Deep Active Learning for Segmentation of Biodegradable Bone Implants in High Resolution Synchrotron Radiation Microtomograms

Bashir Kazimi¹, Julian Moosmann¹, Sahar Kakavand², Ivo Baltruschat² and Philipp Heuser²

¹ Institute of Materials Physics, Helmholtz-Zentrum Hereon ² Deutsches Elektronen-Synchrotron DESY

5th Round Table on Deep Learning DESY, Hamburg

bashir.kazimi@hereon.de 25.11.2022

Project

- > Universal Segmentation Framework (UniSeF): Funded by Helmholtz AI
- PETRA III @DESY
 - Storage ring based X-ray sources for high energy photons
 - Multiple beamlines
- > P05 Imaging Beamline
 - Micro and Nano tomography
 - Used for different applications
 - > Problem:
 - Preprocessing and annotation
 - Segmentation and postprocessing
 - Very time-consuming
 - Proposed Solution:
 - > An easy-to-use, guided, interactive and iterative framework for data annotation and deep learning based segmentation
 - A browser-based service
 - > Available for diverse tasks by users at the beamline

Current Talk

> Segmentation of biodegradable implants in SRµCT data

Image

Methods

Supervised Deep Learning with Annotated Datasets

Challenges

Lots of annotations required !!!

. . .

Solution

Deep Active Learning

Acquisition Functions

Random:

- K random unlabeled images selected and annotated
- Softmax Confidence:
 - > Sum of highest probabilities for all pixels is calculated

$$S_I^{\text{CONF}} = \sum_i^I \max p(y_{i,C} | x_i; \theta_{\text{SEG}})$$

K samples with the least confidence scores are selected for annotation

Acquisition Functions

Coreset

- > Use labeled samples c^i as cluster centers
- > Calculated pairwise distance between c^i and unlabeled samples u^i
- Select K samples with the smallest distance from their closest cluster centers
- > Other functions (explained in Appendix):
 - Softmax Entropy
 - Maximum Representation
 - Monte Carlo Dropout
 - Softmax Margin
 - Cost Effective Active Learning (CEAL)

Experiments: Dataset

- > 6878 images for training
- ➤ 5591 images for validation
- ➤ 6000 images for testing

Segmentation Mask

Experiments: Setup

- Python + PyTorch
- ➢ High Resolution Network (HRNet) [Sun et al., 2019]
- > 10 active learning rounds
- > 8 images selected for annotation in each round
- Model evaluated on test set after each round

hereo

Acquisition Function	Test mIoU Score
Coreset	0,8051
Random	0,743
Maximum Representation	0,7561
Softmax Margin	0,7481
Monte Carlo Dropout	0,7636
Softmax Confidence	0,73
CEAL	0,7404
Softmax Entropy	0,7018
Worst IoU Score	0,5378
Fully Suppervised	0,829070518

Image

Segmentation Mask Active Learning (Coreset)

Image

Segmentation Mask Active Learning (Coreset)

Image

Segmentation Mask Active Learning (Coreset)

Image

Segmentation Mask Active Learning (Coreset)

Image

Active Learning (Coreset)

Conclusion

- Deep active learning for segmentation of biodegradable bone implants
- Very few annotated images
 - > 80 annotated images in the 10th round of active learning
 - ~ 7000 annotated images for fully supervised learning
- ➢ 80.51 % mIoU score by active learning
- > 82.91 % mIoU score by fully supervised learning
- ➤ → 97 percent of performance using only 1.16 percent of annotations!!!
- A web-service is ready
- > Next steps:
 - Incorporate the active learning system in the web-service
 - Work on denoising/super-resolution

Feedback/Questions?

Thank you ③

> Softmax Entropy:

> Sum of entropy for all pixels is calculated

$$S_I^{\text{ENT}} = -\sum_i^I \sum_{c=1}^C p(y_{i,c}|x_i; \theta_{\text{SEG}}) \log p(y_{i,c}|x_i; \theta_{\text{SEG}})$$

K images with maximum entropy are selected to be annotated

- > Softmax Margin:
 - Sum of difference of softmax probabilities of the top most and 2nd most probable label for each pixel is calculated

$$S_I^{\text{MAR}} = \sum_i^I \max_{1} p(y_{i,C} | x_i; \theta_{\text{SEG}}) - \max_{2} p(y_{i,C} | x_i; \theta_{\text{SEG}})$$

K samples with the least difference are selected for annotation

Cost Effective Active Learning (CEAL)

- > Use softmax entropy, softmax confidence and softmax margin to select K samples for annotation
- Use the same acquisition function again to select another K samples and then pseudo-label them using the trained model

Monte Carlo Dropout

- > Run trained model on unlabeled data for *N* iterations using dropout
- Calculate entropy and sum them

$$S_I^{\text{MCDR}} = -\sum_i^I \sum_{c=1}^C p_{\text{MCDR}}(y_{i,c}|x_i;\theta_{\text{SEG}}) \log p_{\text{MCDR}}(y_{i,c}|x_i;\theta_{\text{SEG}})$$

$$p_{\text{MCDR}}(y_{i,c}|x_i;\theta_{\text{SEG}}) = \frac{1}{N} \sum_{n=1}^{N} p(y_{i,c}|x_i;\theta_{\text{SEG}})$$

➤ K samples with the most entropy scores are selected for annotation

> Maximum Representation

- ➤ Use MC Dropout to select 2*K most uncertain samples
- > Use similarity measures (e.g., Euclidean norm) to select K most representative samples
- ➤ K samples most distant to each other are selected for annotation

