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Project

» Universal Segmentation Framework (UniSeF): Funded by Helmholtz Al
> PETRAII @DESY
» Storage ring based X-ray sources for high energy photons
» Multiple beamlines
» P05 Imaging Beamline
» Micro and Nano tomography
» Used for different applications
> Problem:
» Preprocessing and annotation
» Segmentation and postprocessing
» = Very time-consuming
» Proposed Solution:
» An easy-to-use, guided, interactive and iterative framework for data annotation and deep learning based segmentation
» A Dbrowser-based service

» Available for diverse tasks by users at the beamline



Current Talk

» Segmentation of biodegradable implants in SRUCT data
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Methods

» Supervised Deep Learning with Annotated Datasets

Trained DL Model

Input Image

Learned segmentation mask



Challenges

» Lots of annotations required !!!
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Solution

» Deep Active Learning

DL Model

Train a model

Run model on unlabeled subset

Labeled l Q

pool
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Human annotator (Domain Expert) @ herass



Acquisition Functions

» Random:
» K random unlabeled images selected and annotated
» Softmax Confidence:

» Sum of highest probabilities for all pixels is calculated
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» K samples with the least confidence scores are selected for annotation
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Acquisition Functions

» Coreset

> Use labeled samples c' as cluster centers

> Calculated pairwise distance between c¢' and unlabeled samples u

» Select K samples with the smallest distance from their closest cluster centers
» Other functions (explained in Appendix):

» Softmax Entropy

» Maximum Representation

» Monte Carlo Dropout

» Softmax Margin

» Cost Effective Active Learning (CEAL)
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Experiments: Dataset

» 6878 images for training
» 5591 images for validation

» 6000 images for testing
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Experiments: Setup

» Python + PyTorch

» High Resolution Network (HRNet) [Sun et al., 2019]
» 10 active learning rounds

» 8 images selected for annotation in each round

» Model evaluated on test set after each round
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Experiments: Results
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Experiments: Results

Acquisition Function Test mloU Score
Coreset - 08051
Random 0,743
Maximum Representation 0,7561
Softmax Margin 0,7481
Monte Carlo Dropout 0,7636
Softmax Confidence 0,73
CEAL 0,7404
Softmax Entropy 0,7018
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Results: Video
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https://desycloud.desy.de/index.php/s/D4DzDsCPAt88Xbx

Conclusion

» Deep active learning for segmentation of biodegradable bone implants
» Very few annotated images
> 80 annotated images in the 10" round of active learning
» ~ 7000 annotated images for fully supervised learning
» 80.51 % mloU score by active learning
» 82.91 % mloU score by fully supervised learning
> = 97 percent of performance using only 1.16 percent of annotations!!!
» A web-service is ready
» Next steps:
» Incorporate the active learning system in the web-service

» Work on denoising/super-resolution
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Feedback/Questions?

» Thank you ©
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Appendix: Acquisition Functions

» Softmax Entropy:

» Sum of entropy for all pixels is calculated

I C
STV ==Y p(yielzis Osuc) log p(Yiclzi; Osuc)

1 c=1

» K images with maximum entropy are selected to be annotated
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Appendix: Acquisition Functions

» Softmax Margin:
> Sum of difference of softmax probabilities of the top most and 2"4 most probable label for

each pixel is calculated
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» K samples with the least difference are selected for annotation
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Appendix: Acquisition Functions

» Cost Effective Active Learning (CEAL)
» Use softmax entropy, softmax confidence and softmax margin to select K samples for annotation
» Use the same acquisition function again to select another K samples and then pseudo-label them

using the trained model
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Appendix: Acquisition Functions

» Monte Carlo Dropout
» Run trained model on unlabeled data for N iterations using dropout

» Calculate entropy and sum them
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» K samples with the most entropy scores are selected for annotation

eeeeeeeeeeeeeeeee



Appendix: Acquisition Functions

» Maximum Representation
» Use MC Dropout to select 2*K most uncertain samples
» Use similarity measures (e.g., Euclidean norm) to select K most representative samples

» K samples most distant to each other are selected for annotation
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