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Computing Challenge

> High Luminosity phase

More particles to

simulate

> HGCAL – More cells
and channels

Complex and

time-consuming

simulations
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No R&D improvements
Weighted probable scenario
10 to 20% annual resource increase

CPU time requirements [Link]

⇒ Increase in computing time beyond the expected increase in resources.
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Simulating Particle Showers in the CMS HGCAL

> More cells & data

⇒ More CPU hours needed for simulation

⇒ Speedup with generative model?

> Challenges:

Sparsity

Irregular geometry

Number of channels

⇒ No ML model yet powerful enough

⇒ Data structures: point clouds and graphs
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Tree Based Approach
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Previous work: TreeGAN
Shu et. arXiv:1905.06292

Generator

Discriminator

MC Simulation
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Generating Gaussian Distribution with TreeGAN
Results

⇒ TreeGan can model the shape of the distribution, but not the density
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DeepTreeGAN
Own Work

> TreeGAN needs significant improvements

> Idea: Use FFNs instead of matrices, formulate as Message Passing network
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Message Passing
For DeepTree

Update Node 4

(w/ Neighbors, Messages)
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Used here: GINConv arXiv:1810.00826
1 Message:

Msg𝑗→𝑖 = x𝑗

2 Aggregate:

Aggr𝑖 = ∑
𝑗∈𝒩 (𝑖)

Msg𝑗→𝑖

3 Update:

x𝑖 ← NN ((1 + 𝜖)x𝑖 + Aggr𝑖)

x′𝑖 = NN ((1 + 𝜖) ⋅ x𝑖 +∑𝑗∈𝒩 (𝑖) x𝑗)
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Smearing

> Generator: continuous spectrum vs.

> Dataset: discrete values for 𝑥, 𝑦 , layer
⇒ Discriminator can distinguish the samples very easily

⇒ Generator can’t learn

> Idea:

Smear out the distributions ⇒ easier task for the generator

Gradually turned off the smearing
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Development during the Training
X vs Y
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Experience on Maxwell

> Work mostly done on Maxwell

> Good user experience

Easy access (eg. No AFS tokens)

Workers with internet connection (can use web services e.g. CometML)

Stable and reliable

> Hyperparameter tuning with ray [Link]

⇒ Please don’t use it, I need the slots

> Jobs need to be able to catch being preempted:

class SigTermHandel:
def __init__(self, ...):

signal.signal(signal.SIGTERM, self.handle)
def handle(self, _signo, _stack_frame):

model.save_checkpoint()
exit()
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Graph Growing Approach
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Graph Growing
Work by William Korcari

> Idea:

Use existing information about the geometry

Grow the graph iteratively
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Generating Sequence
Step 1

> Add nodes adjacent to the ones currently in the graph
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Fix empty graphAdjacency/full graph
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Generating Sequence
Step 2

> Update the nodes with a small GNN
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Generating Sequence
Step 3

> Remove nodes with feature under threshold
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⇒ Repeat the steps for n times
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Discriminator

> Feed generated graph and real graph into the discriminator.
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Thank you!

DESYª Deutsches
Elektronen-Synchrotron
www.desy.de

Sam Bein, Soham Bhattacharya, Engin Eren,
Frank Gaede, Gregor Kasieczka, William Korcari,
Dirk Krücker, Peter McKeown, Moritz Scham,
Moritz Wolf
moritz.scham@desy.de
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Backup
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Smearing w/ Cos Turnoff

Smearing

def smooth_features(x, step):
return x + np.random.multivariate_normal(

[0.0, 0.0, 0.0, 0.0],
np.diag(smoothing_vars) * turnoff(step, rate),

)

Turnoff
def turnoff(step, rate):

step *= rate
if step > np.pi:

return 0
else:

return (np.cos(step) + 1) / 2

> Standard deviations of the Gaussian noise
E: 0

x: 0.315 cm

y: 0.18 cm (needs to be smaller than for x, because more values in the marginal)

layer: .3
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Density-aware Chamfer Distance
as a Comprehensive Metric for Point Cloud Completion

arXiv:2111.12702v1
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MPGAN Disc I

Message Passing layers for MPGAN

A = torch.cat((
x.repeat(1, 1, num_nodes).view(

batch_size, num_nodes * num_nodes,
node_size↪

),
x.repeat(1, num_nodes, 1),
2).view(batch_size * num_nodes * num_nodes,

out_size)↪
# upscaling
A = self.fe(A).view(batch_size, num_nodes,

num_nodes, self.fe_layers[-1])↪
A = torch.sum(A, 2) if self.sum else

torch.mean(A, 2)↪
x = torch.cat((A, x), 2).view(batch_size *

num_nodes, -1)↪
# downscaling
x = self.fn(x).view(batch_size, num_nodes,

self.output_node_size)↪

x = (
𝑎
𝑏⃗
) 𝐴 =

⎡
⎢
⎢
⎢
⎣

𝑎 𝑎
𝑎 𝑏⃗
𝑏⃗ 𝑎
𝑏⃗ 𝑏⃗

⎤
⎥
⎥
⎥
⎦

ffn(A).view(...) =
⎡
⎢
⎢
⎢
⎣

[
𝑓 𝑓 𝑛(𝑎, 𝑎)
𝑓 𝑓 𝑛(𝑎, 𝑏⃗)

]

[𝑓 𝑓 𝑛(𝑏⃗, 𝑎)
𝑓 𝑓 𝑛(𝑏⃗, 𝑏⃗)

]

⎤
⎥
⎥
⎥
⎦

A.sum(2) = [𝑓 𝑓 𝑛(𝑎, 𝑎) + 𝑓 𝑓 𝑛(𝑎, 𝑏⃗)
𝑓 𝑓 𝑛(𝑏⃗, 𝑎) + 𝑓 𝑓 𝑛(𝑏⃗, 𝑏⃗)

]
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MPGAN Disc II

> 2 MP layers

> Masked sum particles

> Feed-Forward-Network

> Final activation
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Hyperparameter Tuning on Maxwell

> Tuning with ray works nicely
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