Learning-based Optimisation of Particle Accelerators Under Partial Observability Without Real-World Training

5th DESY ML Round Table

Jan Kaiser, Oliver Stein and Annika Eichler Hamburg, 25 November 2022

Motivation

High-impact real-world application of reinforcement learning

Challenges of RL for Real-world Applications

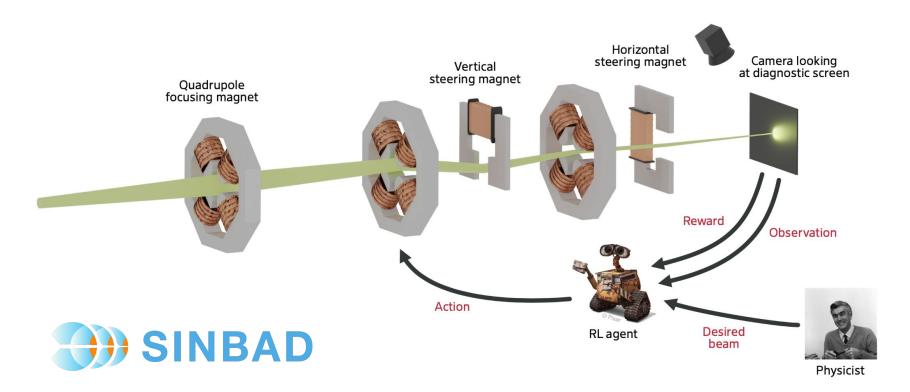
- High cost-per-sample can make training in the real world infeasible
- Simulations might not be available, have limited accuracy or are expensive to compute
- Disturbances in the real world such as noisy observations or action effects
- Safety concerns
- Partial-observability is often more prominent than in academic examples

Reinforcement Learning for Particle Accelerators

- Highly advanced machines used in a large variety of applications in physics, engineering and medicine
 - e.g. physics discovery, vaccine and drug development, cancer treatment, material development
- Sparse availability and high operating costs
- Tuning to desired configurations a long time which cannot be used for useful operations
- Tuning is still largely done by hand as automation of these complex tasks has proven difficult
- Final tunes are difficult to repeat and strongly depend on operator experience

RL Task

Transverse beam parameter optimisation at the ARES accelerator

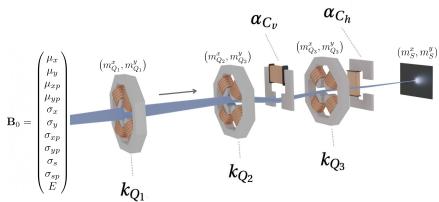


Real-world Challenges at ARES

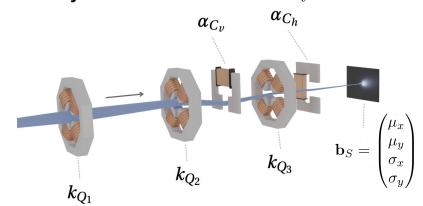
How the task at ARES reflects other real-world tasks

- Partial observability (9 observables vs. at least 26-dimensional state-space)
 - No diagnostics available for incoming beam and magnet/screen misalignments
- Noisy observations and disturbed actions
 - Magnet hysteresis changes effects of magnet, screen is noisy and has limited accuracy, other environmental disturbances affect accelerator notably
- Training in the real-world is prohibitively expensive
 - Collecting just one sample takes 10-20 seconds, beam time is a sparse commodity and there exists only one accelerator exactly like ARES. In addition there are machine safety concerns during training.

Fully-observable state s_t



Partially-observable observation o_t

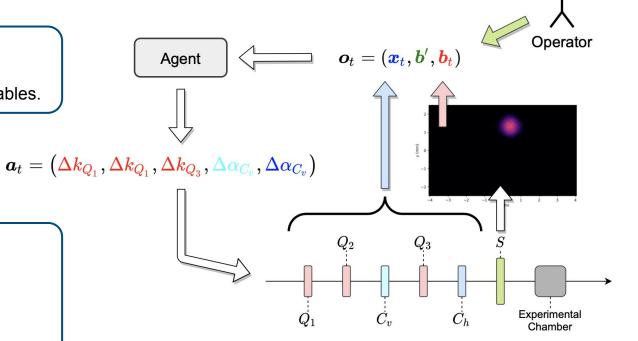


Design Decisions

Solving the RL task at ARES

Training

Train in **simulation** with **domain randomisation** over unknown variables.



Reward

$$O(\mathbf{x}_t) = \ln \sum_{p \in \mathbf{b}_t, p' \in \mathbf{b}'} w_p |p - p'|$$

$$\hat{R}(\boldsymbol{s}_t, \boldsymbol{a}_t) = O(\boldsymbol{x}_t) - O(\boldsymbol{x}_{t+1})$$

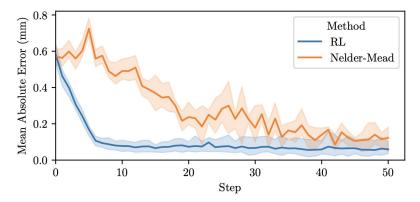
$$R(\mathbf{s}_t, \mathbf{a}_t) = \begin{cases} \hat{R}(\mathbf{s}_t, \mathbf{a}_t) & \text{if } \hat{R}(\mathbf{s}_t, \mathbf{a}_t) > 0 \\ 2 \cdot \hat{R}(\mathbf{s}_t, \mathbf{a}_t) & \text{otherwise.} \end{cases}$$

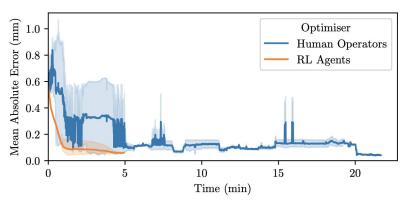
Results

Evaluation in simulation and on the real accelerator

- The sim2real transfer was successful!
- Trained agents achieve final beams in line with those achieved by the best-performing black-box optimisation algorithm and expert human operators.
- RL agents performed the optimisation around 10x faster than competitive optimisation algorithm and up to 4x faster than human experts.

Algorithm	MAE Median (mm)	Convergence Median (Steps)
Do Nothing	1.122	0
Zero	0.588	1
FDF	0.699	1
Random	0.267	101
Powell	0.259	119
COBYLA	0.105	34
Nelder-Mead	0.007	112
Bayesian	0.081	101
Ours	0.008	7
Ours (Machine)	0.036	12





Thank you!

Contact

DESY. Deutsches

Elektronen-Synchrotron

Jan Kaiser, Oliver Stein & Annika Eichler

Machine Beam Control (MSK)

jan.kaiser@desy.de | oliver.stein@desy.de | annika.eichler@desy.de

www.desy.de