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Time Independent Schrodinger Equation in Molecules

- Partial Derivative Eigenvalue equation:

1
H(x, x5, ... )WY.(x,%5,...) = [_EA? + V(x, %, .. )IWY(x, %5,...) = EWY(x;, %, ...)
» Generally not solvable due to high degree of freedom.

» Need of numerical approximations.

- Basis expansion:
N

Vixp, xp,...) = Z Cil,iz,...¢i1(x1)¢i2(x2)---

il’i2"°’=()

* How can we improve this approximation?
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Normalizing flows

- Augment the basis by a flow of the intrinsic coordinates to a support space. Let this
flow be a Neural Network:

(-xla Xz, ¢ o o ,Xn) — gH(QD Q29 IR qn) — H(Xl,xz, ¢ o ,Xn) — HH(Qla 9'2, BRI Qn)
» This also impacts the basis functions of the expansion:

0
P = b, <g9<x>>\/ | det g@(x) \

* Orin other words:

0
$A(q) = cbi(q)\ | det ———|

0g; 1(q)

» So that we see that, by construction, our Neural Network needs to be invertible. We
choose Invertible ResNetl!las our architecture.

[1] Invertible Residual Networks. Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Joern-Henrik Jacobsen. arXiv:1811.00995
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Normalizing flows

» We can use support space for performing integrals:

< g > = [@*(q)@(q)dq =5,

<M Vx) | > = Jcb,.*(q)V(gg (@) {q)dq

. Using many states variational principle, the eigenvalues of the Hamiltonian matrix (1,(6)) can
only be bigger or equal to the real energies:

N N N

Y 2O =Y <¢rHO ¢ >> Y E
i i i

 This is the optimization problem we needed for the Neural Network:

N
LO)= ) < ¢ HO)| P! >

- We can apply numerical approximations for integrals in support space. How?



Integrals using quadratures

. Very precise integrals. Memory usage scales approximately as Nd”", SO
very useful for low dimensional problems.

- Drawback: during training, wave function is only studied at quadrature
points. Resulting eigenfunction is biased.

- |Induced Wavefunction
Quadrature points
-== Analytical WF
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Integrals using Langevin MonteCarlo

» Starting from a point in space, create a Markov Chain that accepts points based on a
density. Using p.(q) = | gblA(q) \2 as our density, we obtain a distribution of points

q, ™~ \qblA(q) \2. Then any integral can be approximated by:

fdi@ 1 & a4,
A As — |, o~ — o
<& QI > Jpl(q) P M%N%(q)‘z $7(qa)

* The integral can cover all the space during training. To do so, choose M to be a big
number and divide the training process in minibatches of m points.

. The memory usage scales now as M - dim, of which only m - dim enter the training
at the same time. Thus, it is more efficient for problems with many intrinsic degree of
freedom.




Results

Outperform the convergence
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Time Dependent Schrodinger Equation

Partial Derivatives equation:
H(.xl,.X2, . t)‘P(Xl,.XQ, c e [) = = iatT(xl,X2, .« . ,t)
With boundary condition:  W(x;,x,,...;t =1y = ¥Yo(x;, x5, .. .)

In the basis expansion approximation, initial condition is given by:
N

Vo) = ) ¢t (x)

l

Then, our approximation to the wave function is given by propagating the coefficients
In small time steps at each time:

N
_ ()| HQe;t—Ar) |, _
c{f) = Z o <(0)|H(x )\¢J(X)>Cj(t Af)
J
The approximation only holds for small time steps and a big number of basis functions.



Time Dependent Schrodinger Equation

- Can we use a similar strategy to solve a time dependent equation?
» Hopefully! Using recurrent Neural Networks each for one time step:

q(%) q(t,) q(ty_1) q(ty)
t t t t

(xl,X2, .o ) _iNF91_>NF91_» coe _’NFON_I_’NFGN

t ! 1 !
lPO(q ’ tO) H (q ’ tO) H (q ’ tN—2) H (CI ’ tN— 1)

- We again create an augmented basis at each time:
6’5{4 (g, 1) = Cbi(Q)\/ | det

« And our approximation to the wave function:

dq
08y +(q)

N

PAg.0) = ) cDpq. 1)

l
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