Gravitational waves from inflation

Ema Dimastrogiovanni

The University of Groningen

Theory Colloquium - Hamburg - October 26th 2022

Talk based on papers in collaboration with:

Peter Adshead, Niayesh Afshordi, Matteo Fasiello, Tomohiro Fujita, Marc Kamionkowski, Eugene Lim, Ameek Malhotra, Daan Meerburg, Giorgio Orlando, Maresuke Shiraishi, Gianmassimo Tasinato

Inflation predicts a stochastic gravitational wave background

- How does it look like?
- What info does it provide on inflation?
- How do we characterise it (and distinguish it from other SGWBs)?

Stochastic background of gravitational waves

Cosmological sources:

* Inflation

* Reheating

. . .

- * Phase transitions
- * Cosmic strings

Astrophysical sources:

a stochastic gravitational wave background is expected, due e.g. to the superposition of signals from a large number of astrophysical sources (e.g. mergers of black holes, neutron stars,...) Introduction and motivations: cosmic inflation and primordial gravitational waves

• era of accelerated (exponential) expansion

The universe over time

- era of accelerated (exponential) expansion
- explains why CMB is nearly uniform

- era of accelerated (exponential) expansion
- explains why CMB is nearly uniform
- explains how those fluctuations are generated

Simplest realization: single-scalar field in slow-roll (SFSR)

- era of accelerated exponential expansion
- explains why CMB is nearly uniform
- explains how those fluctuations are generated

Scales

Gravitational waves

Einstein equations:

Perturbation around FRLW (homogenous&isotropic) background

 $ds^{2} = -dt^{2} + a^{2}(t) \left(\delta_{ij} + \gamma_{ij}\right) dx^{i} dx^{j}$

 $\gamma_i^i = \partial_i \gamma_{ij} = 0 \longrightarrow \text{two polarization states of the graviton: +, X}$

Gravitational waves

$$\ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} + k^2\gamma_{ij} = 16\pi G \Pi_{ij}^{TT}$$

• **homogeneous** solution: GWs from **vacuum fluctuations**

• **inhomogeneous** solution: GWs from **sources**

 $\Pi_{ij}^{TT} \propto \{\text{scalar fields, vector fields, fermions, tensors ...} \}$

Scales

... they re-enter after inflation and become dynamical again

 $\gamma_{\vec{k}}(\tau) = T(\tau, k) \gamma_{\vec{k}}^{\text{prim}}$

transfer function (subhorizon evolution)

Current bounds and detectability

Direct detection

Gravitational waves travel freely until today

Space get distorted as gravitational wave passes by a detector

Scales — **Experiments**

Scales — Experiments

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

Gravitational Wave Observatories

GEO600

Einstein Telescope (ET)

LIGO website

KAGRA

LIGO India

LISA: laser interferometer space antenna

LISA collaboration, 1702.00786

Scales — Experiments

Scales — Experiments

indirect detection

Primordial GW: indirect detection

Distortion of a circular patch of homogenous plasma due to the passing of a gravitational wave: wavelength of photons propagating along the two axis are also distorted!

Thomson scattering

Observational bounds/sensitivities

 $r_{0.002\,{\rm Mpc}^{-1}} < 0.056$

(Planck+BICEP2/KECK)

 $V^{1/4} \lesssim 1.6 \times 10^{16} \mathrm{GeV}$

Upper bound on the energy scale of inflation

More to come: BICEP Array, SPT-3G, Simons Observatory, CMB-S4, LiteBIRD, PICO, ... What info do gravitational waves provide on inflation?

GW can tell us a whole lot about inflation: examples

• GW from the amplification of vacuum fluctuations

$$\ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} + k^2\gamma_{ij} = 0$$

Production of gravitons out of the vacuum in an expanding universe!

Prediction and sensitivity limits

Standard SFSR would go undetected at small scales (red tilt)

Inflationary GW from vacuum fluctuations (SFSR)

• **Energy scale** of inflation:

 $V_{\text{inf}}^{1/4} \simeq 10^{16} \text{GeV}(r/0.01)^{1/4}$ $H \simeq 2 \times 10^{13} \text{GeV}(r/0.01)^{1/2}$

• Red tilt:
$$n_T \simeq -2\epsilon = -r/8$$

• Non-chiral: $P_L = P_R$

• Nearly Gaussian: $f_{\rm NL} \ll 1$

GW can tell us a whole lot about inflation:

- GW from the amplification of vacuum fluctuations
- Generation of GW from additional fields during inflation

GW can tell us a whole lot about inflation: examples

- GW from the amplification of vacuum fluctuations
- Generation of GW from additional fields during inflation

$$\ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} + k^2\gamma_{ij} = 16\pi G \Pi_{ij}^{TT}$$
anisotropic anisotropic stress-energy tensor

• Axion-gauge field models $\frac{\lambda \chi}{4f} F \tilde{F}$ [Anber - Sorbo 2009, Cook - Sorbo 2011, Barnaby - Peloso 2011, Adshead - Wyman 2011, Maleknejad - Sheikh-Jabbari, 2011, ED - Fasiello - Tolley 2012, ED - Peloso 2012, Namba - ED - Peloso 2013, Adshead - Martinec -Wyman 2013, ED - Fasiello - Fujita 2016 Agrawal - Fujita - Komatsu 2017, Caldwell - Devulder 2017, Domcke et al. 2018, ...]

- GW from extra non-minimally coupled spin-2 field (EFT formulation) [Bordin et al, 2018; ...]
- Spectator fields with small sound speed
 *ÿ*_{ij} + 3H*ÿ*_{ij} + k²*γ*_{ij} = 16πG Π^{TT}_{ij} ∝ ∂_iσ∂_jσ
 [Biagetti, Fasiello, Riotto 2012, Biagetti, ED, Fasiello, Peloso 2014, ...]
 ...

GW can tell us a whole lot about inflation:

- GW from the amplification of vacuum fluctuations
- Generation of GW from additional fields during inflation

Prediction and sensitivity limits

Prediction and sensitivity limits

Axion-Gauge fields models: Chern-Simons coupling

- naturally light inflaton
- support reheating
- mechanism for baryogenesis
- primordial black holes formation
- sourced chiral gravitational waves

[Freese - Frieman - Olinto 1990, Anber - Sorbo 2009, Cook - Sorbo 2011, Barnaby - Peloso 2011, Adshead -Wyman 2011, Maleknejad - Sheikh-Jabbari, 2011, ED - Fasiello - Tolley 2012, ED - Peloso 2012, Namba - ED - Peloso 2013, Adshead - Martinec -Wyman 2013, ED - Fasiello - Fujita 2016, Garcia-Bellido - Peloso - Unal 2016, Agrawal - Fujita - Komatsu 2017, Fujita - Namba - Obata 2018, Domcke - Mukaida 2018, Kaloper-Westphal 2021, Iarygina - Sfakianakis 2021, ...]

- Inflaton field dominates energy density of the universe
- Spectator sector contribution to curvature fluctuations negligible

[ED-Fasiello-Fujita 2016]

Axion-Gauge fields models: SU(2)

One helicity of the gauge field fluctuations is amplified from coupling with axion \longrightarrow the same helicity of the tensor mode is amplified

[ED-Fasiello-Fujita 2016]

[ED-Fasiello-Fujita, 2016 — Thorne et al, 2017]

Inflationary GW from vacuum fluctuations (SFSR)

• Energy scale of inflation: $V_{inf}^{1/4} \simeq 10^{16} \text{GeV}(r/0.01)^{1/4}$ $H \simeq 2 \times 10^{13} \text{GeV}(r/0.01)^{1/2}$

• Red filt:
$$n_T \simeq -2\epsilon = -r/8$$

• Non-**chiral**:
$$P_L = P_R$$

• Nearly Gaussian: $f_{\rm NL} \ll 1$

How do we detect chirality?

CMB angular power spectra & chirality

$$\mathcal{C}_{\ell}^{XY} = \int dk \,\Delta_{\ell}^{X}(k,\eta_{0}) \Delta_{\ell}^{Y}(k,\eta_{0}) \left[\mathcal{P}_{\gamma}^{R}(k) + \epsilon \cdot \mathcal{P}_{\gamma}^{L}(k) \right]$$

$$X, Y = I, E, B$$

$$\epsilon = \begin{cases} 1 \text{ for TT, EE, BB, TE} \\ -1 \text{ for TB, EB} \end{cases}$$

 \mathbf{V}

 \mathbf{V}

For parity-conserving theories $\langle TB \rangle, \langle EB \rangle = 0$ For parity-violating theories $\langle TB \rangle, \langle EB \rangle \neq 0$

[See Komatsu et al 2017 for forecasts on chirality from our model with LiteBIRD]

Constraining chirality at high frequencies (interferometers)

A planar detector cannot distinguish L from R for an isotropic SGWB

An 'effective' **non-planar** geometry can be realised by:

— using different (non co-planar) detectors at once — monopole

- exploiting the motion of a detector higher multiples **v** use of kinematically induced dipole: $SNR \simeq \frac{v}{10^{-3}} \frac{\Omega_{\text{GW},R} - \Omega_{\text{GW},L}}{1.4 \cdot 10^{-11}} \sqrt{\frac{T}{3 \text{ years}}}$ (LISA, ET)

* For (networks of) space-based interferometers see: Domcke et al, 2020 - Orlando et al., 2021

- * For ground-based networks see, e.g. : Seto-Taruya, 2007 Smith-Caldwell, 2017
- * For PTA: Belgacem-Kamionkowski, 2020

[See also Seto 2006-2007]

[See Komatsu et al 2017 for forecasts on chirality from our model with interferometers]

Inflationary GW from vacuum fluctuations

• Energy scale of inflation: $V_{inf}^{1/4} \simeq 10^{16} \text{GeV}(r/0.01)^{1/4}$ $H \simeq 2 \times 10^{13} \text{GeV}(r/0.01)^{1/2}$

• Red tilt:
$$n_T \simeq -2\epsilon = -r/8$$

• Non-chiral: $P_L = P_R$

Primordial non-Gaussianity and anisotropies in the GW energy density

Non-Gaussianity: beyond the power spectrum

Tensor non-Gaussianity

from interactions of the tensors with other fields or from self-interactions

Tensor non-Gaussianity

basic single-field inflation

$$f_{NL} = \mathcal{O}(r^2)$$

too small for detection

axion-gauge fields models

detectable by upcoming CMB space missions
 [Agrawal - Fujita - Komatsu 2017]

Non-Gaussianity (tensor / mixed): CMB constraints

• We do have constraints from CMB anisotropies and future B mode observations are expected to bring important improvements

Example: LiteBIRD-like experiment could detect an O(1) signal for

$$f_{\rm NL}^{tss, {\rm sq}} f_{\rm NL}^{ttt, {\rm sq}} f_{\rm NL}^{ttt, {\rm eq}}$$
 [Shiraishi, 2019]

• The formalism for constraining non-Gaussianity with CMB anisotropies is by now well developed

Non-Gaussianity at interferometers

Shapiro time delay:

$$\gamma^{''} + 2\mathcal{H}\gamma^{'} - [1 + (12/5)\zeta]\gamma_{,kk} = 0$$

$$\gamma_{ij} = A_{ij} e^{ik\tau + ik \cdot 2\int^{\tau} d\tau' \, \zeta[\tau', (\tau' - \tau_0)\hat{k}]} >$$

GW propagating in FRW background + long-wavelength perturbations

GW from different directions undergo different phase shift due to intervening structure

→ decorrelation → cannot measure bispectrum directly with interferometers

[Bartolo, De Luca, Franciolini, Lewis, Peloso, Riotto 2018]

Note: signal measured by an interferometer arises from the superposition of signals from a large number of Hubble patches (CLT)

[Adshead, Lim 2009 — Caprini, Figueroa 2018 — Bartolo, De Luca, Franciolini, Lewis, Peloso, Riotto 2018]

Ultra squeezed non-Gaussianity

Correlation among two short-wavelength modes (e.g. interferometer scale) and 1 very long-wavelength mode: the latter has not undergone propagation!

Signals originate from the same patch!

How do we constrain this ultra-squeezed bispectrum:

Look for anisotropies in the SGWB!

$$\Omega_{\rm GW}(k) = \bar{\Omega}_{\rm GW}(k) \left[1 + \frac{1}{4\pi} \int d^2 \hat{n} \, \delta_{\rm GW}(k, \hat{n}) \right]$$

[ED, Fasiello, Tasinato, PRL 124(2020)6 061302]

SGWB anisotropies from primordial non-Gaussianity

$$\Omega_{\rm GW}(k) = \bar{\Omega}_{\rm GW}(k) \left[1 + \frac{1}{4\pi} \int d^2 \hat{n} \,\delta_{\rm GW}(k, \hat{n}) \right]$$
isotropic
component
$$\Omega_{\rm GW}(k) \equiv \frac{1}{\rho_{\rm cr}} \frac{d\rho_{\rm GW}}{d\ln k}$$
energy density spectrum
for the stochastic GW background

k= comoving wavenumber (proportional to the observed frequency)

 \hat{n} = direction of incoming graviton

How do SGWB anisotropies relate to non-Gaussianity?

Soft limits and 'fossils'

long wavelength modes introduces a modulation in the primordial power spectrum of the short wavelength modes

$$B^{F\gamma\gamma} \equiv \langle F_L\gamma_S\gamma_S \rangle' \sim F_L \cdot \langle \gamma_S\gamma_S \rangle'_{F_L} \qquad f_{\rm NL}^{F\gamma\gamma}$$
$$\delta \langle \gamma_S\gamma_S \rangle \equiv \langle \gamma_S\gamma_S \rangle_{F_L} \sim \frac{B^{F\gamma\gamma}}{P_F(k_3)} \cdot F_L^* = P_\gamma(k_1) \cdot \frac{B^{F\gamma\gamma}}{P_F(k_3)P_\gamma(k_1)} \cdot F_L^*$$
$$\langle \gamma_S\gamma_S \rangle'_{\rm total} = P_\gamma(k_1) \left(1 + f_{\rm NL}^{F\gamma\gamma} \cdot F_L^*\right)$$

[ED, Fasiello, Jeong, Kamionkowski - 2014, ED, Fasiello, Kamionkowski - 2015, ...]

Soft limits and fossils

large scale variation large scale variations in the energy density of GW

$$\mathbf{d} = -(\eta_0 - \eta_{\rm in})\hat{n}$$
$$\Omega_{\rm GW}(k) = \bar{\Omega}_{\rm GW}(k) \left[1 + \frac{1}{4\pi} \int d^2 \hat{n} \,\delta_{\rm GW}(k, \hat{n})\right]$$

[ED, Fasiello, Tasinato, PRL 124(2020)6 061302]

Soft limits and fossils

[ED, Fasiello, Tasinato, PRL 124(2020)6 061302]

for derivation with in-in formalism and applications: see: **[ED, Fasiello, Pinol, 2022]**

Soft limits in inflation

• Extra fields / superhorizon evolution

[Chen - Wang 2009, Baumann - Green 2011, Chen et al 2013, ED - Fasiello - Kamionkowski 2015, ...]

Soft limits in inflation

• Extra fields

Soft limits reveal (extra) fields mediating inflaton or graviton interactions

squeezed bispectrum delivers info on mass spectrum!!!

Soft limits in inflation

- Extra fields / superhorizon evolution
 [Chen Wang 2009, Baumann Green 2011, Chen et al 2013, ED Fasiello Kamionkowski 2015, ...]
- Non-Bunch Davies initial states

[Holman - Tolley 2007, Ganc - Komatsu 2012, Brahma - Nelson - Shandera 2013, ...]

- Broken space diffs
 - (e.g. space-dependent background)

[Endlich et al. 2013, ED - Fasiello - Jeong - Kamionkowski 2014, Celoria - Comelli - Pilo - Rollo 2021...]

Ideal probe for (extra) fields, pre-inflationary dynamics, (non-standard) symmetry patterns

SGWB anisotropies from primordial non-Gaussianity

• Typical amplitude of these anisotropies:

Anisotropies from propagation

GW propagate through the perturbed universe \longrightarrow subject to Sachs-Wolfe / integrated Sachs-Wolfe ..., just like CMB photons

[See Contaldi, 2017- Bartolo et al 2019 - for full Boltzmann treatment; see also: Pitrou et al, 2020]

Boltzmann treatment for gravitational waves

FRLW in Poisson gauge:
$$ds^{2} = a^{2}(\eta) \left[-e^{2\Phi} d\eta^{2} + (e^{-2\Psi} \delta_{ij} + \chi_{ij}) dx^{i} dx^{j} \right]$$
Boltzmann equation for
the distribution function of gravitons

$$(\delta_{GW} \propto \Gamma)$$

$$\Gamma(\eta_{0}, \vec{x}_{0}, \hat{n}, q) = \underbrace{\Gamma(\eta_{i}, \vec{x}_{i}, q)}_{\Gamma_{I}} + \underbrace{\Phi(\eta_{i}, \vec{x}_{i}) + \int_{\eta_{i}}^{\eta_{0}} d\eta (\Phi' + \Psi')}_{\Gamma_{S}}$$
From propagation in the
inhomogeneous universe

$$(SW + ISW)$$
Time of emission
of the observer

[Bartolo et al 2019]

Cross-correlations of GW and CMB anisotropies

[Adshead, Afshordi, ED, Fasiello, Lim, Tasinato 2020 Malhotra, ED, Fasiello, Shiraishi 2020 ED, Fasiello, Malhotra, Meerburg, Orlando 2021]

Projected constraints on $F_{\rm NL}^{\rm tss}$

$$F_{ij} = \sum_{XY} \sum_{\ell=\ell_{\min}}^{\ell_{\max}} \frac{\partial C_{\ell}^{X}}{\partial \theta_{i}} \left(\mathcal{C}_{\ell}^{XY} \right)^{-1} \frac{\partial C_{\ell}^{Y}}{\partial \theta_{j}} \qquad X, Y = \{\text{TT,GW,GW-T}\}$$

$$\mathscr{C}_{\ell} = \frac{2}{2\ell+1} \begin{bmatrix} (C_{\ell}^{\mathrm{TT}})^2 & (C_{\ell}^{\mathrm{GW}-\mathrm{T}})^2 & C_{\ell}^{\mathrm{TT}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} \\ (C_{\ell}^{\mathrm{GW}-\mathrm{T}})^2 & (C_{\ell}^{\mathrm{GW}})^2 & C_{\ell}^{\mathrm{GW}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} \\ C_{\ell}^{\mathrm{TT}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} & C_{\ell}^{\mathrm{GW}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} & \frac{1}{2}(C_{\ell}^{\mathrm{GW}-\mathrm{T}})^2 + \frac{1}{2}C_{\ell}^{\mathrm{TT}}C_{\ell}^{\mathrm{GW}} \end{bmatrix}$$

• SKA (assumed 50 identical pulsars)

Projected constraints on $F_{\rm NL}^{\rm tss}$

[ED, Fasiello, Malhotra, Meerburg, Orlando 2021]

SGWB anisotropies: astrophysical sources

- SGWB from superposition of signals from black holes, neutron star binaries
- ASGWB also expected to be anisotropic due to the distribution of sources
- Anisotropies in the ASGWB can inform us about many things (e.g. start formation model, mass distribution, etc)
 [see e.g. Cusin et al, 2018-19-20]
- On large scales anisotropies in the ASGWB do not correlate strongly with CMB, (cross-correlations with LSS observables much more effective) [Ricciardone et al, 2021]

GW-CMB correlation excellent probe of cosmological SGWB!

Astrophysical foregrounds

Modeling of astrophysical background using results in [Cusin, Dvorkin, Pitrou, Uzan 2018-2019]

Anisotropies from propagation

Models with sharp peaks in the scalar power spectrum (e.g. PBH production)

• a large GW background with sharp peaks induced at second order from scalar perturbations

• the anisotropies can be typically enhanced by O(10-100) $(\partial \ln \Omega_{GW})$

• the angular power spectrum of the SGWB anisotropies inherits the frequency dependence

Primordial gravitational waves

 Different production mechanisms during inflation lead to a variety of signals

- We can characterise the various GW sources from inflation using:
 - spectral shape
 - chirality
 - o non-Gaussianity
 - SGWB anisotropies
- Powerful observables with the potential to disentangle inflationary GW from those generated in the post-inflationary universe