Fault diagnosis for the LLRF system at the European XFEL

5th Round Table on Deep Learning at DESY

Annika Eichler With Julien Branlard, Jan Timm Accelerator Beam Control Group, MSK, DESY Institute of Control Systems, TUHH 25.11.2022

The low-level RF system

For acceleration and energization

- Tesla type cavity (1.3GHz)
- 25 LLRF station with ~ 4 cryomodules per station •
 - 8 cavities per cryomodule •
 - 32 cavities per station (controlled via one vector sum) ٠
 - 808 superconducting cavities •
- 10 pulses per second of 1.8 ms length .
 - ~ 700 Million pulses a day
- 9 MHz sampling frequency \rightarrow 16384 samples per pulse .

Failures and data in the LLRF system

In operation at European XFEL

- Quench
 - Severe cavity fault
 - · Loss of superconductivity of the cavity walls
- Database of failures
 - A lot of nominal healthy data
 - ~1700 datasets failures saved since autumn 2019
 - Nearly the same format
 - Known that they are failures, but no labels to trust for 100%
 - Soft quenches are not so easy to detect
 - False positive
 - 07/08/2020 till 11/18/2020, 34 snap shots were saved triggered by the quench detection (thanks to Nicholas Walker)
 - 18/34 were real quenches
 - Glitches, detuning or QL changes, field emitters...
 - No idea on false negatives

Eletromagnetic oscillation

Mechanical deformation

$$\Delta \dot{\omega}_n(t) = -\frac{1}{\tau_n} \Delta \omega_n(t) + K_n \left(V_{P,I}^2(t) + V_{P,Q}^2(t) \right)$$
$$\Delta \omega(t) = \sum_{n=1}^N \Delta \omega_n(t) , \forall n = 1, \dots, N.$$

Anomaly detection for the SRF cavities

Parity space ¹⁾

- Solve both electromagnetic equations for detuning $\Delta \omega$
- Residual is the difference (small if model fits well, large otherwise)
- + Little calculation effort
- Sensitive to noise

Unscented Kalman filter ²⁾

- Kalman filter for nonlinear systems
- Predict and update steps (weighting model and new measurements)
- Calculation intensive
- + Optimal filtering (if Gaussian noise)

Parameter estimation ³⁾

- Calculate detuning Δω and half bandwidth ω1/2 from forward and probe signals
- + Little calculation effort
- Very sensitive to noise
- + Good physical interpretability

 ²⁾ A. Nawaz, et. al., Probabilistic Model-Based Fault Diagnosis for the Cavities of the European XFEL, *at – Automatisierungstechnik* (2021).
³⁾ A. Bellandi, et. al., Online Detuning Computation and Quench Detection for Superconducting Resonators, IEEE Trans. Nucl. Page 6 Sci. 68, 385 (2021)

¹⁾ A. Nawaz, et. al., Anomaly Detection for the European XFEL using a Non-linear Parity Space Method, *Proceedings of SafeProcess*, 51, 1379 (2018)

Anomaly detection for the SRF cavities

Parity space

- Solve both electromagnetic equations for detuning $\Delta \omega$
- Residual is the difference (small if model fits well, large otherwise)
- + Little calculation effort
- Sensitive to noise

Unscented Kalman filter

- Kalman filter for nonlinear systems
- Predict and update steps (weighting model and new measurements)
- Calculation intensive
- + Optimal filtering (if Gaussian noise)

Parameter estimation

- Calculate detuning $\Delta \omega$ and half bandwidth $\omega 1/2$ from forward and probe signals
- + Little calculation effort
- Very sensitive to noise
- + Good physical interpretability

 ²⁾ A. Nawaz, et. al., Probabilistic Model-Based Fault Diagnosis for the Cavities of the European XFEL, *at – Automatisierungstechnik* (2021).
³⁾ A. Bellandi, et. al., Online Detuning Computation and Quench Detection for Superconducting Resonators, IEEE Trans. Nucl. Page 7 Sci. 68, 385 (2021)

¹⁾ A. Nawaz, et. al., Anomaly Detection for the European XFEL using a Non-linear Parity Space Method, *Proceedings of SafeProcess*, 51, 1379 (2018)

- Generalized likelihood test
 - Anomaly is significant change in otherwise white Gaussian process
 - GLR = Generalized likelihood ratio
 - GLR follows chi-square distribution
 - Choose a desired false positive rate

- Decision
 - Threshold test → anomaly (yes/no)

A. Eichler, J. Branlard, J.H.K. Timm., Anomaly Detection at the European XFEL using a Parity Space based Method, *arXiv preprint arXiv:2202.02051*

- Decision
 - Threshold test → anomaly (yes/no)
 - Classify the different kinds of faults?
 - Clear distinction between different kind of faults
 - Amplification of small anomalies

- Decision
 - Threshold test → anomaly (yes/no)
 - Classify the different kinds of faults?
 - Clear distinction between different kind of faults
 - Amplification of small anomalies
 - \rightarrow Unsupervised classification

All these signals are quenches?

Anomaly detection for the SRF cavities

- Decision
 - Threshold test → anomaly (yes/no)
 - Classify the different kinds of faults?
 - Clear distinction between different kind of faults
 - Amplification of small anomalies

\rightarrow Unsupervised classification

- K-means clustering
- Dynamic time warping / limited window

Results

Post mortem analysis

SUMMARY

602/1408 = 42.7557% pulses evaluated 446/453 = 98.4547% events evaluated

	False negative		False positive	
DTW		Quench (expert)		No quench (expert)
Quench		6.04%		4.19%
No quen	ch 🤇	1.07%		88.71%
Limited		Quench		No quench
window		(expert)		(expert)
Quench		5.61%		0.43%

92.47%

Thanks to Julien Branlard

1.49%

Automatic analysis for every day

- Daily automatic evaluation of all trips that occurred
- Email is sent to LLRF experts

In total 4 Events have been detected, 1 of them have been identified as quenches (0) and 3 and 0 as possible quenches (2) and (3). timeStamp maxGradient location anomaly C8.M2.A24.L3 01-Oct-2021 14:10:19 23.47 2 C8.M2.A24.L3 01-Oct-2021 14:10:19 2 23.41 0 C8.M2.A24.L3 01-Oct-2021 14:10:19 19.29 C8.M2.A24.L3 01-Oct-2021 14:10:19 2 12.34

Disagreement (one says quench and other not)

Page 13

Quench (both

algorithms agree)

No quench

Results

Post mortem analysis

SUMMARY

602/1408 = 42.7557% pulses evaluated 446/453 = 98.4547% events evaluated

False negative			False positive	
DTW		Quench (expert)		No quench (expert)
Quench		6.25%		0.28%
No quench		0.85%		92.61%
Limited		Quench		No quench
window		(expert)		(expert)
Quench		6.68%		0.43%
No quench		0.43%		92.47%

Thanks to Julien Branlard

Automatic analysis for every day

- Daily automatic evaluation of all trips that occurred
- Email is sent to LLRF experts

In total 4 Events have been detected, 1 of them have been identified as quenches (0) and 3 and 0 as possible quenches (2) and (3). timeStamp anomaly maxGradient location C8.M2.A24.L3 01-Oct-2021 14:10:19 23.47 2 C8.M2.A24.L3 01-Oct-2021 14:10:19 23.41 2 0 C8.M2.A24.L3 01-Oct-2021 14:10:19 19.29 C8.M2.A24.L3 01-Oct-2021 14:10:19 2 12.34

Disagreement (one says quench and other not)

Page 14

Quench (both

algorithms agree)

Conclusion

And summary

- Calculation speed is essential
- High-data rates and a lot of data channels
- Synchronization with given system
- Data bandwidth are the limiting factor
- Model is needed for hybrid approach
 - Alternative with purely data-driven approach (see Antonins talk)
- Good understanding of physics and feedback of the experts is essential
 - But here the underlying model helps for understanding

Next steps

- Bring it to online operation
- Software solution
 - C++ direct in our control system
 - Bandwidth limitations
 - Do the calculation in the tunnel
- Hardware solution

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Annika Eichler MSK annika.eichler@desy.de +49 (0)40 8998 4041

TUHH

Hamburg University of Technology www.tuhh.de Annika Eichler ICS annika.eichler@tuhh.de