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Objectives

• Create simulations for the LIED experiment. 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FIG. 4. Experimentally obtained photoelectron momentum maps
for (a) the x-axis alignment case and (b) the y-axis alignment case.
The images show a close-up of Figs. 3(e) and 3(f) displayed on a
common linear color scale.

outer disks overlap in momentum space, holographic inter-
ferences can occur, which give rise to the starlike pattern
observed here. This holographic fingerprint encodes both
the tunnel-exit position and the initial momentum distribu-
tion of the photoelectron wave function [12]. The embedded
hourglass results from the nodal plane imprinting onto the
momentum distribution at birth and thus onto the holographic
pattern.

Both the out-of-plane angle ! and the absolute kinetic
energies of the ATI interferences provide a sensitive probe of
the alignment-dependent ionization potential. While ! is, for
identical laser parameters, mainly determined by the initial
transverse momentum distribution in (1), the energy of an
ATI ring, Nh̄ω − Ei − Up [36], represents a direct link to the
in-field ionization threshold for a given number N of absorbed
photons.

Due to their invariance towards laser-intensity averag-
ing, the sharp maxima in the radial distributions of the
experimental momentum maps are ascribed to Freeman res-
onances, resonance-enhanced multiphoton ionization through
Rydberg states [36,50,53,54]. Conceptually, these electronic
resonances cannot be grasped by our current semiclassical
model.

The predictive strength of the present model, in compar-
ison to the experimental data, is very good. This is seen,
for instance, by the agreement of the momentum maps from
experiment and the semiclassical model incorporating the em-
ulation of focal-volume averaging. All features encountered
in the experimental data are qualitatively reproduced with
comparable relative intensities. Furthermore, the trend in the
out-of-plane angle is reflected by the simulations, predicting
a larger angle for the x-axis alignment case, which can be
ascribed to a stronger reduction of the ionization potential
due to the Stark effect. Even this subtle alignment-dependent

change in the photoelectron momentum map is captured by
our strong-field model.

The hourglass shape in the x-axis alignment case holds the
only structural deviation in a modeled momentum map with
respect to its experimental counterpart: From the semiclassi-
cal simulation a local maximum in the angular distribution
along the polarization axis is predicted, while in experiment
a local minimum is observed. We attribute this discrepancy to
the nonperfect linear polarization of the experimentally used
laser pulses, which we estimated to an ellipticity of 200:1
(discussed below). Even such slight differences in the laser
field’s ellipticity can have a huge effect on the photoelectron’s
recollision with the cation [55–57]. A decreasing degree of
linearity lowers the return probability to the cation and thus
the peculiarity of the holographic pattern, which carries a
maximum along the polarization axis. However, the imprint of
the HOMO’s nodal plane, giving rise to a minimum along the
polarization axis, remains at least as pronounced. In the limit
of circular polarization the node will be maximally distinct
[7,22], while the holographic pattern will be fully suppressed.
Although the description of initial in-polarization-plane mo-
menta by means of the adiabatic tunneling theory, including
the first-order nonadiabatic correction, was established for
elliptical polarization shapes close to circular [58], an equiva-
lent theoretical framework that tackles just slightly elliptical
polarization shapes is lacking. Furthermore, Maslov phase
shifts, which occur when electron trajectories cross the po-
larization axis of the laser [59], could possibly explain or
mitigate these discrepancies. In future experimental studies
special attention should be paid to optimizing the linearity
of the laser field. This would facilitate the comparison with
simulation results and moreover maximize the recollision
probability with the cation, which would increase the qual-
ity of holographic structures and imprints from laser-induced
electron diffraction.

VI. CONCLUSION

We unraveled the strong-field photoelectron imaging
of the prototypical biomolecule indole using a combined
experimental and computational approach. Strongly con-
trolled molecules and an experimental technique suppressing
laser-intensity-volume averaging enabled the recording of
photoelectron-momentum distributions directly in the molec-
ular frame and for a well-defined narrow spectrum of incident
intensities. As a numerical counterpart we developed a highly
efficient semiclassical model that builds upon the adiabatic
tunneling theory. Both procedures revealed holographic struc-
tures in the asymptotic momentum distributions that were
found to sensitively depend on the direction of the ionizing
field’s polarization axis in the molecular frame.

Based on the good agreement between experiment and the-
ory, we are confident to have identified all essential molecular
properties that shape the photoelectron wave packet as it is
born at the tunnel exit. Owing to the quantum-chemically
exact treatment of the cation during the subsequent continuum
dynamics, our model is ideally suited for studies of highly
complex molecular structures through strong-field ionization
and laser-induced electron diffraction. It potentially allows
to describe electron-diffractive imaging of biomolecules on
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Time Independent Schrödinger Equation in Molecules

• Partial Derivative Eigenvalue equation:

• Generally not solvable due to high degree of freedom.
• Need of numerical approximations.

• Basis expansion:

• How can we improve this approximation?

H(x1, x2, . . . )Ψi(x1, x2, . . . ) = [−
1
2

Δ2
i + V(x1, x2, . . . )]Ψi(x1, x2, . . . ) = EiΨi(x1, x2, . . . )

Ψi(x1, x2, . . . ) =
N

∑
i1,i2,...=0

ci1,i2,...ϕi1(x1)ϕi2(x2) . . .



Normalizing flows

• Augment the basis by a flow of the intrinsic coordinates to a support space. Let this 
flow be a Neural Network: 
 
(x1, x2, . . . , xn) = gθ(q1, q2, . . . , qn) ⟶ H(x1, x2, . . . , xn) = Hθ(q1, q2, . . . , qn)
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• So that we see that, by construction, our Neural Network needs to be invertible. We 
choose Invertible ResNet[1] as our architecture.

[1] Invertible Residual Networks. Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Joern-Henrik Jacobsen. arXiv:1811.00995



Normalizing flows

• We can use support space for performing integrals:

< ϕA
i |ϕA

j > = ∫ ϕ*i (q)ϕj(q)dq = δi,j

< ϕA
i |V(x) |ϕA

j > = ∫ ϕ*i (q)V(g−1
θ (q))ϕj(q)dq

• Using many states variational principle, the eigenvalues of the Hamiltonian matrix ( ) can 
only be bigger or equal to the real energies:

λi(θ)

N

∑
i

λi(θ) =
N

∑
i

< ϕA
i |H(θ) |ϕA

i > ≥
N

∑
i

Ei
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• We can apply numerical approximations for integrals in support space. How?



Integrals using quadratures

• Very precise integrals. Memory usage scales approximately as , so 
very useful for low dimensional problems.

• Drawback: during training, wave function is only studied at quadrature 
points. Resulting eigenfunction is biased.

   

Ndim



Integrals using Langevin MonteCarlo

• Starting from a point in space, create a Markov Chain that accepts points based on a 
density. Using  as our density, we obtain a distribution of points 

. Then any integral can be approximated by:

• The integral can cover all the space during training. To do so, choose M to be a big 
number and divide the training process in minibatches of m points.

• The memory usage scales now as , of which only  enter the training 
at the same time. Thus, it is more efficient for problems with many intrinsic degree of 
freedom.

   

ρi(q) = |ϕA
i (q) |2

qα ∼ |ϕA
i (q) |2

< ϕA
i | f(q) |ϕA

j > = ∫ ρi(q)
f(q)ϕA

j (q)
ϕA

i (q)
≃

1
M

M

∑
qα∼|ϕA

i (q)|2

f(qα)ϕA
j (qα)

ϕA
i (qα)

M ⋅ dim m ⋅ dim



Results

• Outperform the convergence 
of classical  
basis expansion w.r.t. number 
of basis functions.

• Convergence for  
many excited states.

• Tested for vibrational and 
electronic  
states. 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FIG. 4. Experimentally obtained photoelectron momentum maps
for (a) the x-axis alignment case and (b) the y-axis alignment case.
The images show a close-up of Figs. 3(e) and 3(f) displayed on a
common linear color scale.

outer disks overlap in momentum space, holographic inter-
ferences can occur, which give rise to the starlike pattern
observed here. This holographic fingerprint encodes both
the tunnel-exit position and the initial momentum distribu-
tion of the photoelectron wave function [12]. The embedded
hourglass results from the nodal plane imprinting onto the
momentum distribution at birth and thus onto the holographic
pattern.

Both the out-of-plane angle ! and the absolute kinetic
energies of the ATI interferences provide a sensitive probe of
the alignment-dependent ionization potential. While ! is, for
identical laser parameters, mainly determined by the initial
transverse momentum distribution in (1), the energy of an
ATI ring, Nh̄ω − Ei − Up [36], represents a direct link to the
in-field ionization threshold for a given number N of absorbed
photons.

Due to their invariance towards laser-intensity averag-
ing, the sharp maxima in the radial distributions of the
experimental momentum maps are ascribed to Freeman res-
onances, resonance-enhanced multiphoton ionization through
Rydberg states [36,50,53,54]. Conceptually, these electronic
resonances cannot be grasped by our current semiclassical
model.

The predictive strength of the present model, in compar-
ison to the experimental data, is very good. This is seen,
for instance, by the agreement of the momentum maps from
experiment and the semiclassical model incorporating the em-
ulation of focal-volume averaging. All features encountered
in the experimental data are qualitatively reproduced with
comparable relative intensities. Furthermore, the trend in the
out-of-plane angle is reflected by the simulations, predicting
a larger angle for the x-axis alignment case, which can be
ascribed to a stronger reduction of the ionization potential
due to the Stark effect. Even this subtle alignment-dependent

change in the photoelectron momentum map is captured by
our strong-field model.

The hourglass shape in the x-axis alignment case holds the
only structural deviation in a modeled momentum map with
respect to its experimental counterpart: From the semiclassi-
cal simulation a local maximum in the angular distribution
along the polarization axis is predicted, while in experiment
a local minimum is observed. We attribute this discrepancy to
the nonperfect linear polarization of the experimentally used
laser pulses, which we estimated to an ellipticity of 200:1
(discussed below). Even such slight differences in the laser
field’s ellipticity can have a huge effect on the photoelectron’s
recollision with the cation [55–57]. A decreasing degree of
linearity lowers the return probability to the cation and thus
the peculiarity of the holographic pattern, which carries a
maximum along the polarization axis. However, the imprint of
the HOMO’s nodal plane, giving rise to a minimum along the
polarization axis, remains at least as pronounced. In the limit
of circular polarization the node will be maximally distinct
[7,22], while the holographic pattern will be fully suppressed.
Although the description of initial in-polarization-plane mo-
menta by means of the adiabatic tunneling theory, including
the first-order nonadiabatic correction, was established for
elliptical polarization shapes close to circular [58], an equiva-
lent theoretical framework that tackles just slightly elliptical
polarization shapes is lacking. Furthermore, Maslov phase
shifts, which occur when electron trajectories cross the po-
larization axis of the laser [59], could possibly explain or
mitigate these discrepancies. In future experimental studies
special attention should be paid to optimizing the linearity
of the laser field. This would facilitate the comparison with
simulation results and moreover maximize the recollision
probability with the cation, which would increase the qual-
ity of holographic structures and imprints from laser-induced
electron diffraction.

VI. CONCLUSION

We unraveled the strong-field photoelectron imaging
of the prototypical biomolecule indole using a combined
experimental and computational approach. Strongly con-
trolled molecules and an experimental technique suppressing
laser-intensity-volume averaging enabled the recording of
photoelectron-momentum distributions directly in the molec-
ular frame and for a well-defined narrow spectrum of incident
intensities. As a numerical counterpart we developed a highly
efficient semiclassical model that builds upon the adiabatic
tunneling theory. Both procedures revealed holographic struc-
tures in the asymptotic momentum distributions that were
found to sensitively depend on the direction of the ionizing
field’s polarization axis in the molecular frame.

Based on the good agreement between experiment and the-
ory, we are confident to have identified all essential molecular
properties that shape the photoelectron wave packet as it is
born at the tunnel exit. Owing to the quantum-chemically
exact treatment of the cation during the subsequent continuum
dynamics, our model is ideally suited for studies of highly
complex molecular structures through strong-field ionization
and laser-induced electron diffraction. It potentially allows
to describe electron-diffractive imaging of biomolecules on
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Time Dependent Schrödinger Equation

• Partial Derivatives equation:

        With boundary condition:     

• In the basis expansion approximation, initial condition is given by:

• Then, our approximation to the wave function is given by propagating the coefficients 
in small time steps at each time:

• The approximation only holds for small time steps and a big number of basis functions. 

H(x1, x2, . . . ; t)Ψ(x1, x2, . . . ; t) = = i∂tΨ(x1, x2, . . . ; t)
Ψ(x1, x2, . . . ; t = t0) = Ψ0(x1, x2, . . . )

Ψ0(x) =
N

∑
i

ci(t0)ϕi(x)

ci(t) =
N

∑
j

e<ϕi(x)|H(x;t−Δt)|ϕj(x)>cj(t − Δt)



Time Dependent Schrödinger Equation

• Can we use a similar strategy to solve a time dependent equation?
• Hopefully! Using recurrent Neural Networks each for one time step: 
 
 
 
 
 
 
 

• We again create an augmented basis at each time:

• And our approximation to the wave function:

 

ϕA
i (q, t) = ϕi(q) | det

∂q
∂g−1

θ,t (q)
|

ΨA(q, t) =
N

∑
i

ci(t)ϕA
i (q, t)
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