K- v
Miinchen

T. Hahn, Programming Concepts in Mathematica —p.1

Maxima, MathCad, Reduce, Ax}om, Mi\GMA, GiNaC...
e Specialized systems: Cadabra, Singular, Magma, CoCoA,
GAP...

e Many more...

T. Hahn, Programming Concepts in Mathematica —p.2

myAbs[x:] := -x /; Negative[x]

We get:
myAbs[3] O 3
myAbs[-5] O 5
myAbs[2 + 3 I] [myAbs[2 + 3 I]
— no rule for complex arguments so far
myAbs [x] [myAbs [x]
— no match either

T. Hahn, Programming Concepts in Mathematica - p.3

e applied once using Rules:

a+b+c/.a->2c[] b+ 3c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r => Random[] [0 {0.823919, 0.823919}
{r, r} /. r :> Random[] [0 {0.356028, 0.100983}

Mathematica is one of those programs, like TeX, where you wish youd gotten a US keyboard for all those braces and brackets.

T. Hahn, Programming Concepts in Mathematica —p.4

Head
expr
expr
expr

e

0

1

2

. expr=a+b

FullForm[expr] [0 Plus[a, b]
xpr] [0 Plus

[] Plus — same as Head [expr]
[l a
[0 b

T. Hahn, Programming Concepts in Mathematica - p.5

estl := Bloc sum = O},
Do[sum += array[[i]], {i, Lengthlarray]l}];
sum]

test2 := Apply[Plus, array]

Here are the timings:

Timing[test1] [[1]] O 31.63 Second
Timing[test2] [[1]] [0 3.04 Second

T. Hahn, Programming Concepts in Mathematica - p.6

Apply[Plus, {a, b, c}] [a+b + c
Plus @@ {a, b, c} [a + b + ¢ — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /0 {4, 8+ O {5, 9}

The # (same as #1) represents the first argument, and the &
defines everything to its left as the pure function.

T. Hahn, Programming Concepts in Mathematica —p.7

Union[{c, c, a, b, a}] O {a, b, c}

Prepend and Append add elements at the front or back:

Prepend[r[a, bl, c] O rlc, a, bl
Append[r[a, b], c] O rla, b, c]

Insert and Delete insert and delete elements:

Insert[h[a, b, c], x, {2}] OO hla, x, b, c]
Deletelh[a, b, c], {2}] [0 hla, c]

T. Hahn, Programming Concepts in Mathematica - p.8

X_h — pattern with head h

x_:1 — default value
x_"7Number(— conditional pattern
x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {0Orderless}
Pair[p_Plus, j_] := Pair([#, jl& /@ p
Pair[n_7NumberQ i_, j_] := n Pairl[i, j]

T. Hahn, Programming Concepts in Mathematica - p.9

f[{1, 23] O {f[1], f[2]} — definition is never seen

Important attributes: Flat, Orderless, Listable,
HoldAll, HoldFirst, HoldRest.

The Hold. .. attributes are needed to pass variables by

reference:
Attributes[listadd] = {HoldFirst}
listadd[x_, other__] := x = Flatten[{x, other}]

This would not work if x were expanded before invoking
listadd, i.e. passed by value. - EEEE

T. Hahn, Programming Concepts in Mathematica - p.10

?fib [0 Globa

fib
fib

fib[
fib[

fib

Note that Mathematica places more specific definitions before

1
2

l_l Il-bl w

[1_]

more generic ones.

[
H W N - =

1°fib

fib[i] = fib[i - 2] + fib[i - 1]

T. Hahn, Programming Concepts in Mathematica —p.11

b

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ,
MatchQ, OrderedQ, ... These functions have no undecided
state: in case of doubt they return False.

J b

Conditional Patterns are usually faster:
good[a_, b_] := If[TrueQ[a > b], 1, 2]
— TrueQ removes ambiguity

better[a_, b_] :=1 /; a > b
betterla_, b_] = 2 0 EEEE

T. Hahn, Programming Concepts in Mathematica - p.12

a == a rue
a === a []|] True

The full name of ‘==="is SameQ and works as the Q indicates:
in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ‘==";
Solve[x"2 == 1, x] O {{x —> -1}, {x —> 1}}
Needless to add, ‘=’ is a definition and quite different:

X = 3 — assign 3 to x
O EEEEN

T. Hahn, Programming Concepts in Mathematica - p.13

Using Levels is generally a very fast way to extract parts:

list

Depth
Level
Level

Level
Level

Cases

= 1f[x], 4, {glyl, h}}

[1ist, {2}] O {x, glyl, h}
[1ist, {3}] O A{y}
[1list, {-1}] O {x, 4, y, h}

(expr, _Symbol, {-1}]//Union
— find all variables in expr

[1list] [] 4 — list is 4 levels deep (0, 1, 2, 3)
[1ist, {1}] O {flx], 4, {glyl, h}}

T. Hahn, Programming Concepts in Mathematica —p.14

gum|1, 11,55” — sum

Series[Sin[x], {x,1,5}] — series expansion
Simplify[(x"2 - x y)/x] — simplify

Together[1/x + 1/y] — put on common denominator
Inverse[mat] — matrix inverse
Eigenvalues[mat] — eigenvalues

PolyLog[2, 1/3] — polylogarithm
LegendreP[11, x] — Legendre polynomial

Gamma [.567] — Gamma function

T. Hahn, Programming Concepts in Mathematica - p.15

Output can be saved to a file with Export:

plot = Plot[Abs[Zetal[l/2 + x I]], {x, O, 50}]
Export["zeta.eps", plot, "EPS"]

Hint: To get a high-quality plot with proper I5gX labels, don’t
waste your time fiddling with the P1ot options. Use the
psfrag [SIgX package.

T. Hahn, Programming Concepts in Mathematica —p.16

N[Erf[28/33], 25] [0 0.7698368826185349656257148

But: Exact or arbitrary-precision arithmetic is fairly slow!
Mathematica uses Machine-precision Reals for fast arithmetic.

N[Erf[28/33]] [0 0.769836882618535

Arrays of machine-precision reals are internally stored as
Packed Arrays (this is invisible to the user) and in this form
attain speeds close to compiled languages on certain
operations, e.g. eigenvalues of a large matrix.

T. Hahn, Programming Concepts in Mathematica —p.17

fun[x_] := Exp[-((x - 3)72/5)]
cfun = Compile[{x}, Exp[-((x - 3)72/5)]]

time[f_] := Timing[Table[f[1.2], {10°5}1]1[[1]]

time[fun] [] 2.4 Second
time[cfun] [] 0.43 Second

Compile is implicit in many numerical functions, e.g. in Plot.

In a similar manner, Dispatch hashes long lists of rules
beforehand, to make the actual substitution faster.

T. Hahn, Programming Concepts in Mathematica - p.18

localization”). This is how scoping works in most high-level languages.

printa := Print[a]

a =717

btest := Block[{a = 5}, printal
mtest := Module[{a = 5}, printal]
btest [5

mtest [] 7

T. Hahn, Programming Concepts in Mathematica —p.19

x/: Plus([x, y] = z

?x [1 Global‘x
X /1 x+y =2z

This is better than assigning to P1us directly, because Plus is
a very common operation.

In other words, Mathematica “looks” one level inside each
object when working off transformations.

T. Hahn, Programming Concepts in Mathematica - p.20

1St — not MatrixForm

ea 0

Some important output forms:
InputForm, FullForm, Shallow, MatrixForm, TableForm,
TeXForm, CForm, FortranForm.

TeXForm[alpha/(4 Pi)] [0 \frac{\alpha}{4\pi}

CForm[alpha/(4 Pi)] [alpha/(4.%Pi)

FullForm[alpha/(4 Pi)]

[1 Times[Rational[l, 4], alpha, Power[Pi, -1]]
EE EEEE

T. Hahn, Programming Concepts in Mathematica —p.21

:ReturnType: Real
:End:

#include "mathlink.h"

double copysign(double x, double s) {
return (s < 0) ? -fabs(x) : fabs(x);
+

int main(int argc, char **xargv) {
return MLMain(argc, argv);

}

In-depth tutorial: http://library.wolfram.com/infocenter/TechNotes/174

T. Hahn, Programming Concepts in Mathematica — p.22

<< FeynArts°
<< FormCalc*
top = CreateTopologies[...];

EOF_ end Here document

Everything between “<< \ta¢” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Programming Concepts in Mathematica - p.23

#! /bin/sh
math -run "argl=$1" -run "arg2=3$2" ... << \END

END

e Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Programming Concepts in Mathematica —p.24

e When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.

Wrong: FullSimplify[veryLongExpression].

Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.

For example, in numerical functions, Mathematica

usually selects the algorithm automatically, which may

or may not be a good thing. EE EEEE

T. Hahn, Programming Concepts in Mathematica — p.25

Much built-in
knowledge,

Slow if used
indiscriminately,

Very general,
GUI, add-on packages...

Limited mathematical knowledge,

Fast also on large problems (if
known how to handle),

Optimized for certain classes of
problems,

Batch program (edit-run cycle).
B B B

T. Hahn, Programming Concepts in Mathematica — p.26

Springer (Austria) 2nd ed., 1983.

e Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.

T. Hahn, Programming Concepts in Mathematica —

p-27

antisymmetric object, can be written with the =-tensor:

n
det A = Z 5i1i2...inAi11Ai22‘"Ainn

i]_,...,in:l

In practice, the =-tensor is usually contracted, e.g. with
vectors. We will adopt the following notation to avoid dummy
indices:

EuvpapP'q 1r’s’ = e(p,q,r1,5).

T. Hahn, Programming Concepts in Mathematica — p.28

.
Epsla___, p_Plus, b___] := Epsla, #, bl&/@ p

Eps[a n_7NumberQ r_, b___] :=n Epsla, r, b]

—_———)

(* otherwise sort the arguments into canonical order: *)

Epslargs__]1 := Signature[{args}] Eps@@ Sort[{args}] /;
!OrderedQ[{args}]

T. Hahn, Programming Concepts in Mathematica — p.29

The essential function here is Unique with which new symbols
are introduced. For example,

Unique["test"]

generates e.g. the symbol test1, which is guaranteed not to
be in use so far.

The Module function which implements lexical scoping in fact
uses Unique to rename the symbols internally because
Mathematica can really do dynamical scoping only.

T. Hahn, Programming Concepts in Mathematica —p.30

Structure‘expr_, X_’ 1= Collect‘expr, X, abbr’

(x get list of abbreviations introduced so far *)

AbbrList[] := Cases[DownValues[abbr],
L[_[£f_1]1, s_Symbol] -> (s -> £)]

Restorelexpr_] := expr /. AbbrListl[]

T. Hahn, Programming Concepts in Mathematica —p.31

~ T/, =SUNT[a,i,] ~ f%¢ = SUNF[a,b,]

Natural Represe
Adjoint Represe

I ~_ -k a C
v

] - >/ b d

~ TfT{, = SUNTSunl[i, j, k, (] ~ fbx fxed — SUNF [a,b,c,d]

T. Hahn, Programming Concepts in Mathematica —p.32

e SUNT[i,j] = 0;j
o SUNT[a,b, ...,i,jl =(T°T" --);

e SUNT[a,b, ...,0,0] =Tr(T°T?---)

This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-N. limit” people like to use
SU(N) rather than an explicit SU(3).

T. Hahn, Programming Concepts in Mathematica - p.33

Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (colour) reordering, we need

1 1
TiiTe = 5 <5i€5kj - N5if5k€> -

T. Hahn, Programming Concepts in Mathematica —p.34

For a Squared Amplitude:

o use the Fierz identity for SU(N) to get rid of all SUNT
objects.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature.

T. Hahn, Programming Concepts in Mathematica - p.35

b) Contraction on the same chain:

(A|T*|B| T*|C) = % (<Ayc> TrB — % (A| B yc>) .

T. Hahn, Programming Concepts in Mathematica — p.36

—_———)

sunT [t1 a_Symbol, t2___, i_, j_] x
sunT[t3___, a_, t4 k_, 1_] ~:=
(sunT[t1l, t4, i, 1] sunT[t3, t2, k, j] -
sunT[t1, t2, i, j] sunT[t3, t4, k, 1]/SUNN)/2

—_——)

(* apply e.g. like this: *)

ColourSimplify[expr_] := expr /. SUNT -> sunT

T. Hahn, Programming Concepts in Mathematica — p.37

+ Qo Tr Yo Yp

This algorithm is recursive in nature, and we are ultimately
left with

Tri1=4.

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)

T. Hahn, Programming Concepts in Mathematica — p.38

(* the unit trace *)

Trace4[] = 4

T. Hahn, Programming Concepts in Mathematica - p.39

	Computer Algebra Systems
	Expert Systems
	Immediate and Delayed Assignment
	Almost everything is a List
	List-oriented Programming
	Map, Apply, and Pure Functions
	List Operations
	Patterns
	Attributes
	Memorizing Values
	Decisions
	Equality
	Selecting Elements
	Mathematical Functions
	Graphics
	Numerics
	Compiled Functions
	Blocks and Modules
	DownValues and UpValues
	Output Forms
	MathLink
	Scripting Mathematica
	Scripting Mathematica
	Mathematica Summary
	Mathematica vs. FORM
	Reference Books, Formula Collections
	Antisymmetric Tensor
	Epsilon tensor in Mathematica
	Abbreviationing
	Abbreviations in Mathematica
	Colour Structures
	Unified Notation
	Fierz Identities
	Cvitanovich Algorithm
	Translation to Colour-Chain Notation
	Colour Algebra in Mathematica
	Fermion Trace
	Fermion Trace in Mathematica

