Machine learning denoising of highresolution nanotomography data

P05 nanotomography

Silja Flenner

Institute for Materials Research

5th Round Table on Deep Learning at DESY 2022

Full-field nanotomography @ P05, PETRA III, DESY Transmission X-ray Microscopy

Nanotomography:

- Resolution < 50 nm
- Standard scans 15 min
- Fast scanning
- In situ applications

Flenner et al. Journal of Synchrotron Radiation, **(2020)** Flenner et al. Optics Express **(2020)**

Machine learning for high time resolution

Nanoporous gold

3D test pattern for Nanotomography

Flenner et al. (2020), Journal of Synchrotron Radiation

Machine learning for high time resolution

Input

Reference

Machine learning (ML) for very short scan times

4 https://github.com/dmpelt/msdnet

Flenner et al. (2020), Journal of Synchrotron Radiation

Pelt & Sethian (2017), Proc. of the Nat. Ac. of Sc. of the United States of America

Machine learning denoising: Noise2Inverse

Hendriksen et al. (2020). *IEEE Transactions on Computational Imaging* Flenner et al. (2022) *Journal of Synchrotron Radiation*

5

https://github.com/dmpelt/msdnet

Denoising of standard scans

Applicable on standard scans without reference scan

- Multi-scale dense network (msdnet)
- 5 input channels (5 slices, 2.5D training)
- Image size: 1024 x 1024
- Training data size: 100 300 slices
- Test data size: 40 80 slices

Unfiltered

x-y view

ML filter

Flenner et al. (2022) Journal of Synchrotron Radiation Hendriksen et al. (2020). IEEE Transactions on Computational Imaging https://github.com/dmpelt/msdnet

Applicability

3D Human Bone Anatomy

Training is the most time consuming step (up to several hours)

Typical TXM experiment: Batch of similar samples

Original

Trained on same sample

Trained on similar sample

Stockhausen et al. ACS Nano, 15 (1), 455-467, **2021** In collaboration with Prof. B. Busse (UKE)

Machine learning denoising

Decreasing scan time for *in situ* experiments

3D Human Bone Anatomy

Summary

Machine learning denoising

- Very short scans (with high quality reference scan)
- Standard scans without a reference scan
- Helps to reduce scan time for *in situ* experiments

silja.flenner@hereon.de, imke.greving@hereon.de

Thank you

Hereon Team

Imke Greving Stefan Bruns Elena Longo Malte Storm Berit Zeller-Plumhoff Felix Beckmann Fabian Wilde Jörg Hammel Julian Moosmann Jens Breling Hilmar Burmester Ursula Tietze Christina Krywka Martin Müller

PAUL SCHERRER INSTITUT

Adam Kubec Peng Qui Florian Döring Christian David

Samples

Kilian Stockhausen (UKE) Björn Busse (UKE) Andrew J. Parnell (University of Sheffield) Erica Lilleodden (hereon)

Johannes Hagemann Felix Wittwer André Rothkirch

hereon

Silja Flenner

silja.flenner@hereon.de, imke.greving@hereon.de

ML denoising

Try to remove as many artifacts as possible before training! They will also be enhanced!

1e-7

4.62

4.61 4.60 4.59

ם 4.58 -

4.57

Butterfly scale

Comparison of different filter methods

- ML filter outperforms standard filters
- Iterative non-local means filter works well for larger structures

