected "particles" (@L1) \bigcirc
 - **Target inaccessible signal-phase**: soft final states, unusual signatures etc.
 - **Classifier:** "supervised ML"
 - Event classification: signal vs background
 - Model-dependent
 - High purity

... ML-powered traditional trigger

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

- **Anomaly detection:** *"unsupervised ML"*
 - Event classification: reject background-like events
 - Model-independent
 - Low purity

... novel approach (impossible w/o ML)!

ML TOPOLOGY TRIGGER VS STANDARD APPROACH

- Benchmark signal: HH > bbWW (semi-leptonic) -> soft decay products
- NN should be complementary to "existing" L1 Trigger menu, e.g. single lepton triggers
 - Train/evaluate NN trigger only on phase-space not covered by single lepton
 - NN added efficiency: > 25% at 10kHz -> 60% total gain (wrt 30GeV single ele.)

Lepton pT coverage by NN vs standard trigger

Single electron at 30 GeV = 30kHz

ANOMALY DETECTION @ L1T

New approach in triggering: detect anomalies with ML model taught on background only \bigcirc

Based on ML auto-encoders:

- Trained with mean squared error (MSE) loss of input and output
 - Good reconstruction performance for data similar to the training set •
 - **Bad reconstruction for data different to the training set**

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

Encoder compresses input, decoder reconstructs the input from the latent space

ANOMALY TRIGGER

- Validate autoencoder (AE) by checking reconstructed variable distributions
- Use "AE loss" as discriminating variable on trigger level
- Background will dominate: low trigger rate \rightarrow low false positive rate (and signal eff)

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

JET IDENTIFICATION

- Contributed to new study of Graph-based NNs for Jet **Tagging** using synthetic dataset w/ HLS4ML team
 - GNNs profit from larger N of constituents
- In CMS L1T: investigating Jet tagging in "CT" system
 - JetID could be used for "simple" jet triggers or as input to GT Topo Triggers
 - Studied different jet ID problems for low-pT jets (untriggered)
 - Looking into NN Topo trigger for VBF H>inv
 - Similar to HH approach: low-level feature NN
 - Gain acceptance wrt the L1 menu VBF seed!

Artur Lobanov ML @ L1 Trigger in CMS

HARDWARE DEMONSTRATION

L1T algorithms run on powerful FPGAs, e.g. Xilinx VU9P \bigcirc

- Fast I/O (25Gb/s) for L1T data transfer
- **Large FPGA "memory"** useful for storing complex algorithms, e.g. Neural Network weights
- While CMS host board "Serenity" in R&D, use commercial "development kit" for demonstrator setup:
 - VCU118 kit hosts same FPGA as Serenity and provides fast interfaces to PC (optics or PCIe)
 - Using the setup to **test & run algorithms in a realistic FPGA environment**

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

VCU108 setup @UHH

ML@FPGA RESOURCES

- Collaborating on algorithm development and hardware demonstration:
 - HLS4ML team (M. Pierini et al)
 - CMS Global Trigger teams (H. Sakulin, M. Jeitler)
- FPGA implementation of NN with <u>HLS4ML</u> \bigcirc in the CMS L1T firmware architecture
- **Performance and resource usage promising!**
 - **Latency ~50ns** -> good for Run3 already!
 - **Resources: ~ few %** for of FPGA
- Targeting first tests of Topo and Anomaly **Triggers for LHC Run3 soon!**

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

NN implementation in firmware

SUMMARY

- ML enhances physics sensitivity throughout HEP experiments' data flow ML arrives in "online" (trigger) systems of e.g. the CMS experiment
- Performing proof-of-concept of ML algorithms for the CMS L1T in several areas:
 - **Topology trigger:** promising performance for various benchmark signals
 - Jet identification: benchmarks promising, exploring "realistic" CMS datasets
 - Anomaly Detection: advancing this novel approach in trigger systems
- First hardware demonstrations achieved in HL-LHC system (w/ CERN teams)
- Targeting first real implementation of Topo & Anomaly Triggers in Run3 already! \bigcirc

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

OUTLOOK: ML@FPGA + ASIC?

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

TEAM: ML @ L1-TRIGGER IN CMS

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

- Project lead Artur Lobanov (postdoc)
 - PIs Johanes Haller, Gregor Kasieczka (Prof)
- Higgs expert Matthias Schroeder (Staff)
- Topo trigger Finn Labe (PhD), Ihor Komarov (MSc /), Karla Kleinboelting (BSc 🗸)
- Jet identification Philipp Rincke (MSc), Karim El-Morabit (pd)
- Anomaly detection Sven Bollweg (PhD), Lars Emmrich (BSc), KEM

MULTIPLE SIGNALS WITH ONE NN?

- Can one use one NN topo trigger for processes with similar signatures?
 - E.g. HH > bbWW (SM and BSM), ttbar (bWbW), HH > hadronic
- NN trained on similar processes performs similar to NN trained on the signal itself \bigcirc
 - Hints that NN largely learns background minbias [-> anomaly detection!]

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

CORRELATOR AND GLOBAL TRIGGER

- **Correlator Trigger** (CT, new in L1T)
 - Using **Particle Flow** to reconstruct and identify all particles using all sub-detectors
 - Outputs: e/y/mu/taus/jets and MissingET
 - Latency: ~3 µs (ID: <1 µs)
- Global/Trigger (GT) \bigcirc
 - rom all L1T systems R

charged hadrons

- ions or other algorithms
- Latency: ~1 µs
- Powerful FPGAs and increased latency e

Bringing Machine Learning to the L11

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

photon

		APx	
) 	FF	33%	
	LUT	45%	e
	BRAM	40%	
Γ	UltraRAM	25%	
	DSP	15%	
	Latency (µs)	0.7	

PF+Puppi Infrastructure Regionizer

to GT

18

ns

FPGAS: WORKHORSE OF THE CMS L1T

Artur Lobanov | U-H ML @ L1 Trigger in CMS | DESY AI Roundtable 11.2022

HH FOR HL-LHC

- Two ML L1T algorithms already shown as PoC in L1T TDR for HL-LHC
- Our target signal: HH one of the showcases for HL-LHC $_{W/Z}$
- An indirect handle for the analysis sensitivity is the HH invariant mass: MHH
- Low m_{HH} likely results in **softer objects -> trigger limited region** (see kink $\kappa_{\lambda} \sim 5$)

From HL-LHC Yellow Report <u>CMS-FTR-18-019</u>

TOWARDS USAGE OF ML TOPOTRIGGERS

- Estimating effect of NN topo trigger @ L1 on analysis [Reusing existing Run-2 setup]
- NN performance with Run-2 inputs similar to HL-LHC: \bigcirc
 - Larger PU <> better trigger resolution
 - **Prospect of using ML TopoTrigger for Run3?**

Artur Lobanov ML @ L1 Trigger in CMS DESY AI Roundtable 11.2022

- Next: evaluating L1 trigger efficiency using reco objects as "HLT" proxy
- **Clear added efficiency from replacing** L1 lepton seed with NN at HLT/reco

HARDW

UН

PHASE2 GT INTEGRATION

- Collaboration with P2GT team for integration of NN in demonstrator
- Gabirele Bortolato implemented the NN algos \bigcirc in the P2GT FW for Serenity (in EMP-FWK)
- Resource/latency/performance as expected
- **Agreement for (Q)Keras/HLS/FPGA** inference of NN trigger algorithm
 - Towards emulation in CMSSW using HLS4ML?

NN label	LUT	FF	DSP	latency[ns]	Latency
3 layers	3484	1858	0	33.33	16
2 layers	3059	2046	0	29.17	14
1 layer	3845	2887	13	25.00	12
4 nodes	1444	1308	4	22.92	11

Table 4: 480MHz target clock, implementation numbers

Artur Lobanov ML Topo Triggers @ L1T L1T Weekly 12.5.22

23

clk

RUN3 GT DEMO

First discussions with uGT team about demonstration in Run3 uGT test crate NN resource usage @40MHz: 1% of Virtex7 / II = 25 ns / latency = 50 ns – OK! Profiting from preparatory work for Anomaly Trigger (synergy!) \bigcirc

- - **uGT firmware ready to integrate NN algorithm** [Herbert Bergauer]
 - Next steps:
 - Train NN on Run3 samples
 - Integrate NN IP into uGT FW
 - **Emulation in CMSSW?** •
 - Implement FW in test crate
 - TEST rates @P5

Artur Lobanov ML Topo Triggers @ L1T L1T Weekly 12.5.22

