
Programming Concepts in Mathematica

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, Programming Concepts in Mathematica – p.1

Computer Algebra Systems

• Commercial systems: Mathematica, Maple, Matlab,
MuPAD/Matlab, MathCad, Fermat, Derive . . .

• Free systems: FORM, GiNaC, Axiom, Cadabra, GAP,
Reduce, Singular, Maxima, MAGMA . . .

• Generic systems: Mathematica, Maple, MuPAD/Matlab,
Maxima, MathCad, Reduce, Axiom, MAGMA, GiNaC . . .

• Specialized systems: Cadabra, Singular, Magma, CoCoA,
GAP . . .

• Many more . . .

T. Hahn, Programming Concepts in Mathematica – p.2

Expert Systems

In technical terms, Mathematica is an Expert System.
Knowledge is added in form of Transformation Rules.
An expression is transformed until no more rules apply.

Example:
myAbs[x_] := x /; NonNegative[x]

myAbs[x_] := -x /; Negative[x]

We get:
myAbs[3] ☞ 3

myAbs[-5] ☞ 5

myAbs[2 + 3 I] ☞ myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x] ☞ myAbs[x]

— no match either

T. Hahn, Programming Concepts in Mathematica – p.3

Immediate and Delayed Assignment

Transformations can either be

• added “permanently” in form of Definitions,

norm[vec_] := Sqrt[vec . vec]

norm[{1, 0, 2}] ☞ Sqrt[5]

• applied once using Rules:

a + b + c /. a -> 2 c ☞ b + 3 c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -> Random[] ☞ {0.823919, 0.823919}

{r, r} /. r :> Random[] ☞ {0.356028, 0.100983}

Mathematica is one of those programs, like TEX, where you wish you’d gotten a US keyboard for all those braces and brackets.

T. Hahn, Programming Concepts in Mathematica – p.4

Almost everything is a List

All Mathematica objects are either Atomic, e.g.

Head[133] ☞ Integer

Head[a] ☞ Symbol

or (generalized) Lists with a Head and Elements:

expr = a + b

FullForm[expr] ☞ Plus[a, b]

Head[expr] ☞ Plus

expr[[0]] ☞ Plus — same as Head[expr]

expr[[1]] ☞ a

expr[[2]] ☞ b

T. Hahn, Programming Concepts in Mathematica – p.5

List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:
array = Table[Random[], {10^7}];

test1 := Block[{sum = 0},

Do[sum += array[[i]], {i, Length[array]}];

sum]

test2 := Apply[Plus, array]

Here are the timings:
Timing[test1][[1]] ☞ 31.63 Second

Timing[test2][[1]] ☞ 3.04 Second

T. Hahn, Programming Concepts in Mathematica – p.6

Map, Apply, and Pure Functions

Map applies a function to all elements of a list:
Map[f, {a, b, c}] ☞ {f[a], f[b], f[c]}

f /@ {a, b, c} ☞ {f[a], f[b], f[c]} — short form

Apply exchanges the head of a list:
Apply[Plus, {a, b, c}] ☞ a + b + c

Plus @@ {a, b, c} ☞ a + b + c — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} ☞ {5, 9}

The # (same as #1) represents the first argument, and the &

defines everything to its left as the pure function.

T. Hahn, Programming Concepts in Mathematica – p.7

List Operations

Flatten removes all sub-lists:

Flatten[f[x, f[y], f[f[z]]]] ☞ f[x, y, z]

Sort and Union sort a list. Union also removes duplicates:

Sort[{3, 10, 1, 8}] ☞ {1, 3, 8, 10}

Union[{c, c, a, b, a}] ☞ {a, b, c}

Prepend and Append add elements at the front or back:

Prepend[r[a, b], c] ☞ r[c, a, b]

Append[r[a, b], c] ☞ r[a, b, c]

Insert and Delete insert and delete elements:

Insert[h[a, b, c], x, {2}] ☞ h[a, x, b, c]

Delete[h[a, b, c], {2}] ☞ h[a, c]

T. Hahn, Programming Concepts in Mathematica – p.8

Patterns

One of the most useful features is Pattern Matching:
_ — matches one object

__ — matches one or more objects

___ — matches zero or more objects

x_ — named pattern (for use on the r.h.s.)

x_h — pattern with head h

x_:1 — default value

x_?NumberQ — conditional pattern

x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}

Pair[p_Plus, j_] := Pair[#, j]& /@ p

Pair[n_?NumberQ i_, j_] := n Pair[i, j]

T. Hahn, Programming Concepts in Mathematica – p.9

Attributes

Attributes characterize a function’s behaviour before and
while it is subjected to pattern matching. For example,

Attributes[f] = {Listable}

f[l_List] := g[l]

f[{1, 2}] ☞ {f[1], f[2]} — definition is never seen

Important attributes: Flat, Orderless, Listable,
HoldAll, HoldFirst, HoldRest.

The Hold... attributes are needed to pass variables by
reference:

Attributes[listadd] = {HoldFirst}

listadd[x_, other__] := x = Flatten[{x, other}]

This would not work if x were expanded before invoking
listadd, i.e. passed by value.

T. Hahn, Programming Concepts in Mathematica – p.10

Memorizing Values

For longer computations, it may be desirable to ‘remember’
values once computed. For example:

fib[1] = fib[2] = 1

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

fib[4] ☞ 3

?fib ☞ Global‘fib

fib[1] = 1

fib[2] = 1

fib[3] = 2

fib[4] = 3

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

Note that Mathematica places more specific definitions before
more generic ones.

T. Hahn, Programming Concepts in Mathematica – p.11

Decisions

Mathematica’s If Statement has three entries: for True, for
False, but also for Undecidable. For example:

If[8 > 9, yes, no] ☞ no

If[a > b, yes, no] ☞ If[a > b, yes, no]

If[a > b, yes, no, dunno] ☞ dunno

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ,
MatchQ, OrderedQ, . . . These functions have no undecided
state: in case of doubt they return False.

Conditional Patterns are usually faster:

good[a_, b_] := If[TrueQ[a > b], 1, 2]

— TrueQ removes ambiguity

better[a_, b_] := 1 /; a > b

better[a_, b_] = 2
T. Hahn, Programming Concepts in Mathematica – p.12

Equality

Just as with decisions, there are several types of equality,
decidable and undecidable:

a == b ☞ a == b

a === b ☞ False

a == a ☞ True

a === a ☞ True

The full name of ‘===’ is SameQ and works as the Q indicates:
in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ‘==’:

Solve[x^2 == 1, x] ☞ {{x -> -1}, {x -> 1}}

Needless to add, ‘=’ is a definition and quite different:

x = 3 — assign 3 to x

T. Hahn, Programming Concepts in Mathematica – p.13

Selecting Elements

Select selects elements fulfilling a criterium:

Select[{1, 2, 3, 4, 5}, # > 3 &] ☞ {4, 5}

Cases selects elements matching a pattern:

Cases[{1, a, f[x]}, _Symbol] ☞ {a}

Using Levels is generally a very fast way to extract parts:

list = {f[x], 4, {g[y], h}}

Depth[list] ☞ 4 — list is 4 levels deep (0, 1, 2, 3)

Level[list, {1}] ☞ {f[x], 4, {g[y], h}}

Level[list, {2}] ☞ {x, g[y], h}

Level[list, {3}] ☞ {y}

Level[list, {-1}] ☞ {x, 4, y, h}

Cases[expr, _Symbol, {-1}]//Union

— find all variables in expr T. Hahn, Programming Concepts in Mathematica – p.14

Mathematical Functions

Mathematica is equipped with a large set of mathematical
functions, both for symbolic and numeric operations.
Some examples:

Integrate[x^2, {x,3,5}] — integral

D[f[x], x] — derivative

Sum[i, {i,50}] — sum

Series[Sin[x], {x,1,5}] — series expansion

Simplify[(x^2 - x y)/x] — simplify

Together[1/x + 1/y] — put on common denominator

Inverse[mat] — matrix inverse

Eigenvalues[mat] — eigenvalues

PolyLog[2, 1/3] — polylogarithm

LegendreP[11, x] — Legendre polynomial

Gamma[.567] — Gamma function

T. Hahn, Programming Concepts in Mathematica – p.15

Graphics

Mathematica has formidable graphics capabilities:

Plot[ArcTan[x], {x, 0, 2.5}]

ParametricPlot[{Sin[x], 2 Cos[x]}, {x, 0, 2 Pi}]

Plot3D[1/(x^2 + y^2), {x, -1, 1}, {y, -1, 1}]

ContourPlot[x y, {x, 0, 10}, {y, 0, 10}]

Output can be saved to a file with Export:

plot = Plot[Abs[Zeta[1/2 + x I]], {x, 0, 50}]

Export["zeta.eps", plot, "EPS"]

Hint: To get a high-quality plot with proper LATEX labels, don’t
waste your time fiddling with the Plot options. Use the
psfrag LATEX package.

T. Hahn, Programming Concepts in Mathematica – p.16

Numerics

Mathematica can express Exact Numbers, e.g.

Sqrt[2], Pi, 27
4

It can also do Arbitrary-precision Arithmetic, e.g.

N[Erf[28/33], 25] ☞ 0.7698368826185349656257148

But: Exact or arbitrary-precision arithmetic is fairly slow!
Mathematica uses Machine-precision Reals for fast arithmetic.

N[Erf[28/33]] ☞ 0.769836882618535

Arrays of machine-precision reals are internally stored as
Packed Arrays (this is invisible to the user) and in this form
attain speeds close to compiled languages on certain
operations, e.g. eigenvalues of a large matrix.

T. Hahn, Programming Concepts in Mathematica – p.17

Compiled Functions

Mathematica can ‘compile’ certain functions for efficiency.
This is not compilation into assembler language, but rather a
strong typing of an expression such that intermediate data
types do not have to be determined dynamically.

fun[x_] := Exp[-((x - 3)^2/5)]

cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]

time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]

time[fun] ☞ 2.4 Second

time[cfun] ☞ 0.43 Second

Compile is implicit in many numerical functions, e.g. in Plot.

In a similar manner, Dispatch hashes long lists of rules
beforehand, to make the actual substitution faster.

T. Hahn, Programming Concepts in Mathematica – p.18

Blocks and Modules

Block implements Dynamical Scoping
A local variable is known everywhere, but only for as long as the block
executes (“temporal localization”).

Module implements Lexical Scoping
A local variable is known only in the block it is defined in (“spatial
localization”). This is how scoping works in most high-level languages.

printa := Print[a]

a = 7

btest := Block[{a = 5}, printa]

mtest := Module[{a = 5}, printa]

btest ☞ 5

mtest ☞ 7

T. Hahn, Programming Concepts in Mathematica – p.19

DownValues and UpValues

Definitions are usually assigned to the symbol being defined:
this is called DownValue.

For seldomly used definitions, it is better to assign the
definition to the next lower level: this is an UpValue.

x/: Plus[x, y] = z

?x ☞ Global‘x

x /: x + y = z

This is better than assigning to Plus directly, because Plus is
a very common operation.
In other words, Mathematica “looks” one level inside each
object when working off transformations.

T. Hahn, Programming Concepts in Mathematica – p.20

Output Forms

Mathematica knows some functions to be Output Forms.
These are used to format output, but don’t “stick” to the
result:

{{1, 2}, {3, 4}}//MatrixForm ☞

(
1 2
3 4

)

Head[%] ☞ List — not MatrixForm

Some important output forms:
InputForm, FullForm, Shallow, MatrixForm, TableForm,
TeXForm, CForm, FortranForm.

TeXForm[alpha/(4 Pi)] ☞ \frac{\alpha}{4\pi}

CForm[alpha/(4 Pi)] ☞ alpha/(4.*Pi)

FullForm[alpha/(4 Pi)]

☞ Times[Rational[1, 4], alpha, Power[Pi, -1]]

T. Hahn, Programming Concepts in Mathematica – p.21

MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

In-depth tutorial: http://library.wolfram.com/infocenter/TechNotes/174

T. Hahn, Programming Concepts in Mathematica – p.22

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh’s Here documents:

#! /bin/sh Shell Magic

math << _EOF_ start Here document (note the \)

<< FeynArts‘

<< FormCalc‘

top = CreateTopologies[...];

...

EOF end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Programming Concepts in Mathematica – p.23

Scripting Mathematica

• Everything contained in one compact shell script, even if
it involves several Mathematica sessions.

• Can combine with arbitrary shell programming, e.g. can
use command-line arguments efficiently:

#! /bin/sh

math -run "arg1=$1" -run "arg2=$2" ... << \END

...

END

• Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: � � flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Programming Concepts in Mathematica – p.24

Mathematica Summary

• Mathematica makes it wonderfully easy, even for fairly
unskilled users, to manipulate expressions.

• Most functions you will ever need are already built in.
Many third-party packages are available at MathSource,
http://library.wolfram.com/infocenter/MathSource.

• When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.
Wrong: FullSimplify[veryLongExpression].

• Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.
For example, in numerical functions, Mathematica
usually selects the algorithm automatically, which may
or may not be a good thing.

T. Hahn, Programming Concepts in Mathematica – p.25

Mathematica vs. FORM

Mathematica

• Much built-in
knowledge,

• Slow if used
indiscriminately,

• Very general,

• GUI, add-on packages . . .

FORM

• Limited mathematical knowledge,

• Fast also on large problems (if
known how to handle),

• Optimized for certain classes of
problems,

• Batch program (edit–run cycle).

T. Hahn, Programming Concepts in Mathematica – p.26

Reference Books, Formula Collections

• V.I. Borodulin et al.
CORE (Compendium of Relations)
hep-ph/9507456.

• Herbert Pietschmann
Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

• Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.

T. Hahn, Programming Concepts in Mathematica – p.27

Antisymmetric Tensor

The Antisymmetric Tensor in n dimensions is denoted by
εi1i2...in . You can think of it as a matrix-like object which has
either −1, 0, or 1 at each position.

For example, the Determinant of a matrix, being a completely
antisymmetric object, can be written with the ε-tensor:

det A =
n

∑
i1,...,in=1

εi1i2...in Ai11Ai22 · · · Ainn

In practice, the ε-tensor is usually contracted, e.g. with
vectors. We will adopt the following notation to avoid dummy
indices:

εµνρσpµqνrρsσ = ε(p, q, r, s) .

T. Hahn, Programming Concepts in Mathematica – p.28

Epsilon tensor in Mathematica

(* for actual vectors, this evaluates to the determinant,

but take care of the signs from the g_{mu nu}s *)

Eps[args__List] := I (-1)^Length[{args}] Det[{args}]

(* implement linearity: *)

Eps[a___, p_Plus, b___] := Eps[a, #, b]&/@ p

Eps[a___, n_?NumberQ r_, b___] := n Eps[a, r, b]

(* otherwise sort the arguments into canonical order: *)

Eps[args__] := Signature[{args}] Eps@@ Sort[{args}] /;

!OrderedQ[{args}]

T. Hahn, Programming Concepts in Mathematica – p.29

Abbreviationing

One of the most powerful tricks to both reduce the size of an
expression and reveal its structure is to substitute
subexpressions by new variables.

The essential function here is ��� ��� � � with which new symbols
are introduced. For example,

Unique["test"]

generates e.g. the symbol � �� � 	 , which is guaranteed not to
be in use so far.

The
��
 � � � function which implements lexical scoping in fact
uses ��� ��� � � to rename the symbols internally because
Mathematica can really do dynamical scoping only.

T. Hahn, Programming Concepts in Mathematica – p.30

Abbreviations in Mathematica
(* the main abbreviationing function *)

$AbbrPrefix = "c";

abbr[expr_] := abbr[expr] = Unique[$AbbrPrefix]

(* apply abbr e.g. like this: *)

Structure[expr_, x_] := Collect[expr, x, abbr]

(* get list of abbreviations introduced so far *)

AbbrList[] := Cases[DownValues[abbr],

[[_[f_]], s_Symbol] -> (s -> f)]

Restore[expr_] := expr /. AbbrList[]

T. Hahn, Programming Concepts in Mathematica – p.31

Colour Structures

In Feynman diagrams four type of Colour structures appear:

N
at

ur
al

Re
pr

es
en

ta
tio

n a

i

j

∼ Ta
i j =

� �� � �

a � i � j

�

i

j

k

`

∼ Ta
i jT

a
k` =

� � � � ��� 	 �
i � j � k � `

�
A

dj
oi

nt
Re

pr
es

en
ta

tio
n a

b

c

∼ f abc =

� � �
 �

a � b � c

�

a

b

c

d

∼ f abx f xcd =

� ��
 �

a � b � c � d

�

T. Hahn, Programming Concepts in Mathematica – p.32

Unified Notation

The � �� �’s can be converted to � �� �’s via

f abc = 2i
[
Tr(TcTbTa)− Tr(TaTbTc)

]
.

We can now represent all colour objects by just � �� �:

• � �� � �

i � j

�

= δi j

• � �� � �

a � b � � � � � i � j

�

= (TaTb · · ·)i j

• � �� � �

a � b � � � � �
�

�
� �

= Tr(TaTb · · ·)
This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-Nc limit” people like to use
SU(N) rather than an explicit SU(3).

T. Hahn, Programming Concepts in Mathematica – p.33

Fierz Identities

The Fierz Identities relate expressions with different orderings
of external particles. The Fierz identities essentially express
completeness of the underlying matrix space.

They were originally found by Markus Fierz in the context of
Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (colour) reordering, we need

Ta
i jT

a
k` =

1
2

(
δi`δk j −

1
N
δi jδk`

)
.

T. Hahn, Programming Concepts in Mathematica – p.34

Cvitanovich Algorithm

For an Amplitude:

• convert all colour structures to (generalized) � �� � objects,

• simplify as much as possible, i.e. use the Fierz identity on
all internal gluon lines.

For a Squared Amplitude:

• use the Fierz identity for SU(N) to get rid of all � �� �

objects.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature.

T. Hahn, Programming Concepts in Mathematica – p.35

Translation to Colour-Chain Notation

In colour-chain notation we can distinguish two cases:

a) Contraction of different chains:

〈A| Ta |B〉 〈C| Ta |D〉 =
1
2

(
〈A|D〉 〈C|B〉 − 1

N
〈A|B〉 〈C|D〉

)
,

b) Contraction on the same chain:

〈A| Ta |B| Ta |C〉 =
1
2

(
〈A|C〉Tr B− 1

N
〈A| B |C〉

)
.

T. Hahn, Programming Concepts in Mathematica – p.36

Colour Algebra in Mathematica

(* in-chain version of the Fierz identity *)

sunT[t1___, a_Symbol, t2___, a_, t3___, i_, j_] :=

(sunT[t1, t3, i, j] (sunT[t2, #, #]&[Unique["c"]]) -

sunT[t1, t2, t3, i, j]/SUNN)/2

(* across-chain version of the Fierz identity *)

sunT[t1___, a_Symbol, t2___, i_, j_] *

sunT[t3___, a_, t4___, k_, l_] ^:=

(sunT[t1, t4, i, l] sunT[t3, t2, k, j] -

sunT[t1, t2, i, j] sunT[t3, t4, k, l]/SUNN)/2

(* apply e.g. like this: *)

ColourSimplify[expr_] := expr /. SUNT -> sunT

T. Hahn, Programming Concepts in Mathematica – p.37

Fermion Trace

Leaving apart problems due to γ5 in d dimensions, we have as
the main algorithm for the 4d case:

Tr γµγνγργσ · · · = + gµν Tr γργσ · · ·
− gµρ Tr γνγσ · · ·
+ gµσ Tr γνγρ · · ·

This algorithm is recursive in nature, and we are ultimately
left with

Tr 1l = 4 .

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)

T. Hahn, Programming Concepts in Mathematica – p.38

Fermion Trace in Mathematica
(* pick out one index, mu, at a time *)

Trace4[mu_, g__] :=

Block[{Trace4, s = -1},

Plus@@ MapIndexed[

((s = -s) Pair[mu, #1] Drop[Trace4[g], #2])&,

{g}]]

(* the unit trace *)

Trace4[] = 4

T. Hahn, Programming Concepts in Mathematica – p.39

	Computer Algebra Systems
	Expert Systems
	Immediate and Delayed Assignment
	Almost everything is a List
	List-oriented Programming
	Map, Apply, and Pure Functions
	List Operations
	Patterns
	Attributes
	Memorizing Values
	Decisions
	Equality
	Selecting Elements
	Mathematical Functions
	Graphics
	Numerics
	Compiled Functions
	Blocks and Modules
	DownValues and UpValues
	Output Forms
	MathLink
	Scripting Mathematica
	Scripting Mathematica
	Mathematica Summary
	Mathematica vs. FORM
	Reference Books, Formula Collections
	Antisymmetric Tensor
	Epsilon tensor in Mathematica
	Abbreviationing
	Abbreviations in Mathematica
	Colour Structures
	Unified Notation
	Fierz Identities
	Cvitanovich Algorithm
	Translation to Colour-Chain Notation
	Colour Algebra in Mathematica
	Fermion Trace
	Fermion Trace in Mathematica

