

Modelling quantum states using normalizing flows

- Álvaro Fernández, Yahya Saleh, Andrey Yachmenev, Jochen Küpper
 - **Controlled Molecule Imaging Group**
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Department of Physics, Universität Hamburg Department of Chemistry, Universität Hamburg Center for Ultrafast Imaging, Universität Hamburg

• Create simulations for the LIED experiment.

Ultrafast imaging of dissociation dynamics with LIED

J. Wiese, J. Onvlee, S. Trippel, J. Küpper, Rhys. Rev. Research 3, 013089 (2021)

• Create simulations for the LIED experiment.

- Create simulations for the LIED experiment.
- Solve Time Dependent Schrödinger equation.

- Create simulations for the LIED experiment.
- Solve Time Dependent Schrödinger equation.
- many states.

Solve Time Independent Schrödinger equation for

- Create simulations for the LIED experiment.
- Solve Time Dependent Schrödinger equation.
- many states.

Solve Time Independent Schrödinger equation for

Partial Derivative Eigenvalue equation:

$$H(x_1, x_2, \dots) \Psi_i(x_1, x_2, \dots) = \left[-\frac{1}{2}\Delta_i^2 + N_i\right]$$

- Generally not solvable due to high degree of freedom.
- Need of numerical approximations.
 - Basis expansion:

$$\Psi_i(x_1, x_2, \dots) = \sum_{i_1, i_2, \dots}^{N}$$

How can we improve this approximation?

Time Independent Schrödinger Equation in Molecules

 $V(x_1, x_2, \dots)] \Psi_i(x_1, x_2, \dots) = E_i \Psi_i(x_1, x_2, \dots)$

 $\sum_{i_{1},i_{2},...} \phi_{i_{1}}(x_{1}) \phi_{i_{2}}(x_{2}) \dots$..=0

 Augment the basis by a flow of the intri flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n)$$
 -

• Augment the basis by a flow of the intrinsic coordinates to a support space. Let this

 $\longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$

 Augment the basis by a flow of the intri flow be a Neural Network:

 Augment the basis by a flow of the intri flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n)$$
 -

• Augment the basis by a flow of the intrinsic coordinates to a support space. Let this

 $\longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$

flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n) \longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$$

• This also impacts the basis functions of the expansion:

flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n) \longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$$

This also impacts the basis functions of the expansion:

$$\phi_i^A(x) = \phi_i(g_\theta(x)) \sqrt{|\det \frac{\partial g_\theta(x)}{\partial x}|}$$

flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n) \longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$$

This also impacts the basis functions of the expansion:

$$\phi_i^A(x) = \phi_i(g_\theta(x)) \sqrt{|\det \frac{\partial g_\theta(x)}{\partial x}|}$$

• Or in other words:

flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n) \longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$$

This also impacts the basis functions of the expansion:

$$\phi_i^A(x) = \phi_i(g_\theta(x)) \sqrt{|\det \frac{\partial g_\theta(x)}{\partial x}|}$$

• Or in other words:

$$\phi_i^A(q) = \phi_i(q) \sqrt{|\det \frac{\partial q}{\partial g_{\theta}^{-1}(q)}|}$$

flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n) \longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$$

This also impacts the basis functions of the expansion:

$$\phi_i^A(x) = \phi_i(g_\theta(x)) \sqrt{|\det \frac{\partial g_\theta(x)}{\partial x}|}$$

• Or in other words:

$$\phi_i^A(q) = \phi_i(q) \sqrt{\left| \det \frac{\partial q}{\partial g_{\theta}^{-1}(q)} \right|}$$

choose Invertible ResNet^[1] as our architecture.

• Augment the basis by a flow of the intrinsic coordinates to a support space. Let this

• So that we see that, by construction, our Neural Network needs to be invertible. We

flow be a Neural Network:

$$(x_1, x_2, \dots, x_n) = g_{\theta}(q_1, q_2, \dots, q_n) \longrightarrow H(x_1, x_2, \dots, x_n) = H_{\theta}(q_1, q_2, \dots, q_n)$$

This also impacts the basis functions of the expansion:

$$\phi_i^A(x) = \phi_i(g_\theta(x)) \sqrt{|\det \frac{\partial g_\theta(x)}{\partial x}|}$$

• Or in other words:

$$\phi_i^A(q) = \phi_i(q) \sqrt{|\det \frac{\partial q}{\partial g_{\theta}^{-1}(q)}|}$$

choose Invertible ResNet^[1] as our architecture.

[1] Invertible Residual Networks. Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Joern-Henrik Jacobsen. arXiv:1811.00995

• Augment the basis by a flow of the intrinsic coordinates to a support space. Let this

• So that we see that, by construction, our Neural Network needs to be invertible. We

- We can use support space for performing integrals:

$$<\phi_{i}^{A} | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)\phi_{j}(q)dq = \delta_{i,j}$$
$$<\phi_{i}^{A} | V(x) | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)V(g_{\theta}^{-1}(q))\phi_{j}(q)dq$$

only be bigger or equal to the real energies:

$$\sum_{i}^{N} \lambda_{i}(\theta) = \sum_{i}^{N} \langle \phi_{i}^{A} | H(\theta) | \phi_{i}^{A} \rangle \geq \sum_{i}^{N} E_{i}$$

• We can use support space for performing integrals:

$$<\phi_i^A | \phi_j^A > =$$

$$<\phi_{i}^{A} | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)\phi_{j}(q)dq = \delta_{i,j}$$
$$<\phi_{i}^{A} | V(x) | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)V(g_{\theta}^{-1}(q))\phi_{j}(q)dq$$

only be bigger or equal to the real energies:

• This is the optimization problem we needed for the Neural Network:

$$\phi_i^A | H(\theta) | \phi_i^A > \geq \sum_i^N E_i$$

• We can use support space for performing integrals:

$$<\phi_i^A | \phi_j^A > =$$

$$<\phi_{i}^{A} | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)\phi_{j}(q)dq = \delta_{i,j}$$
$$<\phi_{i}^{A} | V(x) | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)V(g_{\theta}^{-1}(q))\phi_{j}(q)dq$$

only be bigger or equal to the real energies:

$$\sum_{i}^{N} \lambda_{i}(\theta) = \sum_{i}^{N} \langle \phi_{i}^{A} | H(\theta) | \phi_{i}^{A} \rangle \geq \sum_{i}^{N} E_{i}$$

• This is the optimization problem we needed for the Neural Network:

$$\mathscr{L}(\theta) = \sum_{i}^{N}$$

$$<\phi^A_i\,|\,H(\theta)\,|\,\phi^A_i>$$

• We can use support space for performing integrals:

$$<\phi_i^A | \phi_j^A > =$$

$$<\phi_{i}^{A} | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)\phi_{j}(q)dq = \delta_{i,j}$$
$$<\phi_{i}^{A} | V(x) | \phi_{j}^{A} > = \int \phi_{i}^{*}(q)V(g_{\theta}^{-1}(q))\phi_{j}(q)dq$$

only be bigger or equal to the real energies:

$$\sum_{i}^{N} \lambda_{i}(\theta) = \sum_{i}^{N} \langle \phi_{i}^{A} | H(\theta) | \phi_{i}^{A} \rangle \geq \sum_{i}^{N} E_{i}$$

• This is the optimization problem we needed for the Neural Network:

 $\mathscr{L}(\theta) =$

• We can apply numerical approximations for integrals in support space. How?

$$<\phi^A_i\,|\,H(\theta)\,|\,\phi^A_i>$$

- Very precise integrals. Memory usage scales approximately as N^{dim}, so very useful for low dimensional problems.
- Drawback: during training, wave function is only studied at quadrature points. Resulting eigenfunction is biased.

- $q_{\alpha} \sim |\phi_i^A(q)|^2$. Then any integral can be approximated by: $<\phi_i^A | f(q) | \phi_j^A > = \left[\rho_i(q) \frac{f(q)}{d^4} \right]$
- number and divide the training process in minibatches of m points.
- freedom.

 Starting from a point in space, create a Markov Chain that accepts points based on a density. Using $\rho_i(q) = |\phi_i^A(q)|^2$ as our density, we obtain a distribution of points

$$\frac{d\psi_j^A(q)}{d\phi_i^A(q)} \simeq \frac{1}{M} \sum_{\substack{q_\alpha \sim |\phi_i^A(q)|^2}}^M \frac{f(q_\alpha)\phi_j^A(q_\alpha)}{\phi_i^A(q_\alpha)}$$

• The integral can cover all the space during training. To do so, choose M to be a big

• The memory usage scales now as $M \cdot dim$, of which only $m \cdot dim$ enter the training at the same time. Thus, it is more efficient for problems with many intrinsic degree of

Results

- Outperform the convergence of classical basis expansion w.r.t. number of basis functions.
- Convergence for many excited states.
- Tested for vibrational and electronic states.

Ultrafast imaging of dissociation dynamics with LIED

J. Wiese, J. Onvlee, S. Trippel, J. Küpper, Rhys. Rev. Research 3, 013089 (2021)

• Partial Derivatives equation:

 $H(x_1, x_2, \ldots; t)\Psi(x_1, x_2, \ldots; t)$

• In the basis expansion approximation, initial condition is given by:

 $\Psi_0(x) =$

in small time steps at each time:

$$c_i(t) = \sum_{j}^{N} e^{\langle \phi_i(x) | H(x; t - \Delta t) | \phi_j(x) \rangle} c_j(t - \Delta t)$$

Time Dependent Schrödinger Equation

$$\ldots; t) = = i\partial_t \Psi(x_1, x_2, \ldots; t)$$

With boundary condition: $\Psi(x_1, x_2, \ldots; t = t_0) = \Psi_0(x_1, x_2, \ldots)$

$$\sum_{i}^{N} c_i(t_0)\phi_i(x)$$

Then, our approximation to the wave function is given by propagating the coefficients

The approximation only holds for small time steps and a big number of basis functions.

- Can we use a similar strategy to solve a time dependent equation?
 - Hopefully! Using recurrent Neural Networks each for one time step:

• We again create an augmented basis at each time:

$$\phi_i^A(q,t) = \phi_i^A(q,t)$$

And our approximation to the wave function: •

 $\Psi^A(q,t)$ =

Time Dependent Schrödinger Equation

$$= \sum_{i}^{N} c_{i}(t)\phi_{i}^{A}(q,t)$$

Acknowledgments **CFEL Controlled Molecule Imaging Group**

EXC Center for Ultrafast Imaging EXC Advanced Imaging of Matter SPP 1840 Quantum Dynamics in Tailored Light Fields

Jochen Küpper

Amit Samanta Muhamed Amin Xuemei Cheng Armando Estillore Lukas Haas Jingxuan He Jannik Lübke Surya Kiran Peravali Lena Worbs

Andrey Yachmenev Álvaro Fernández Yahya Saleh **Guang Yang**

Karol Długołęcki Barbora Vagovič

MC-ITN MEDEA MC-ITN ASPIRE

Alexander von Humboldt Stiftung/Foundation

Bundesministerium für Bildung und Forschung

