
FeynArts and FormCalc

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, FeynArts and FormCalc – p.1

The Diagrammatic Challenge

loops 0 1 2 3+
2 → 2 topologies 4 99 2214 50051
typical accuracy 10% 1% .1% .01%
general procedure known yes yes 1 → 1 no
current limits 2 → 8 2 → 6 2 → 2 1 → 1

Plus:

• Phase-space integration,

• Treatment of unstable particles,

• Numerical difficulties,

• . . .

T. Hahn, FeynArts and FormCalc – p.2

Feynman Diagram Cookbook

1. Draw all possible types of diagrams with the given number
of loops and external legs

Topological task, no physics input needed∗

∗ Well, almost: need to know allowed adjacencies in physics model, e.g. renormalizable theories have at most
3- and 4-point vertices.

T. Hahn, FeynArts and FormCalc – p.3

Feynman Diagram Cookbook

2. Figure out what particles can run on each type of diagram

e

e

t

tH
e

e

t

tG0
e

e

t

tγ
e

e

t

tZ

Combinatorial task, requires physics input (model)

In this case, in the SM, three of the topologies were not realized though one was realized multiply.

Note further that the e-e-scalar couplings are suppressed by m2
e/M2

W and thus usually neglected.
These are selections one would typically make at this stage, i.e. diagrammatically.

T. Hahn, FeynArts and FormCalc – p.4

Feynman Diagram Cookbook

3. Translate the diagrams into formulas by applying the
Feynman rules

e

e

t

tγ = 〈v1| ieγµ |u2〉
︸ ︷︷ ︸

left vertex

gµν
(k1 + k2)2

︸ ︷︷ ︸
propagator

〈u4|
(
− 2

3 ieγν
)
|v3〉

︸ ︷︷ ︸
right vertex

Database look-up

T. Hahn, FeynArts and FormCalc – p.5

Feynman Diagram Cookbook

4. Contract the indices, take the traces, etc.

e

e

t

tγ =
8πα
3s

F1 , F1 = 〈v1| γµ |u2〉 〈u4| γµ |u3〉

Also, compute the fermionic matrix elements, e.g. by squaring
and taking the trace:

|F1|2 = Tr {(/k1 −me)γµ(/k2 + me)γν}Tr {(/k4 + mt)γµ(/k3 −mt)γν}
= 1

2 s2 + st + (m2
e + m2

t − t)2

Algebraic simplification

T. Hahn, FeynArts and FormCalc – p.6

Feynman Diagram Cookbook

5. Write the results up as a
(put favourite language here)

program

5a. Debug that program

6. Run it to produce numerical values

Programming

T. Hahn, FeynArts and FormCalc – p.7

Recipe for Feynman Diagrams

Thanks to and (and others) we have a
Recipe for an ARBITRARY Feynman diagram up to one loop

➀ Draw all possible types of diagrams topological task
➁ Figure out what particles can run combinatorical task

on each type of diagram
➂ Translate the diagrams into formulas by database look-up

applying the Feynman rules
➃ Contract the indices, take the traces, etc. algebraic simplification
➄ Write up the results as a computer program programming
➅ Run the program to get numerical results waiting

T. Hahn, FeynArts and FormCalc – p.8

Programming Techniques

• Very different tasks at hand.

• Some objects must/should be handled symbolically, e.g.
tensorial objects, Dirac traces, dimension (D vs. 4).

• Reliable results required even in the presence of large
cancellations.

• Fast evaluation desirable (e.g. for Monte Carlos).

Hybrid Programming Techniques necessary
Symbolic manipulation (a.k.a. Computer Algebra) for the
structural and algebraic operations.
Compiled high-level language (e.g. Fortran) for the numerical
evaluation.

T. Hahn, FeynArts and FormCalc – p.9

Automated Diagram Evaluation
Diagram Generation:
• Create the topologies
• Insert fields
• Apply the Feynman rules
• Paint the diagrams

Algebraic Simplification:
• Contract indices
• Calculate traces
• Reduce tensor integrals
• Introduce abbreviations

Numerical Evaluation:
• Convert Mathematica output to Fortran code
• Supply a driver program
• Implementation of the integrals

Symbolic manipulation
(Computer Algebra)
for the structural and
algebraic operations.

Compiled high-level
language (Fortran) for
the numerical evaluation.

FeynArts

Amplitudes

FormCalc

Fortran Code

LoopTools

|M|2 Cross-sections, Decay rates, . . .

T. Hahn, FeynArts and FormCalc – p.10

Plan

Walk through the general setup of these programs and show
some perhaps non-standard applications.

• ‘Standard Candle’ — e+e− → tt̄,

• Resumming a coupling — ∆b,

• Example from flavour physics — ∆Ms.

T. Hahn, FeynArts and FormCalc – p.11

FeynArts

Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all allowed
combinations of fields

InsertFields

Draw the results
Paint

Diagrams

Apply the Feynman rules
CreateFeynAmp

Amplitudes
further
processing

T. Hahn, FeynArts and FormCalc – p.12

Algebraic Simplification

The amplitudes output by FeynArts so far are in no good
shape for direct numerical evaluation. Some objects
must/should be handled symbolically, e.g. tensorial objects,
Dirac traces, dimension (D vs. 4).

• contract indices as far as possible,

• evaluate fermion traces,

• perform the tensor reduction,

• add local terms arising from D·(divergent integral),

• simplify open fermion chains,

• simplify and compute the square of SU(N) structures,

• “compactify” the results as much as possible.

T. Hahn, FeynArts and FormCalc – p.13

FormCalc Internals

FormCalc
Mathematica

FORM
FeynArts

amplitudes

Analytical
results

Fortran

Generated Code
SquaredME
RenConst

Driver
programs

Utilities
library

T. Hahn, FeynArts and FormCalc – p.14

Numerical Evaluation in Fortran 77

user-level code included in FormCalc

generated code, “black box”

Cross-sections, Decay rates, Asymmetries . . .

SquaredME.F
master subroutine

abbr0_s.F

abbr0_angle.F
...

abbreviations
(invoked only
when necessary)

born.F

self.F
...

form factors

xsection.F
driver program

run.F
parameters for this run

process.h
process definition

main.F

CPU-time (rough)

compute abbrtree
}

5 %

compute abbr1-loop
}

95 %

computeMtree
}

.1 %

computeM1-loop
}

.1 %

T. Hahn, FeynArts and FormCalc – p.15

Three Levels of Fields

Generic level, e.g. F, F, S

C(F1, F2, S) = GLPL + GRPR PR,L = (1l± γ5)/2
Kinematical structure completely fixed, most algebraic
simplifications (e.g. tensor reduction) can be carried out.

Classes level, e.g. -F[2], F[1], S[3]

¯̀ iν jG : GL = − i e m`,i√
2 sin θw MW

δi j , GR = 0

Coupling fixed except for i, j (can be summed in do-loop).

Particles level, e.g. -F[2,{1}], F[1,{1}], S[3]

insert fermion generation (1, 2, 3) for i and j

T. Hahn, FeynArts and FormCalc – p.16

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier ,
loop momenta,
generic amplitude,
insertions]

GraphID[Topology == 1, Generic == 1]

T. Hahn, FeynArts and FormCalc – p.17

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta ,

generic amplitude,
insertions]

Integral[q1]

T. Hahn, FeynArts and FormCalc – p.18

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta,
generic amplitude ,

insertions]

I

32 Pi4
RelativeCF ...prefactor

FeynAmpDenominator[
1

q12 - Mass[S[Gen3]]2
,

1

(-p1 + q1)2 - Mass[S[Gen4]]2
]loop denominators

(p1 - 2 q1)[Lor1] (-p1 + 2 q1)[Lor2] kin. coupling structure

ep[V[1], p1, Lor1] ep*[V[1], k1, Lor2]polarization vectors

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]], coupling constants

T. Hahn, FeynArts and FormCalc – p.19

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta,
generic amplitude,
insertions]

{ Mass[S[Gen3]],

Mass[S[Gen4]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

RelativeCF } ->

Insertions[Classes][{MW, MW, I EL, -I EL, 2}]

T. Hahn, FeynArts and FormCalc – p.20

Excursion: Programming Own Diagram Filters

Or, What if FeynArts’ selection functions are not enough.

Observe the structure of inserted topologies:
TopologyList[__][t1, t2, ...]

ti: Topology[_][__] -> Insertions[Generic][g1, g2, ...]

gi: Graph[__][__] -> Insertion[Classes][c1, c2, ...]

ci: Graph[__][__] -> Insertion[Particles][p1, p2, ...]

Example: Select the diagrams with only fermion loops.
FermionLoop[t:TopologyList[___][__]] := FermionLoop/@ t

FermionLoop[(top:Topology[_][__]) -> ins:Insertions[Generic][__]] :=

top -> TestLoops[top]/@ ins

TestLoops[top_][gi_ -> ci_] := (gi -> ci) /;

MatchQ[Cases[top /. List@@ gi,

Propagator[Loop[_]][v1_, v2_, field_] -> field], {F..}]

TestLoops[_][_] := Sequence[]

T. Hahn, FeynArts and FormCalc – p.21

Sample Paint output

\begin{feynartspicture}(150,150)(1,1)

\FADiagram{}

\FAProp(6.,10.)(14.,10.)(0.8,){ScalarDash}{-1}

\FALabel(10.,5.73)[t]{G}

\FAProp(6.,10.)(14.,10.)(-0.8,){ScalarDash}{1}

\FALabel(10.,14.27)[b]{G}

\FAProp(0.,10.)(6.,10.)(0.,){Sine}{0}

\FALabel(3.,8.93)[t]{γ}

\FAProp(20.,10.)(14.,10.)(0.,){Sine}{0}

\FALabel(17.,11.07)[b]{γ}

\FAVert(6.,10.){0}

\FAVert(14.,10.){0}

\end{feynartspicture} γ

γ

G

G

Technically: uses its own PostScript prologue.

T. Hahn, FeynArts and FormCalc – p.22

Editing Feynman Diagrams

The elements of the diagram are easy to recog-
nize and it is straightforward to make changes
e.g. to the label text using any text editor.
It is less straightforward, however, to alter the
geometry of the diagram, i.e. to move vertices
and propagators.

The new tool FeynEdit lets the user:

• copy-and-paste the LATEX code into the
lower panel of the editor,

• visualize the diagram,

• modify it using the mouse, and finally

• copy-and-paste it back into the text.

T. Hahn, FeynArts and FormCalc – p.23

FormCalc Output

A typical term in the output looks like

C0i[cc12, MW2, MW2, S, MW2, MZ2, MW2] *

(-4 Alfa2 MW2 CW2/SW2 S AbbSum16 +

32 Alfa2 CW2/SW2 S2 AbbSum28 +

4 Alfa2 CW2/SW2 S2 AbbSum30 -

8 Alfa2 CW2/SW2 S2 AbbSum7 +

Alfa2 CW2/SW2 S (T - U) Abb1 +

8 Alfa2 CW2/SW2 S (T - U) AbbSum29)

= loop integral = kinematical variables

= constants = automatically introduced abbreviations

T. Hahn, FeynArts and FormCalc – p.24

Abbreviations

Outright factorization is usually out of question.
Abbreviations are necessary to reduce size of expressions.

AbbSum29 = Abb2 + Abb22 + Abb23 + Abb3

Abb22 = Pair1 Pair3 Pair6

Pair3 = Pair[e[3], k[1]]

The full expression corresponding to AbbSum29 is
Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[2]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]]

T. Hahn, FeynArts and FormCalc – p.25

Excursion: Alternate FORM–Mathematica Link

FORM is able to handle very large expressions. To produce
(pre-)simplified expressions, however, terms have to be
wrapped in functions, to avoid immediate expansion:

a*(b + c) → a*b + a*c

a*f(b + c) → a*f(b + c)

The number of terms in a function is rather limited in FORM:
on 32-bit systems to 32767.

Dilemma: FormCalc gets more sophisticated in pre-simplifying
amplitudes while users want to compute larger amplitudes.
Thus, recently many ‘overflow’ messages from FORM.

Solution: Send pre-simplified generic amplitude via external
channel to Mathematica for introducing abbreviations.
Significant reduction in size of intermediate expressions.
Tentukov, Vermaseren 2006

T. Hahn, FeynArts and FormCalc – p.26

Effect on Intermediate Amplitudes

FORM → Mathematica: part of uu→ gg @ tree level
+Den[U,MU2]*(

-8*SUNSum[Col5,3]*SUNT[Glu3,Col5,Col2]*SUNT[Glu4,Col1,Col5]*mul[Alfas*Pi]*

abb[fme[WeylChain[DottedSpinor[k1,MU,-1],6,Spinor[k2,MU,1]]]*ec3.ec4

-1/2*fme[WeylChain[DottedSpinor[k1,MU,-1],6,ec3,ec4,Spinor[k2,MU,1]]]

+fme[WeylChain[DottedSpinor[k1,MU,-1],7,Spinor[k2,MU,1]]]*ec3.ec4

-1/2*fme[WeylChain[DottedSpinor[k1,MU,-1],7,ec3,ec4,Spinor[k2,MU,1]]]]*MU

-4*SUNSum[Col5,3]*SUNT[Glu3,Col5,Col2]*SUNT[Glu4,Col1,Col5]*mul[Alfas*Pi]*

abb[fme[WeylChain[DottedSpinor[k1,MU,-1],6,ec3,ec4,k3,Spinor[k2,MU,1]]]

-2*fme[WeylChain[DottedSpinor[k1,MU,-1],6,ec4,Spinor[k2,MU,1]]]*ec3.k2

-2*fme[WeylChain[DottedSpinor[k1,MU,-1],6,k3,Spinor[k2,MU,1]]]*ec3.ec4

+fme[WeylChain[DottedSpinor[k1,MU,-1],7,ec3,ec4,k3,Spinor[k2,MU,1]]]

-2*fme[WeylChain[DottedSpinor[k1,MU,-1],7,ec4,Spinor[k2,MU,1]]]*ec3.k2

-2*fme[WeylChain[DottedSpinor[k1,MU,-1],7,k3,Spinor[k2,MU,1]]]*ec3.ec4]

+8*SUNSum[Col5,3]*SUNT[Glu3,Col5,Col2]*SUNT[Glu4,Col1,Col5]*mul[Alfas*MU*Pi]*

abb[fme[WeylChain[DottedSpinor[k1,MU,-1],6,Spinor[k2,MU,1]]]*ec3.ec4

-1/2*fme[WeylChain[DottedSpinor[k1,MU,-1],6,ec3,ec4,Spinor[k2,MU,1]]]

+fme[WeylChain[DottedSpinor[k1,MU,-1],7,Spinor[k2,MU,1]]]*ec3.ec4

-1/2*fme[WeylChain[DottedSpinor[k1,MU,-1],7,ec3,ec4,Spinor[k2,MU,1]]]])

Mathematica → FORM:
-4*Den(U,MU2)*SUNSum(Col5,3)*SUNT(Glu3,Col5,Col2)*SUNT(Glu4,Col1,Col5)*

AbbSum5*Alfas*Pi

T. Hahn, FeynArts and FormCalc – p.27

More Abbreviations

The Abbreviate Function allows to introduce abbreviations
for arbitrary (sub-)expressions and extends the advantage of
categorized evaluation.

The subexpressions are retrieved with Subexpr[].

Abbreviations were so far restricted to one FormCalc session,
e.g. one could not save intermediate results involving
abbreviations and resume computation in a new session.

FormCalc 6 adds two functions to ‘register’ abbreviations and
subexpressions from an earlier session:

RegisterAbbr[abbr]

RegisterSubexpr[subexpr]

T. Hahn, FeynArts and FormCalc – p.28

Categories of Abbreviations

• Abbreviations are recursively defined in several levels.

• When generating Fortran code, FormCalc introduces
another set of abbreviations for the loop integrals.

In general, the abbreviations are thus costly in CPU time.
It is key to a decent performance that the abbreviations are
separated into different Categories:

• Abbreviations that depend on the helicities,

• Abbreviations that depend on angular variables,

• Abbreviations that depend only on
√

s.

Correct execution of the categories guarantees that almost no
redundant evaluations are made and makes the generated
code essentially as fast as hand-tuned code.

T. Hahn, FeynArts and FormCalc – p.29

Choice of Language

Mentioning Fortran 77 as the programming language in many
circles draws a “Weren’t the dinosaurs extinct?” response.
But consider:

• Fortran was designed for ‘number crunching,’ i.e. efficient
evaluation of large formulas.

• Good and free compilers are available.

• Fortran is still widely used in theoretical physics.

• The code is generated, so largely ‘invisible’ for the user.

• Linking Fortran 77 to C/C++ is pretty straightforward
(particularly inside gcc), so is in some sense a ‘smallest
common denominator.’

T. Hahn, FeynArts and FormCalc – p.30

Features of the Generated Code

• Extensible: default code serves (only) as an example.
Other ‘Frontends’ can be supplied, e.g. HadCalc, sofox.

• Modular: largely autonomous pieces of code provide
• kinematics,
• model initialization,
• convolution with PDFs.

• Re-usable: external program need only call
ProcessIni (to set up the process) and
ParameterScan (to set off the calculation).

• Interactive: Mathematica interface provides Mathematica
function for cross-section/decay rate.

• Parallel: built-in distribution of parameter scans.

T. Hahn, FeynArts and FormCalc – p.31

Parameter Scans

With the preprocessor definitions in run.F

one can either
• assign a parameter a fixed value, as in

#define LOOP1 TB = 1.5D0

• declare a loop over a parameter, as in
#define LOOP1 do 1 TB = 2,30,5

which computes the cross-section for TB

values of 2 to 30 in steps of 5.

Main Program:
LOOP1

LOOP2
...

(calculate
cross-section)

1 continue

Scans are “embarrassingly parallel” – each pass of the loop
can be calculated independently.
How to distribute the iterations automatically if the loops are
a) user-defined b) usually nested?
Solution: Introduce a serial number

T. Hahn, FeynArts and FormCalc – p.32

Unraveling Parameter Scans

subroutine ParameterScan(range)

integer serial
serial = 0

LOOP1
LOOP2

...
serial = serial + 1
if(serial /∈ range) goto 1

(calculate cross-section)
1 continue

end

Distribution on N machines is now simple:

• Send serial numbers 1,N + 1, 2N + 1, . . . on machine 1,

• Send serial numbers 2,N + 2, 2N + 2, . . . on machine 2,
etc.

T. Hahn, FeynArts and FormCalc – p.33

Shell-script Parallelization

Parameter scans can automatically be distributed on a cluster
of computers:
• The machines are declared in a file .submitrc, e.g.

Optional: Nice to start jobs with

nice 10

Pentium 4 3000

pcl301

pcl301a

pcl305

Dual Xeon 2660

pcl247b 2

pcl321 2

...

• The command line for distributing a job is exactly the
same except that “submit” is prepended, e.g.

submit run uuuu 0,1000

T. Hahn, FeynArts and FormCalc – p.34

External Fermion Lines

An amplitude containing external fermions has the form

M =
nF

∑
i=1

ci Fi where Fi = (Product of) 〈u|Γi |v〉 .

nF = number of fermionic structures.

Textbook procedure: Trace Technique

|M|2 =
nF

∑
i, j=1

c∗i c j F∗i Fj

where F∗i Fj = 〈v| Γ̄i |u〉 〈u|Γ j |v〉 = Tr
(
Γ̄i |u〉〈u| Γ j |v〉〈v|

)
.

T. Hahn, FeynArts and FormCalc – p.35

Problems with the Trace Technique

PRO: Trace technique is independent of any representation.

CON: For nF Fi’s there are n2
F F∗i Fj’s.

Things get worse the more vectors are in the game:
multi-particle final states, polarization effects . . .
Essentially nF ∼ (# of vectors)! because all
combinations of vectors can appear in the Γi.

Solution: Use Weyl–van der Waerden spinor formalism to
compute the Fi’s directly.

T. Hahn, FeynArts and FormCalc – p.36

Sigma Chains

Define Sigma matrices and 2-dim. Spinors as

σµ = (1l,−~σ) ,

σµ = (1l,+~σ) ,

〈u|4d ≡
(
〈u+|2d , 〈u−|2d

)
,

|v〉4d ≡
(
|v−〉2d

|v+〉2d

)
.

Using the chiral representation it is easy to show that
every chiral 4-dim. Dirac chain can be converted to a
single 2-dim. sigma chain:

〈u|ω−γµγν · · · |v〉 = 〈u−|σµσν · · · |v±〉 ,
〈u|ω+γµγν · · · |v〉 = 〈u+|σµσν · · · |v∓〉 .

T. Hahn, FeynArts and FormCalc – p.37

Fierz Identities

With the Fierz identities for sigma matrices it is possible to
remove all Lorentz contractions between sigma chains, e.g.

〈A|σµ |B〉 〈C|σµ |D〉 = 2 〈A|D〉 〈C|B〉

A B

C D

σµ

σµ

= 2

A

D

B

C

T. Hahn, FeynArts and FormCalc – p.38

Implementation

• Objects (arrays): |u±〉 ∼
(

u1
u2

)
, (σ · k) ∼

(
a b
c d

)

• Operations (functions):

〈u|v〉 ∼ (u1 u2) ·
(

v1
v2

)
SxS

(()σ · k) |v〉 ∼
(

a b
c d

)
·
(

v1
v2

)
VxS, BxS

Sufficient to compute any sigma chain:

〈u|σµσνσρ |v〉 kµ1 kν2 kρ3 = SxS(u, VxS(k1, BxS(k2, VxS(k3, v))))

T. Hahn, FeynArts and FormCalc – p.39

More Freebies

• Polarization does not ‘cost’ extra:
= Get spin physics for free.

• Better numerical stability because components of kµ are
arranged as ‘small’ and ‘large’ matrix entries, viz.

σµkµ =

(
k0 + k3 k1 − ik2

k1 + ik2 k0 − k3
↓

)

Large cancellations of the form
√

k2 + m2 −
√

k2 when
m� k are avoided: better precision for mass effects.

T. Hahn, FeynArts and FormCalc – p.40

Mathematica Interface

The new Mathematica Interface turns the generated
stand-alone Fortran code into a Mathematica function for
evaluating the cross-section or decay rate as a function of
user-selected model parameters.

The benefits of such a function are obvious, as the whole
instrumentarium of Mathematica commands can be applied to
them. Just think of

FindMinimum[sigma[TB, MA0], {{TB, 5}, {MA0, 250}}]

ContourPlot[sigma[TB, MA0], {TB, 5}, {MA0, 250}]

...

T. Hahn, FeynArts and FormCalc – p.41

Mathematica Interface – Input

The changes to the code are minimal.

Example line in �� ��� � for Stand-alone Fortran code:
#define LOOP1 do 1 TB = 5, 50, 5

Change for the Mathematica Interface:
#define LOOP1 call MmaGetReal(TB)

The variable �� is ‘imported’ from Mathematica now, i.e. the
cross-section function in Mathematica becomes a function of

� � hereby.

The user has full control over which variables are ‘imported’
from Mathematica and which are set in Fortran.

T. Hahn, FeynArts and FormCalc – p.42

Mathematica Interface – Output

Similar to the ��� � ��� � �� � 	 invocations, the Fortran program
can also ‘export’ variables to Mathematica.

For example, the line that prints a parameter in the
stand-alone code is

#define PRINT1 SHOW "TB", TB

becomes
#define PRINT1 call MmaPutReal("TB", TB)

for the Mathematica Interface and transmits the value of � � to
Mathematica.

T. Hahn, FeynArts and FormCalc – p.43

Mathematica Interface – Usage

Once the changes to �� �� � are made, the program �� � is
compiled as usual:

./configure

make

It is then loaded in Mathematica with
Install["run"]

Now a Mathematica function of the same name, �� �, is
available. There are two ways of invoking it:

Compute a differential cross-section at
√

s = sqrtS:
run[sqrtS, arg1, arg2, ...]

Compute a total cross-section for sqrtSfrom 6
√

s 6 sqrtSto:
run[{sqrtSfrom, sqrtSto}, arg1, arg2, ...]

T. Hahn, FeynArts and FormCalc – p.44

Mathematica Interface – Data Retrieval

The output of the function �� � is an integer which indicates
how many records have been transferred. For example:

Para[1] = {TB -> 5., MA0 -> 250.}

Data[1] = {DataRow[{500.}, {0.0539684, 0.}, {2.30801 10^-21, 0.}],

DataRow[{510.}, {0.0515943, 0.}, {4.50803 10^-22, 0.}]}

� � � � contains the parameters exported from the Fortran code.

� � � � contains:

• the independent variables,
here e.g. {500.} = {√s},

• the cross-sections,
here e.g. {0.0539684, 0.} = {σtree

tot , σ
1-loop
tot }, and

• the integration errors,
here e.g. {2.30801 10^-21, 0.} = {∆σtree

tot ,∆σ
1-loop
tot }.

T. Hahn, FeynArts and FormCalc – p.45

Code-generation Functions

FormCalc’s code-generation functions are now public and
disentangled from the rest of the code. They can be used to
write out an arbitrary Mathematica expression as optimized
Fortran code:

• handle = OpenFortran["file.F"]
opens file.F as a Fortran file for writing,

• WriteExpr[handle, {var -> expr, ...}]

writes out Fortran code which calculates expr and stores
the result in var,

• Close[handle]
closes the file again.

T. Hahn, FeynArts and FormCalc – p.46

Code generation

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions, e.g.
PrepareExpr, OnePassOrder, SplitSums,
$Prefix, CommonDecl, SubroutineDecl, etc.

make code generation versatile and highly automatable,
such that the resulting code needs few or no changes by
hand.

T. Hahn, FeynArts and FormCalc – p.47

The Model Files

One has to set up, once and for all, a

• Generic Model File (seldomly changed)
containing the generic part of the couplings,

Example: the FFS coupling

C(F, F, S) = G−ω− + G+ω+ = ~G ·
(
ω−
ω+

)

AnalyticalCoupling[s1 F[j1, p1], s2 F[j2, p2], s3 S[j3, p3]]

== G[1][s1 F[j1], s2 F[j2], s3 S[j3]] .

{ NonCommutative[ChiralityProjector[-1]],

NonCommutative[ChiralityProjector[+1]] }

T. Hahn, FeynArts and FormCalc – p.48

The Model Files

One has to set up, once and for all, a

• Classes Model File (for each model)
declaring the particles and the allowed couplings

Example: the ¯̀ iν jG coupling in the Standard Model

~G(¯̀ i, ν j,G) =

(
G−
G+

)
=

(
− i e m`,i√

2 sin θw MW
δi j

0

)

C[-F[2,{i}], F[1,{j}], S[3]]

== { {-I EL Mass[F[2,{i}]]/(Sqrt[2] SW MW) IndexDelta[i, j]},

{0} }

T. Hahn, FeynArts and FormCalc – p.49

Current Status of Model Files

Model Files presently available for FeynArts:

• SM [w/QCD], normal and background-field version.
All one-loop counter terms included.

• MSSM [w/QCD].
Counter terms by T. Fritzsche.

• Two-Higgs-Doublet Model.
Counter terms not included yet.

• ModelMaker utility generates Model Files from the
Lagrangian.

• “3rd-party packages” FeynRules and LanHEP generate
Model Files for FeynArts and others.

• SARAH package derives SUSY Models.
T. Hahn, FeynArts and FormCalc – p.50

Partial (Add-On) Model Files

FeynArts distinguishes

• Basic Model Files and

• Partial (Add-On) Model Files.

Basic Model Files, e.g. SM.mod, MSSM.mod, can be modified by
Add-On Model Files. For example,

InsertFields[..., Model -> {"MSSMQCD", "FV"}]

This loads the Basic Model File MSSMQCD.mod and modifies it
through the Add-On FV.mod (non-minimal flavour violation).

Model files can thus be built up from several parts.

T. Hahn, FeynArts and FormCalc – p.51

Tweaking Model Files

Or, How to efficiently make changes in an existing model file.

Bad: Copy the model file, modify the copy. — Why?

• It is typically not very transparent what has changed.

• If the original model file changes (e.g. bug fixes), these do
not automatically propagate into the derivative model
file.

Better: Create a new model file which reads the old one and
modifies the particles and coupling tables.

• � � � 	 �� � � � � � � � � � � � ��� � = list of particle definitions,

• � � �� � � 	 � � � � � � � � � � � = list of couplings.

T. Hahn, FeynArts and FormCalc – p.52

Tweaking Model Files

Example: Introduce enhancement factors for the b–b̄–h0 and
b–b̄–H0 Yukawa couplings in the MSSM.

LoadModel["MSSM"]

EnhCoup[(lhs:C[F[4,{g_,_}], -F[4,_], S[h:1|2]]) == rhs_] :=

lhs == Hff[h,g] rhs

EnhCoup[other_] = other

M$CouplingMatrices = EnhCoup/@ M$CouplingMatrices

To see the effect, make a printout with the � � � � � �� � � � 	 �

utility of FeynArts.

The � � � �� � � �

can be defined to include e.g. resummation effects, as in
double precision Hff(2,3)

data Hff /6*1/

Hff(1,3) = 1 - CA/(SA*TB)*Delta_b

Hff(2,3) = 1 + SA/(CA*TB)*Delta_b

T. Hahn, FeynArts and FormCalc – p.53

Linear Combinations of Fields

FeynArts can automatically linear-combine fields, i.e. one
can specify the couplings in terms of gauge rather than mass
eigenstates. For example:

M$ClassesDescription = { ...,

F[11] = {...,

Indices -> {Index[Neutralino]},

Mixture -> ZNeu[Index[Neutralino],1] F[111] +

ZNeu[Index[Neutralino],2] F[112] +

ZNeu[Index[Neutralino],3] F[113] +

ZNeu[Index[Neutralino],4] F[114]} }

Since F[111]. . . F[114] are not listed in M$CouplingMatrices,
they drop out of the model completely.

T. Hahn, FeynArts and FormCalc – p.54

Linear Combinations of Fields

Higher-order mixings can be added, too:

M$ClassesDescription = { ...,

S[1] = {...},

S[2] = {...},

S[10] == {...,

Indices -> {Index[Higgs]},

Mixture -> UHiggs[Index[Higgs],1] S[1] +

UHiggs[Index[Higgs],2] S[2],

InsertOnly -> {External, Internal}} }

This time, S[10] and S[1], S[2] appear in the coupling list
(including all mixing couplings) because all three are listed in
M$CouplingMatrices.

Due to the InsertOnly, S[10] is inserted only on tree-level
parts of the diagram, not in loops.

T. Hahn, FeynArts and FormCalc – p.55

Not the Cross-Section

Or, How to get things the Standard Setup won’t give you.

Example: extract the Wilson coefficients for b→ sγ .
tops = CreateTopologies[1, 1 -> 2]

ins = InsertFields[tops, F[4,{3}] -> {F[4,{2}], V[1]}]

vert = CalcFeynAmp[CreateFeynAmp[ins], FermionChains -> Chiral]

mat[p_Plus] := mat/@ p

mat[r_. DiracChain[s2_Spinor, om_, mu_, s1:Spinor[p1_, m1_, _]]] :=

I/(2 m1) mat[r DiracChain[sigmunu[om]]] +

2/m1 r Pair[mu, p1] DiracChain[s2, om, s1]

mat[r_. DiracChain[sigmunu[om_]], SUNT[Col1, Col2]] :=

r O7[om]/(EL MB/(16 Pi^2))

mat[r_. DiracChain[sigmunu[om_]], SUNT[Glu1, Col2, Col1]] :=

r O8[om]/(GS MB/(16 Pi^2))

coeff = Plus@@ vert //. abbr /. Mat -> mat

c7 = Coefficient[coeff, O7[6]]

c8 = Coefficient[coeff, O8[6]]

T. Hahn, FeynArts and FormCalc – p.56

Not the Cross-Section

Using FormCalc’s output functions it is also pretty
straightforward to generate your own Fortran code:

file = OpenFortran["bsgamma.F"]

WriteString[file,

SubroutineDecl["bsgamma(C7,C8)"] <>

"\tdouble complex C7, C8\n" <>

"#include \"looptools.h\"\n"]

WriteExpr[file, {C7 -> c7, C8 -> c8}]

WriteString[file, "\tend\n"]

Close[file]

T. Hahn, FeynArts and FormCalc – p.57

Dirac Chains in 4D

As numerical calculations are done mostly using Weyl-spinor
chains, there has been a paradigm shift for Dirac chains to
make them better suited for analytical purposes, e.g. the
extraction of Wilson coefficients.

• Already in Version 5, Fierz methods have been
implemented for Dirac chains, thus allowing the user to
force the fermion chains into almost any desired order.

• Version 6 further adds the Colour method to the
FermionOrder option of CalcFeynAmp, which brings the
spinors into the same order as the external colour indices.

• Also new in Version 6: completely antisymmetrized
Dirac chains, i.e. DiracChain[−1, µ, ν] = σµν .

T. Hahn, FeynArts and FormCalc – p.58

Summary and Outlook

• Serious perturbative calculations these days can
generally no longer be done by hand:
• Required accuracy, Models with many particles, . . .

• Hybrid programming techniques are necessary:
• Computer algebra is an indispensable tool because many

manipulations must be done symbolically.
• Fast number crunching can only be achieved in a compiled

language.

• Software engineering and further development of the
existing packages is a must:
• As we move on to ever more complex computations (more loops,

more legs), the computer programs must become more
“intelligent,” i.e. must learn all possible tricks to still be able to
handle the expressions.

T. Hahn, FeynArts and FormCalc – p.59

Finally

Using FeynArts and FormCalc is a lot like driving a car:

• You have to decide where to go (this is often the hardest
decision).

• You have to turn the ignition key, work gas and brakes,
and steer.

• But you don’t have to know, say, which valve has to
open at which time to keep the motor running.

• On the other hand, you can only go where there are
roads. You can’t climb a mountain with your car.

T. Hahn, FeynArts and FormCalc – p.60

	The Diagrammatic Challenge
	Feynman Diagram Cookbook
	Feynman Diagram Cookbook
	Feynman Diagram Cookbook
	Feynman Diagram Cookbook
	Feynman Diagram Cookbook
	Recipe for Feynman Diagrams
	Programming Techniques
	Automated Diagram Evaluation
	Plan
	FeynArts
	Algebraic Simplification
	FormCalc Internals
	Numerical Evaluation in Fortran 77
	Three Levels of Fields
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Excursion: Programming Own Diagram Filters
	Sample Paint output
	Editing Feynman Diagrams
	FormCalc Output
	Abbreviations
	Excursion: Alternate FORM--Mathematica Link
	Effect on Intermediate Amplitudes
	More Abbreviations
	Categories of Abbreviations
	Choice of Language
	Features of the Generated Code
	Parameter Scans
	Unraveling Parameter Scans
	Shell-script Parallelization
	External Fermion Lines
	Problems with the Trace Technique
	Sigma Chains
	Fierz Identities
	Implementation
	More Freebies
	Mathematica Interface
	Mathematica Interface -- Input
	Mathematica Interface -- Output
	Mathematica Interface -- Usage
	Mathematica Interface -- Data Retrieval
	Code-generation Functions
	Code generation
	The Model Files
	The Model Files
	Current Status of Model Files
	Partial (Add-On)
Model Files
	Tweaking Model Files
	Tweaking Model Files
	Linear Combinations of Fields
	Linear Combinations of Fields
	Not the Cross-Section
	Not the Cross-Section
	Dirac Chains in 4D
	Summary and Outlook
	Finally

