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Computing Challenge
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CPU time requirements [Link]

= Increase in computing time beyond the expected increase in resources.
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Simulating Particle Showers in the CMS HGCAL

> More cells & data
= More CPU hours needed for simulation
= Speedup with generative model?

> Challenges:

- Sparsity
. lrregular geometry
- Number of channels

= No ML model yet powerful enough
— Data structures: point clouds and graphs
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Tree Based Approach
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Previous work: TreeGAN
Shu et. arXiv:1905.06292

Generator

A

Discriminator
MC Simulation
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https://arxiv.org/abs/1905.06292

Generating Gaussian Distribution with TreeGAN

Scatter points (512) in batch (50)

2D Histogram for 512 points in 2000 events
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Generating Gaussian Distribution with TreeGAN

Scatter points (512) in batch (50)
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T sim gen

gen u[0.82 0.85]
0[[0.9 0.53] [0.53 0.87]]
sim p[1 0.99]

4 o0[[0.97 0.48] [0.48 0.99]]

2

>
0
—2
-2 0 é 4
x -25 0.0 2.5 5.0 =25 0.0 2.5

= TreeGan can model the shape of the distribution, but not the density
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DeepTreeGAN

TreeGAN needs significant improvements
Idea: Use FFNs instead of matrices, formulate as Message Passing network
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Message Passing

For DeepTree

Used here: GINConv arXiv:1810.00826

Update Node 4 Message:
(w/ Neighbors, Messages) Msg;_,; = x;

x/ = NN ((1 +€) %+ Xie s XJ’)
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Message Passing

For DeepTree

Used here: GINConv arXiv:1810.00826

Update Node 4 Message:
(w/ Neighbors, Messages) Msg;_,; = x;

Aggregate:

Aggr; = Z Mngi
jen (@

x/ = NN ((1 +€) %+ Xie s XJ’)
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Message Passing

For DeepTree

Used here: GINConv arXiv:1810.00826

Update Node 4 Message:
(w/ Neighbors, Messages) Msg;_,; = x;

Aggregate:

Aggr; = Z Mngi
jen (@

Update:

x; < NN ((1 + e)x; + Aggr;)

x/ = NN ((1 +€) %+ Xie s XJ’)
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Smearing

Generator: continuous spectrum vs.

Dataset: discrete values for x, y, layer

Discriminator can distinguish the samples very easily
Generator can't learn
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Smearing

Generator: continuous spectrum vs.
Dataset: discrete values for x, y, layer
Discriminator can distinguish the samples very easily

Generator can't learn
Idea:

Smear out the distributions = easier task for the generator
Gradually turned off the smearing
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Development during the Training

2D Histogram for 128 points in 2000 events
MC Step 10000 GAN
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Development during the Training

2D Histogram for 128 points in 2000 events
MC Step 312000 GAN

DESY. | Generative Modeling with Graph Neural Networks for the CMS HGCal | HamGen | Round Table on Deep Learning | 12.10.2022 12/20



Experience on Maxwell

Work mostly done on Maxwell
Good user experience

Easy access (eg. No AFS tokens)
- Workers with internet connection (can use web services e.g. CometML)
Stable and reliable

Hyperparameter tuning with ray [Link]
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https://docs.ray.io/en/latest/cluster/vms/user-guides/community/slurm.html

Experience on Maxwell

Work mostly done on Maxwell

Good user experience
Easy access (eg. No AFS tokens)

- Workers with internet connection (can use web services e.g. CometML)
Stable and reliable

Hyperparameter tuning with ray [Link]

= Please don't use it, | need the slots
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Experience on Maxwell

Work mostly done on Maxwell
Good user experience

Easy access (eg. No AFS tokens)
Workers with internet connection (can use web services e.g. CometML)
Stable and reliable

Hyperparameter tuning with ray [Link]
= Please don't use it, | need the slots

Jobs need to be able to catch being preempted:

class SigTermHandel:
def init__(self, ):

signal.signal(signal.SIGTERM, self.handle)

def handle(self, _signo, _stack_frame):
model . save_checkpoint ()
exit()
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Graph Growing Approach
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Graph Growing

Work by William Korcari

> |dea;

- Use existing information about the geometry
- Grow the graph iteratively
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Generating Sequence
Step 1

> Add nodes adjacent to the ones currently in the graph

R

Adjacency/full graph
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Generating Sequence
Step 2

> Update the nodes with a small GNN

() N\PAN
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Generating Sequence
Step 3

> Remove nodes with feature under threshold

= Repeat the steps for n times
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Discriminator

> Feed generated graph and real graph into the discriminator.

Discriminator

™~

Loss
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Backup
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Smearing w/ Cos Turnoff

Smearing

def smooth_features(x, step):
return x np.random.multivariate_normal(
[0.0, 0.0, 0.0, 0.01,
np.diag(smoothing_vars) * turnoff(step, rate),

)

Turnoff

def turnoff(step, rate):
step rate
if step > np.pi:
return O
else:
return (np.cos(step) 1)

Standard deviations of the Gaussian noise
E: 0
X: 0.315cm
y: 0.18 cm (needs to be smaller than for x, because more values in the marginal)
layer: .3
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Density-aware Chamfer Distance

as a Comprehensive Metric for Point Cloud Completion

arXiv:2111.12702v1
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MPGAN Disc |

Message Passing layers for MPGAN

torch.cat ((

x.repeat(l, 1, num_nodes).view( El) El)

batch_size, num_nodes num_nodes, a» a E

< node_size x=[> .

), b A b a
x.repeat(l, num_nodes, 1), > >
2) .view(batch_size num_nodes num_nodes, b b
— out_size)

ffn@, a)]

self.fe(A) .view(batch_size, num_nodes,
num_nodes, self.fe_layers[-1]) . _ fn(a b)
torch.sum(A, 2) if self.sum else ffn(A)'VleW("') - ffn(b (Z)
torch.mean(A, 2)
torch.cat((A, x), 2).view(batch_size ffn(b b)

num_nodes, -1)

self . fn(x).view(batch_size, num_nodes, A. S'le(2) — ffn( ) + ffn(a b)
self.output_node_size) ff (b a) + ffn(b b)
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MPGAN Disc Il

> 2 MP layers

> Masked sum patrticles
> Feed-Forward-Network
> Final activation
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Hyperparameter Tuning on Maxwell

> Tuning with ray works nicely
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