## **Accelerator-based Searches** for Sub-GeV Dark Matter

Tim Nelson - SLAC

6th Workshop on Applications of Dielectric Laser Accelerators February, 21 2023





NATIONAL ACCELERATOR LABORATORY



### Wait...wasn't this supposed to be a talk about LDMX?

LDMX (Light Dark Matter eXperiment) is a great experiment in this space. There are others, each having somewhat unique beam requirements.

- I'll get to LDMX, but will more generally survey...
- Light (sub-GeV) particle Dark Matter and dark forces
- fixed-target accelerator based searches
  - what are the goals?
  - how do they work?
  - what are the beam requirements?

- Snowmass taught me more communication is needed to identify opportunities.



### Dark Matter



#### waves











### Particle DM and Thermal Contact

Discoverable particle DM has significant non-gravitational interactions with visible matter.  $\Rightarrow$  most discoverable candidates for particle Dark Matter had thermal contact with visible matter in early universe. Contact between Dark Matter and visible matter plays a role in generating the observed abundance, often leading to testable predictions.

A particularly simple and predictive mechanism for generating the Dark Matter abundance is "thermal freeze-out":





Searches for WIMPs where we most expect to find them haven't seen anything.

Within next few years, will either find WIMPs or rule out most of the accessible parameter space.





WIMP Mass  $[\text{GeV}/c^2]$ 





### **Broadening the Search for Thermal Relic DM**



### MeV-GeV thermal relic DM requires new, comparably light mediators to achieve required annihilation cross-section for thermal freeze-out.



$$0^{-29} \mathrm{cm}^3 \mathrm{s}^{-1} \left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^2$$
 Lee/Weinberg '79  
 $\implies m_{\chi} \gtrsim 2 \mathrm{GeV}$ 





### **Benchmark Example: Dark Photon Mediator**

A dark photon, A', can mix with the SM photon, generating an  $\epsilon e$  coupling to SM fermions:

$$\epsilon \sim \frac{eg_D}{16\pi^2} \log \frac{M_\psi}{\Lambda} \sim 10^{-4} - 10^{-4}$$

If one or both U(1) in GUT,  $\epsilon$  as small as  $10^{-7}$ 







### **Producing Dark Photons**



SLAC







### **Producing Dark Photons**









### **Dark Bremsstrahlung Kinematics**



This shapes the designs of many experiments.















Many searches are simply for  $m(l^+l^-)$  resonances.







A' becomes long lived at small couplings.

$$\gamma c au \propto rac{1}{\epsilon^2 m_{
m A^\prime}^2}$$

Leads to constraints from beam dump experiments



decay length for Ebeam 20





A' becomes long lived at small couplings.

$$\gamma c au \propto rac{1}{\epsilon^2 m_{
m A^\prime}^2}$$

Leads to constraints from beam dump experiments





### **Resonance Search**

Example: APEX @ JLab (SLAC is a collaborator)

Resonance search w/ thin target, Hall A High-Resolution Spectrometers

Key background: SM tridents (irreducible)

| Beam<br>Energy | Beam<br>Current | Rep. Rate | Bunch<br>Charge ( <i>e</i> -) | Spot Size |
|----------------|-----------------|-----------|-------------------------------|-----------|
| 1.1 GeV        | 50 µA           | 2 ns      | 6.25E+05                      | <1 mm     |
| 2.2 GeV        | 70 µA           | 2 ns      | 8.75E+05                      | <1 mm     |
| 3.3 GeV        | 80 µA           | 2 ns      | 1E+06                         | <1 mm     |
| 4.4 GeV        | 60 µA           | 2 ns      | 7.5E+05                       | <1 mm     |

#### **Considerations**:

- beam energy determines mass window
- •very small momentum acceptance of spectrometers allows high currents
- detector occupancy limits beam current given rep rate
- spectrometer optics require small, low-emittance beam

Other experiments (e.g. AI @ Mainz) are similar.





## Resonance Search + Precision Vertexing

Example: HPS @ JLab (SLAC-led collaboration)

Resonance search with thin target using compact, high rate spectrometer: Silicon Vertex Tracker (SVT) / ECal trigger with ~2 ns resolution

Key background: SM tridents from target

| Beam<br>Energy | Beam<br>Current | Rep.<br>Rate | Bunch<br>Charge (e-) | Spot Size | targ    |
|----------------|-----------------|--------------|----------------------|-----------|---------|
| 2.2 GeV        | 50 nA           | 2 ns         | 625                  | <50 µm    |         |
| 4.4 GeV        | 120 nA          | 2 ns         | 1500                 | <50 µm    | $e^{-}$ |
| 6.6 GeV        | 120 nA          | 2 ns         | 1500                 | <50 µm    |         |

**Considerations:** 

- beam energy determines mass window
- occupancy in high-acceptance detector limits bunch charge
- •SVT requires very small, clean, and stable beam spot.



A' Mass (GeV)

### **Active Beam Dump**

### Example: NA64 @ CERN

Search for long-lived particles decaying to electrons

Key background: hadronic contamination in secondary electron beam

| Beam<br>Energy | Beam<br>Current | Rep. Rate           | Bunch<br>Charge (e-) | Spot Size |
|----------------|-----------------|---------------------|----------------------|-----------|
| 150<br>GeV     | 200 fA          | continuous<br>spill | continuous<br>spill  | ~mm-cm    |

#### **Considerations**:

- high energy boosts decay length
- sensitivity limited by current
- •low charge/time is critical need single-electron events (~ $le/\mu$ sec)



e







### Shallow Dump + Spectrometer w/ Vertexing

Examples: high-intensity HPS, AWAKE (concepts)

Search for long-lived dark photons

with spectrometer downstream of shallow dump<sup>e-</sup>

Key background: fake vertices from leakage of charged particles

|       | Beam Energy<br>(GeV) | Beam<br>Current | Rep. Rate   | Bunch<br>Charge |
|-------|----------------------|-----------------|-------------|-----------------|
| hiHPS | 6.6                  | 10 µA           | 2 ns        | 1E+05           |
| AWAKE | 50-1000              | 300 pA (avg)    | 25 ns (min) | 1.5E+07         |

**Considerations**:

- high energy boosts decay length\*
- high-rate beam with fast detectors\*
- Radiation hardness is a serious issue

Fierce competition from similar p<sup>+</sup> beam experiments (NA62, FASER, DarkQuest,...) 5x10<sup>9</sup> electron bunch

SLAC









![](_page_22_Figure_0.jpeg)

 $m_{\chi} \wedge \underline{\alpha}_{A'} \in \mathcal{A}_{A'}, \epsilon$  and  $m_{A'} \wedge m_{A'} \wedge m_{\chi}$  for converting  $(M_{A'}, \epsilon) \rightarrow (M_{\chi}, y)$  $\alpha_D \leq 1$ 

![](_page_22_Picture_4.jpeg)

![](_page_23_Figure_0.jpeg)

 $N \propto \epsilon^4$ 

Interesting sensitivity for  $\sim 10^{22}$  particles on target

### ter Search Approaches

Missing Momentum: Detect the production of DM

![](_page_23_Figure_5.jpeg)

Interesting sensitivity for  $\sim 10^{12}$  particles on target

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

### Example: BDX @ JLab (proposed)

Search for production and re-scattering of weakly interacting particles behind high-power beam dump

Key background: Cosmics and neutrinos

| Beam   | Beam Current | Rep. | Bunch                    | Spot |
|--------|--------------|------|--------------------------|------|
| Energy |              | Rate | Charge (e <sup>_</sup> ) | Size |
| 11 GeV | 60 µA        | 2 ns | few E11                  | ~cm  |

#### **Considerations**:

- higher energy is better
- •huge total charge required (~1000 C)
- higher bunch charge / lower rep rate would minimize cosmics
- •In concepts with longer baselines and low repetition rate, time-of-flight can be used to reduce neutrino backgrounds

Concept also considered for ILC

![](_page_24_Picture_11.jpeg)

![](_page_24_Figure_13.jpeg)

![](_page_24_Figure_14.jpeg)

| A' = 3 m | 1/ |  |
|----------|----|--|
|          | X  |  |
| //       |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
| /        |    |  |
|          |    |  |
| •        |    |  |
|          |    |  |
|          |    |  |
|          |    |  |
| ab       |    |  |
| T        |    |  |
| ents     |    |  |
|          |    |  |
| 2        |    |  |
| )-       |    |  |
|          |    |  |

![](_page_24_Picture_16.jpeg)

## Missing Momentum/Energy

### Example: LDMX @ SLAC (proposed)

Search for missing momentum in production of weakly interacting particles using LCLS-II drive beam

Key background: hard brem  $\rightarrow$  rare photo-nuclear

| Beam    | Beam Current | Rep.  | Bunch       | Spot   |
|---------|--------------|-------|-------------|--------|
| Energy  |              | Rate  | Charge (e-) | Size   |
| 4/8 GeV | 6-30 pA      | 27 ns | ~1 e-       | ~ 5 cm |

#### **Considerations:**

- higher energies are beneficial (up to at least ~20 GeV)
- •achieves full potential at ~1016 EOT
- need ~single electron events: high rep-rate, lowcurrent beam and fast detectors

• pure e- beam with small energy spread is important Beamline construction at SLAC is underway, development of LDMX supported as a DOE "Dark Matter New Initiative"

![](_page_25_Figure_10.jpeg)

![](_page_25_Picture_11.jpeg)

LDMX and World Accelerator Light DM Program

![](_page_25_Figure_13.jpeg)

![](_page_25_Picture_14.jpeg)

## Summary of Beam Requirements (most challenging)

|                                                                 | Beam Energy                                                             | Beam Current                                       | Bunch Charge / Rep Rate                                               | Beam Spot Size |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|----------------|
| Resonance Search<br>(e.g. APEX)                                 | Tuned according to<br>spectrometer acceptance<br>and desired mass range | As high as possible, limited by detector occupancy | low charge / high rep rate<br>(detector occupancy)                    | <1mm           |
| Resonance Search +<br>Precision Vertexing<br>(e.g. HPS)         | Tuned according to<br>spectrometer acceptance<br>and desired mass range | As high as possible, limited by detector occupancy | low charge / high rep rate<br>(detector occupancy)                    | <50 µm         |
| Simple Beam Dump<br>(e.g. E137 - <mark>in backup</mark> )       | As high as possible                                                     | As high as possible<br>(need >100 C)               | As high as possible (cosmic backgrounds)                              | can be large   |
| Active Beam Dump<br>(e.g. NA64)                                 | As high as possible                                                     | As high as possible, limited by detector occupancy | Requires O(1) e <sup>-</sup> per detector integration time (1-100 ns) | can be large   |
| Beam Dump +<br>Spectrometer w/Vertexing<br>(e.g. AWAKE concept) | As high as possible                                                     | As high as possible, limited by detector occupancy | low charge / high rep rate<br>(detector occupancy)                    | can be large   |
| Positron missing mass<br>(e.g. PADME - in backup)               | As high as possible                                                     | As high as possible, limited by detector occupancy | low charge / high rep rate<br>(detector occupancy)                    | <1mm           |

### **Searches for Dark Matter**

|                         | Beam Energy         | Beam Current                 | Bunch Charge / Rep Rate                   | Beam Spot Size |
|-------------------------|---------------------|------------------------------|-------------------------------------------|----------------|
| Beam Dump               | As high as possible | As high as possible          | Prefer high charge / Low rep-             | can be large   |
| (e.g. BDX)              |                     | (need >100 C)                | rate (cosmic backgrounds)                 |                |
| Missing Energy/Momentum | As high as possible | As high as possible, limited | Requires O(1) e <sup>-</sup> per detector | can be large   |
| (e.g. LDMX)             |                     | by detector occupancy        | integration time (1-100ns)                |                |

**Searches for Visibly Decaying Mediators** 

![](_page_26_Picture_6.jpeg)

### Conclusions

- Fixed target experiments are good candidates for early deployment of new accelerator technologies. (Colliding beams are hard!)
- Electron fixed-target searches for dark matter / mediators utilize a wide variety of techniques with widely varying beam parameters.
- In general, the demands are extreme in at least one of...
  - highest possible current (total charge is king)
  - highest possible repetition rate (low charge/bunch to reduce pileup)

![](_page_27_Picture_7.jpeg)

- No experimental concept obviously stands out as ideal for early application
  - of PWA or ACHIP, but we should keep exploring the possibilities.

# Additional Slides

### Simple Beam Dump

### Example: E137 @ SLAC (1980-1982!!)

Search for long-lived particles with high-power H<sub>2</sub>O-AI dump using large wire chambers and scintillator hodoscope

Key background: Cosmics and other accidentals

| Beam   | Beam Current     | Rep.   | Bunch       | Spot |
|--------|------------------|--------|-------------|------|
| Energy |                  | Rate   | Charge (e-) | Size |
| 20 GeV | high (30C total) | 120 Hz | few E11     | ~cm  |

#### **Considerations**:

- Total charge is king
- high bunch charge / low duty cycle minimizes cosmics and other environmental accidentals
- Nature of target / detector allows relatively large beams

E137 and similarly un-subtle experiments continue to have best sensitivity to some models!

![](_page_29_Figure_10.jpeg)

![](_page_29_Picture_11.jpeg)

 $24^{10^{\circ}}$ 

### **Positron Missing Mass**

### Example: PADME @ LNF, JLab, ...

"Missing mass" search for resonances in e+e- annihilation in fixed target.

Key background: continuum of missing energy from limited acceptance

| Beam<br>Energy | Beam Current | Rep. Rate | Bunch Charge<br>(e <sup>-</sup> ) | Spot<br>Size |
|----------------|--------------|-----------|-----------------------------------|--------------|
| 550 MeV        | 250 fA       | 50 Hz     | 3E4 in 250 nS                     | ~mm          |

**Considerations:** 

| <ul> <li>higher</li> </ul> | energies | are benefic | ial w |
|----------------------------|----------|-------------|-------|
|----------------------------|----------|-------------|-------|

• low charge/time is critical to avoid pileup

| Pushing concept further requires high-rate, low- | Se |  |  |  |
|--------------------------------------------------|----|--|--|--|
| current beam, fast detectors, higher energy      |    |  |  |  |

Reconstruction of mass without measurement of decay products.

e-

еE

Sensitive to both visible and invisible decays of **on-shell** mediators.

![](_page_30_Figure_11.jpeg)

![](_page_30_Picture_12.jpeg)

![](_page_30_Picture_18.jpeg)

![](_page_31_Figure_0.jpeg)

 $N\propto\epsilon^4$ 

Interesting sensitivity for  $\sim 10^{22}$  particles on target

![](_page_31_Figure_3.jpeg)

Missing Momentum: Detect the production of DM

![](_page_31_Figure_5.jpeg)

Interesting sensitivity for  $\sim 10^{12}$  particles on target

![](_page_31_Picture_7.jpeg)

![](_page_31_Picture_8.jpeg)

### **DM** at Accelerators

Beam Dumps: Produce and detect DM

![](_page_32_Figure_2.jpeg)

 $N \propto \epsilon^4$ 

Interesting sensitivity for  $\sim 10^{22}$  particles on target

Missing Energy: Detect the production of DM

![](_page_32_Figure_7.jpeg)

Interesting sensitivity for  $\sim 10^{11}$  particles on target (but backgrounds beyond  $\sim 10^{14}$  particles on target)

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_10.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)

![](_page_34_Figure_2.jpeg)

for dark photon mediator

![](_page_34_Picture_5.jpeg)

![](_page_34_Figure_6.jpeg)

![](_page_34_Picture_7.jpeg)

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_5.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_36_Figure_6.jpeg)

### LDMX measures the kinematics of dark matter production, enabling detailed study of the dark sector!

![](_page_37_Figure_2.jpeg)

 $1\sigma$ ,  $2\sigma$  confidence ellipses

![](_page_37_Figure_4.jpeg)

for dark photon mediator

![](_page_37_Picture_6.jpeg)

![](_page_37_Picture_7.jpeg)

![](_page_37_Picture_8.jpeg)

#### Invisible Signatures

- other mediators
- QCD axions
- millicharged particles: arise from ~massless dark photons and thrust into spotlight by EDGES anomaly
- inelastic Dark Matter (iDM):
   large mass-splittings in dark states
- Strongly Interacting Massive Particles (SIMPs): a confining interaction in the dark sector (both visible and invisible signatures)
- freeze-in DM

#### Visible Signatures (DMNI PRD 1, Thrust 2)

- Dark Photons
- Axion-like particles (ALPs)

#### <u>arXiv:1807.01730</u> [hep-ph]

![](_page_38_Figure_12.jpeg)

![](_page_38_Figure_13.jpeg)

![](_page_38_Picture_14.jpeg)

#### Invisible Signatures

- other mediators
- QCD axions
- millicharged particles: arise from ~massless dark photons and thrust into spotlight by EDGES anomaly
- inelastic Dark Matter (iDM):
   large mass-splittings in dark states
- Strongly Interacting Massive Particles (SIMPs): a confining interaction in the dark sector (both visible and invisible signatures)
- freeze-in DM

#### Visible Signatures (DMNI PRD 1, Thrust 2)

- Dark Photons
- Axion-like particles (ALPs)

#### arXiv:1807.01730 [hep-ph]

![](_page_39_Figure_12.jpeg)

#### adapted from <a href="https://arxiv.org/abs/2112.09979">https://arxiv.org/abs/2112.09979</a>

![](_page_39_Picture_14.jpeg)

![](_page_39_Picture_15.jpeg)

![](_page_39_Picture_16.jpeg)

 $\epsilon$ 

#### Invisible Signatures

- other mediators
- QCD axions
- millicharged particles: arise from ~massless dark photons and thrust into spotlight by EDGES anomaly
- inelastic Dark Matter (iDM): large mass-splittings in dark states
- Strongly Interacting Massive Particles (SIMPs): a confining interaction in the dark sector (both visible and invisible signatures)
- freeze-in DM

#### Visible Signatures (DMNI PRD 1, Thrust 2)

- Dark Photons
- Axion-like particles (ALPs)

#### <u>arXiv:1807.01730</u> [hep-ph]

![](_page_40_Figure_12.jpeg)

![](_page_40_Picture_13.jpeg)

![](_page_40_Picture_14.jpeg)

#### Invisible Signatures

- other mediators
- QCD axions
- millicharged particles: arise from ~massless dark photons and thrust into spotlight by EDGES anomaly
- inelastic Dark Matter (iDM): large mass-splittings in dark states
- Strongly Interacting Massive Particles (SIMPs): a confining interaction in the dark sector (both visible and invisible signatures)
- freeze-in DM

#### Visible Signatures (DMNI PRD 1, Thrust 2)

- Dark Photons
- Axion-like particles (ALPs)

#### <u>arXiv:1807.01730</u> [hep-ph]

![](_page_41_Figure_12.jpeg)

LDMX also enables measurements of electron-nucleon cross-sections that would be critical to the neutrino program

PHYSICAL REVIEW D 101, 053004 (2020)

![](_page_41_Picture_16.jpeg)

![](_page_41_Figure_17.jpeg)

![](_page_41_Picture_18.jpeg)

## **Missing Momentum: Operational Design Drivers**

#### Signature:

- I. substantial energy loss by incoming beam electron
- 2. substantial transverse momentum change across target
- 3. no other particles with significant energy in final state

Goal: low background from ~10<sup>16</sup> e<sup>-</sup>

### **Accelerator Requirements:**

- Low-intensity multi-GeV beam (10<sup>16</sup> e<sup>-</sup> = 50 pA-years)
- Spread out beam in space/time (large beamspot ~ 20 cm<sup>2</sup>, high repetition-rate ~ 40 MHz) allows individual events to be distinguished at higher rate (a few electrons/pulse) in detectors with fine granularity and resolution in both space and time spreads out peak radiation doses so radiation tolerance is less an issue for tracking and ECal

![](_page_42_Figure_9.jpeg)

![](_page_42_Picture_11.jpeg)

![](_page_42_Picture_12.jpeg)

![](_page_42_Picture_13.jpeg)

- charge bunches to LESA with LDMX as primary user.

![](_page_43_Figure_7.jpeg)

## **Missing Momentum: Physics Design Drivers**

![](_page_44_Figure_1.jpeg)

![](_page_44_Picture_4.jpeg)

## **Missing Momentum: Physics Design Drivers**

### Signature:

- I.substantial energy loss by incoming beam electron
- 2. substantial transverse momentum change across target
- 3.no other particles with significant energy in final state

Goal: low background from ~10<sup>16</sup> e<sup>-</sup>

#### **Detector Requirements:**

- Tagging tracker with small acceptance and good resolution at beam energy
- •Recoil tracker with large acceptance and good resolution at low momentum
- Deep ECal with good resolution and no projective cracks
- •ECal with excellent granularity and sensitivity for distinguishing EM/Had showers and tracking muons
- Deep HCal with good segmentation and low veto energy threshold for neutral hadrons
- Efficient missing energy trigger and high-rate data acquisition

![](_page_45_Figure_13.jpeg)

![](_page_45_Picture_14.jpeg)

![](_page_45_Picture_15.jpeg)

![](_page_45_Picture_16.jpeg)

![](_page_45_Picture_17.jpeg)

### LDMX Detector Overview

#### LDMX Whitepaper <u>arXiv:1808.05219</u>

![](_page_46_Picture_2.jpeg)

![](_page_46_Figure_3.jpeg)

![](_page_46_Picture_4.jpeg)

## LDMX Subsystems and Technology Choices

### WBS I.I – Beamline and Magnet: (SLAC core competency)

- final section of beam pipe with vacuum window
- common dipole magnet provides high(low) field for incoming(recoiling) e-

WBS 1.3 – Trackers: (from HPS Silicon Vertex Tracker built at SLAC) Tagging Tracker: long, narrow, in uniform 1.5 T field for  $p_e = 4$  GeV •7 double-layers provide robust tag of incoming electrons Recoil Tracker: short, wide, in fringe field for  $p_e = 0.05 - 1.2$  GeV •4 double-layers + 2 axial-only layers provide good acceptance,

 $\Delta p_T$  resolution limited by multiple scattering in target

![](_page_47_Picture_6.jpeg)

![](_page_47_Figure_7.jpeg)

![](_page_47_Picture_8.jpeg)

## LDMX Subsystems and Technology Choices

### WBS I.4 – ECal: from CMS HGCal (UCSB -

- Si-W sampling calorimeter: fast, dense, high r
- 40 X<sub>0</sub> deep: excellent containment of EM sho
- Granularity and MIP sensitivity: imaging and I rejecting rare backgrounds (e.g. photonuclea
- designed to provide fast trigger (here using B

![](_page_48_Figure_6.jpeg)

CERN Test Beam Data

![](_page_48_Picture_8.jpeg)

![](_page_48_Picture_9.jpeg)

## **LDMX Subsystems and Technology Choice**

### WBS 1.5 – HCal: from Mu2e Cosmic Ray Veto (UVA – Group)

- extruded polystyrene scintillator with WLS fibers and SiPM readout
- main HCal: sufficient depth for rare events with very hard neutrons ( $E_n \sim E_{\gamma}$ )
- side HCal: important for high-multiplicity final states and wide-angle brems

![](_page_49_Picture_5.jpeg)

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_8.jpeg)

![](_page_49_Figure_10.jpeg)

Absorber thickness: 50 mm

![](_page_49_Picture_12.jpeg)

## LDMX Subsystems and Technology Choices

![](_page_50_Figure_1.jpeg)

- •Low-energy ECal trigger requires knowledge of n<sub>e</sub>/pulse
- layers of segmented scintillators provides fast estimate of  $n_{\rm e}$
- •also considering segmented LYSO active target: provides additional information about hard interactions in the target

![](_page_50_Picture_5.jpeg)

- back end DAQ based on PCIe FPGA platform developed at SLAC
- trigger DAQ based on APx DAQ developed for CMS

![](_page_50_Picture_8.jpeg)

zs Tracker Front-end

ECal Front-end

HCal Front-end

Target Front-end

![](_page_50_Picture_13.jpeg)

boarc

![](_page_50_Picture_14.jpeg)

#### 4 GeV trigger summary

|                | Fraction of      | Trigger Scintillator | Missing Energy  | Calorimeter Trigger | Rate | Signal       |
|----------------|------------------|----------------------|-----------------|---------------------|------|--------------|
| $n_{\rm beam}$ | Bunches (Signal) | Efficiency           | Threshold [GeV] | Efficiency          | [Hz] | Inefficiency |
| 1              | 36.8% (36.8%)    | 100%                 | 2.50            | 99.2%               | 588  | 0.3%         |
| 2              | 18.4% (36.8%)    | 97.4%                | 2.35            | 98.0%               | 1937 | 1.7%         |
| 3              | 6.1% (18.4%)     | 92.4%                | 2.70            | 91.6%               | 1238 | 2.8%         |
| 4              | 1.5% (6.1%)      | 84.3%                | 3.20            | 77.2%               | 268  | 1.6%         |
| Total          |                  |                      |                 |                     | 4000 | 8.8%         |

![](_page_50_Figure_17.jpeg)

#### **Bittware XUP-VV8**

![](_page_50_Figure_19.jpeg)

Advanced Processor demonstrator (APd)

![](_page_50_Picture_21.jpeg)

![](_page_50_Picture_22.jpeg)

![](_page_50_Picture_23.jpeg)

![](_page_50_Picture_24.jpeg)

## LDMX Subsystems and Technology Choices

### WBS 1.7 – Computing and Software

LDMX requires significant computing resources: Datasets and MC will total ~8 PB (disk+tape) after filtering and require ~15M CPU hours to process.

- •SLAC Shared Scientific Data Facility (SDF)
- •LDMX distributed computing pilot project: Lightweight Distributed Computing System (LDCS) arXiv:2105.02977 [hep-ex]

Idmx-sw: C++ software framework for event generation and reconstruction

https://github.com/LDMX-Software/Idmx-sw/

SLAC Shared Scientific Data Facility (SDF)

![](_page_51_Figure_8.jpeg)

#### **fear**

Job1

Running

#### CPU (TFLOPS) 2,500.0 2,000.0 1,500.0 1,000.0500.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

Year

### LDCS Pilot Project

![](_page_51_Figure_13.jpeg)

![](_page_51_Picture_14.jpeg)

![](_page_51_Figure_15.jpeg)

![](_page_51_Picture_16.jpeg)

## **LDMX Physics Studies**

![](_page_52_Figure_1.jpeg)

![](_page_52_Picture_4.jpeg)

## **LDMX Physics Studies**

![](_page_53_Figure_1.jpeg)

![](_page_53_Figure_2.jpeg)

Robust software and computing infrastructure have enable detailed, high-statistics performance studies,

Preliminary ECal as Target missing energy study: 4.1M CPU hours, 1.1 PB data

![](_page_53_Figure_5.jpeg)

![](_page_53_Figure_6.jpeg)

![](_page_53_Figure_7.jpeg)

![](_page_53_Picture_8.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Picture_1.jpeg)

### LDMX Collaboration and DMNI Consortium

### Collaboration, formed in Spring 2019...

![](_page_55_Figure_2.jpeg)

**Collaboration Board** 

Chair: J.Mans (UMN)

Senior Investigators Board Chairs J. Incandela (UCSB) B. Echenard (Caltech)

**Conference Chair** 

C. Group (UVA)

**CIDER Committee** 

T. Eichlersmith (UMN)

![](_page_55_Picture_10.jpeg)

![](_page_55_Picture_11.jpeg)

## **LDMX** Collaboration and DMNI Consortium

### Collaboration, formed in Spring 2019...

![](_page_56_Figure_2.jpeg)

![](_page_56_Figure_3.jpeg)

...maps onto DMNI Consortium

SLAC: PI Nelson (HPS SVT)

• Beamline/Magnet, Tracking, Computing, Project Management

UCSB: PI Incandela (CMS HGCal modules)

- ECal
- U. Minn: PI Mans (CMS HGCal electronics)
- ECal
- Caltech: PI Echenard
- HCal and Trigger Scintillator
- U.VA: PI Group (Mu2e CRV)
- HCal
- FNAL: PI Tran
- TDAQ
- Texas Tech: PI Whitbeck
- Trigger Scintillator

Additional collaborators: Lund: Åkesson, Pöttgen – (HCal, Computing) Stanford: Tompkins – (TDAQ)

#### **Collaboration Board**

Chair: J.Mans (UMN)

#### **Senior Investigators Board** Chairs J. Incandela (UCSB) B. Echenard (Caltech)

#### **Conference Chair**

C. Group (UVA)

#### **CIDER Committee**

T. Eichlersmith (UMN)

![](_page_56_Figure_27.jpeg)

![](_page_56_Picture_28.jpeg)