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Full-field nanotomography @ P05, PETRA III, DESY
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Nanotomography:

- Resolution < 50 nm

- Standard scans 15 min 

- Fast scanning 

- In situ applications 

Holotomography

48 nm - 37 nm lines

Absorption Zernike Phase 

contrast

1 µm1 µm

Flenner et al. Journal of Synchrotron Radiation, (2020)

Flenner et al. Optics Express (2020)

Transmission X-ray Microscopy



Machine learning for high time resolution

3 Flenner et al. (2020), Journal of Synchrotron Radiation

Pelt & Sethian (2017), Proc. of the Nat. Ac. of Sc. of the United States of America

https://github.com/dmpelt/msdnet

15 min 3 min 36 s 6 s1 h

Nanoporous gold

3D test pattern for

Nanotomography



Machine learning for high time resolution

Machine learning (ML) for 

very short scan times

InputReference

Train 

network

4 Flenner et al. (2020), Journal of Synchrotron Radiation

Pelt & Sethian (2017), Proc. of the Nat. Ac. of Sc. of the United States of America

 

(a) (c) (d) (b) 

6 s + ML

Output

https://github.com/dmpelt/msdnet

15 min 3 min 36 s 6 s1 h



Machine learning denoising: Noise2Inverse
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Hendriksen et al. (2020). IEEE Transactions on Computational Imaging

Flenner et al. (2022) Journal of Synchrotron Radiation https://github.com/dmpelt/msdnet



Denoising of standard scans

Applicable on standard scans without reference scan

- Multi-scale dense network (msdnet)

- 5 input channels (5 slices, 2.5D training)

- Image size: 1024 x 1024

- Training data size: 100 – 300 slices

- Test data size: 40 – 80 slices
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Unfiltered

Flenner et al. (2022) Journal of Synchrotron Radiation

Hendriksen et al. (2020). IEEE Transactions on Computational Imaging

ML filter

3 µm 3 µm

3 µm 3 µm
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https://github.com/dmpelt/msdnet



Applicability
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3D Human Bone Anatomy

Stockhausen et al. ACS Nano, 15 (1), 455-467, 2021

Original

Trained on same sample

Trained on similar sample

Training is the most time consuming 

step (up to several hours)

Typical TXM experiment: 

Batch of similar samples

In collaboration with Prof. B. Busse (UKE)



Machine learning denoising
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6 min 3 min

Network is

trained to be

applied on a 

scan with half 

the number of

projections!



Decreasing scan time for in situ experiments
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3D Human Bone Anatomy

6 min 3 min 3 min – ML filtered

Trained

network

training



Summary
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Machine learning denoising 

- Very short scans (with high quality reference scan)

- Standard scans without a reference scan

- Helps to reduce scan time for in situ experiments

silja.flenner@hereon.de, imke.greving@hereon.de 
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Full-field nanotomography @ P05
Experimental 

Hutch 1: nCT
Experimental 

Hutch 2: µCT

63 m

84 m

Imaging beamline

P05 at PETRA III

Camera

12

Allowing a sample –

detector distance of 

> 20 m!

http://www.hama

matsu.com/eu/en

/product/category

/5000/5005/C128

49-

101U/index.html



- Try to remove as many artifacts as possible 

before training! They will also be enhanced!
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ML denoising

Epoch 1



Comparison of different filter methods
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Unfiltered ML filter
Iterative non-local

means filterMedian 3D filter

Iterative non-local means: Bruns et al., 2017, Advances in Water Resources

- ML filter outperforms

standard filters

- Iterative non-local means

filter works well for larger 

structures


