Programming Concepts in Mathematica

Thomas Hahn

Max-Planck-Institut für Physik München

- Commercial systems: Mathematica, Maple, Matlab, MuPAD/Matlab, MathCad, Fermat, Derive...
- Free systems: FORM, GiNaC, Axiom, Cadabra, GAP, Reduce, Singular, Maxima, MAGMA
- Generic systems: Mathematica, Maple, MuPAD/Matlab, Maxima, MathCad, Reduce, Axiom, MAGMA, GiNaC...
- Specialized systems: Cadabra, Singular, Magma, CoCoA, GAP...
- Many more...

In technical terms, Mathematica is an Expert System. Knowledge is added in form of Transformation Rules. An expression is transformed until no more rules apply.

Example:

myAbs [x_] := x /; NonNegative[x]
my Abs [x_] := -x /; Negative [x]

We get:

myAbs [3] 3
myAbs [-5] res 5
myAbs [2 + 3 I] res myAbs[2 + 3 I$]$

- no rule for complex arguments so far
myAbs [x] res myAbs [x]
- no match either

Transformations can either be

- added "permanently" in form of Definitions,

$$
\begin{aligned}
& \text { norm[vec_] := Sqrt[vec. vec] } \\
& \text { norm }[\{1,0,2\}] \text { Sqrt [5] }
\end{aligned}
$$

- applied once using Rules:

$$
a+b+c / a \rightarrow 2 c+b+3 c
$$

Transformations can be Immediate or Delayed. Consider:

$$
\left.\left.\begin{array}{l}
\{r, r\} / . r \rightarrow \operatorname{Random}[] \\
\{r, r\} / . r:>\operatorname{Random}[]
\end{array}\right] 0.323919,0.823919\right\},
$$

Mathematica is one of those programs, like $T_{E} X$, where you wish youd gotten a US keyboard for all those braces and brackets.

All Mathematica objects are either Atomic, e.g.

Head[133] nes Integer
 Head [a] wes Symbol

or (generalized) Lists with a Head and Elements:

```
expr = a + b
FullForm[expr] Plus[a, b]
Head[expr] res Plus
expr[[0]] 叱 Plus - same as Head[expr]
expr[[1]] res a
expr[[2]] b
```

Using Mathematica's list-oriented commands is almost always of advantage in both speed and elegance.

Consider:

```
array = Table[Random[], {10^7}];
test1 := Block[ {sum = 0},
    Do[ sum += array[[i]], {i, Length[array]} ];
    sum ]
test2 := Apply[Plus, array]
```


Here are the timings:

```
Timing[test1][[1]] re% 31.63 Second
Timing[test2][[1]] res 3.04 Second
```

Map applies a function to all elements of a list:

Apply exchanges the head of a list:

```
Apply[Plus, {a, b, c}] res a + b + c
Plus @@ {a,b, c} res a + b + c -short form
```

Pure Functions are a concept from formal logic. A pure function is defined 'on the fly':

$$
(\#+1) \& / @\{4,8\}
$$

The \# (same as \#1) represents the first argument, and the \& defines everything to its left as the pure function.

Flatten removes all sub-lists:

Flatten $[f[\mathrm{x}, \mathrm{f}[\mathrm{y}], \mathrm{f}[\mathrm{f}[\mathrm{z}]]]]$ ぃध्ध $\mathrm{f}[\mathrm{x}, \mathrm{y}, \mathrm{z}]$
Sort and Union sort a list. Union also removes duplicates:

$$
\begin{aligned}
& \text { Sort }[\{3,10,1,8\}] \text { \{1, } 3,8,10\} \\
& \text { Union }[\{c, c, a, b, a\}] \text { aç }\{a, c\}
\end{aligned}
$$

Prepend and Append add elements at the front or back:

$$
\begin{aligned}
& \text { Prepend }[r[a, b], c] r[c, a, b] \\
& \text { Append }[r[a, b], c]
\end{aligned}
$$

Insert and Delete insert and delete elements:

```
Insert[h[a, b, c], x, {2}] h[a, x, b, c]
Delete[h[a, b, c], {2}] h[a, c]
```


One of the most useful features is Pattern Matching:

- matches one object
- matches one or more objects
- matches zero or more objects
- named pattern (for use on the r.h.s.)
- pattern with head h
- default value

X_?NumberQ - conditional pattern
$\mathrm{X}_{-} /$; $\mathrm{X}>0$ - conditional pattern
Patterns take function overloading to the limit, i.e. functions behave differently depending on details of their arguments:

```
Attributes[Pair] = {Orderless}
Pair[p_Plus, j_] := Pair[#, j]& /@ p
Pair[n_?NumberQ i_, j_] := n Pair[i, j]
```

Attributes characterize a function's behaviour before and while it is subjected to pattern matching. For example,

```
Attributes[f] = {Listable}
f[l_List] := g[l]
```

$f[\{1,2\}]$ des $[1], f[2]\}$ - definition is never seen

Important attributes: Flat, Orderless, Listable, HoldAll, HoldFirst, HoldRest.
The Hold. . . attributes are needed to pass variables by reference:

$$
\begin{aligned}
& \text { Attributes [listadd] = \{HoldFirst }\} \\
& \text { listadd[x-, other_-] := x = Flatten[\{x, other }\}]
\end{aligned}
$$

This would not work if x were expanded before invoking listadd, i.e. passed by value.

For longer computations, it may be desirable to 'remember' values once computed. For example:

```
fib[1] = fib[2] = 1
fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]
fib[4] re 3
?fib Global'fib
    fib[1] = 1
    fib[2] = 1
    fib[3] = 2
    fib[4] = 3
    fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]
```

Note that Mathematica places more specific definitions before more generic ones.

Mathematica's If Statement has three entries: for True, for False, but also for Undecidable. For example:

```
If[8 > 9, yes, no] re no
If[a>b, yes, no] re If[a>b, yes, no]
If[a>b, yes, no, dunno] res dunno
```

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ, MatchQ, OrderedQ, ... These functions have no undecided state: in case of doubt they return False.

Conditional Patterns are usually faster:

$$
\begin{aligned}
& \operatorname{good}\left[\mathrm{a}_{-}, \mathrm{b}_{-}\right]:=\operatorname{If}[\text { TrueQ }[\mathrm{a}>\mathrm{b}], 1,2] \\
& \quad \text { TrueQ removes ambiguity } \\
& \text { better }\left[\mathrm{a}_{-}, \mathrm{b}_{-}\right]:=1 / ; \mathrm{a}>\mathrm{b} \\
& \text { better }\left[\mathrm{a}_{-}, \mathrm{b}_{-}\right]=2
\end{aligned}
$$

Just as with decisions, there are several types of equality, decidable and undecidable:

```
a== b 呧 a == b
a === b nex False
a == a nes True
a === a nq} True
```

The full name of ' $===$ ' is SameQ and works as the Q indicates: in case of doubt, it gives False. It tests for Structural Equality.
Of course, equations to be solved are stated with '==':

$$
\text { Solve } \left.\left[x^{\wedge} 2=1, x\right] \text { de }\{x \rightarrow-1\},\{x \rightarrow 1\}\right\}
$$

Needless to add, '=' is a definition and quite different:

$$
x=3 \quad-\operatorname{assign} 3 \text { to } x
$$

Select selects elements fulfilling a criterium:

Select[\{1, 2, 3, 4, 5\} \# > 3 \&
18

Cases selects elements matching a pattern:

Cases [\{1, a, $f[x]\}$, _Symbol] एe $\{a\}$

Using Levels is generally a very fast way to extract parts:
list $=\{f[x], 4,\{g[y], h\}\}$
Depth [list] $4-1$ list is 4 levels deep ($0,1,2,3$)
Level[list, \{1\}] เฉ $\{f[x], 4,\{g[y], h\}\}$
Level[list, $\{2\}]$ dx, $\mathrm{g}[\mathrm{y}], \mathrm{h}\}$
Level[list, $\{3\}]$ res $\{y$
Level[list, $\{-1\}]$ x $\{x, 4, y, h\}$
Cases [expr, _Symbol, \{-1\}]//Union

- find all variables in expr

Mathematica is equipped with a large set of mathematical functions, both for symbolic and numeric operations. Some examples:

Integrate [x^2, \{x, 3, 5\}]	- integral
$\mathrm{D}[\mathrm{f}[\mathrm{x}]$, x$]$	- derivative
Sum[i, \{i, 50\}]	- sum
Series[Sin[x], $\{\mathrm{x}, 1,5\}$]	- series expansion
Simplify $\left[\left(x^{\wedge} 2-x y\right) / x\right]$	- simplify
Together $[1 / \mathrm{x}+1 / \mathrm{y}]$	- put on common denominator
Inverse[mat]	- matrix inverse
Eigenvalues [mat]	- eigenvalues
PolyLog[2, 1/3]	- polylogarithm
LegendreP[11, x]	- Legendre polynomial
Gamma [.567]	- Gamma function

Mathematica has formidable graphics capabilities:

Plot [ArcTan $[x],\{x, 0,2.5\}]$
ParametricPlot $[\{\operatorname{Sin}[x], 2 \operatorname{Cos}[x]\},\{x, 0,2 \operatorname{Pi}\}]$
Plot3D[1/(x^2 $\left.\left.+\mathrm{y}^{\wedge} 2\right),\{\mathrm{x},-1,1\},\{\mathrm{y},-1,1\}\right]$ ContourPlot[x y, $\{x, 0,10\},\{y, 0,10\}]$

Output can be saved to a file with Export:

$$
\begin{aligned}
& \text { plot }=\text { Plot [Abs[Zeta[1/2 + x I]], \{x, 0, 50\}] } \\
& \text { Export["zeta.eps", plot, "EPS"] }
\end{aligned}
$$

Hint: To get a high-quality plot with proper LTEX labels, don't waste your time fiddling with the Plot options. Use the psfrag LTEX package.

Mathematica can express Exact Numbers, e.g.

It can also do Arbitrary-precision Arithmetic, e.g.

N [Erf [28/33], 25] 0.7698368826185349656257148

But: Exact or arbitrary-precision arithmetic is fairly slow! Mathematica uses Machine-precision Reals for fast arithmetic.

$$
\text { N }[\operatorname{Erf}[28 / 33]] \text { 上er } 0.769836882618535
$$

Arrays of machine-precision reals are internally stored as Packed Arrays (this is invisible to the user) and in this form attain speeds close to compiled languages on certain operations, e.g. eigenvalues of a large matrix.

Mathematica can 'compile' certain functions for efficiency. This is not compilation into assembler language, but rather a strong typing of an expression such that intermediate data types do not have to be determined dynamically.

```
fun[x_] := Exp[-((x - 3)^2/5)]
cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]
time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]
time[fun] 2.4 Second
time[cfun] res 0.43 Second
```

Compile is implicit in many numerical functions, e.g. in Plot.
In a similar manner, Dispatch hashes long lists of rules beforehand, to make the actual substitution faster.

Block implements Dynamical Scoping

A local variable is known everywhere, but only for as long as the block executes ("temporal localization").

Module implements Lexical Scoping

A local variable is known only in the block it is defined in ("spatial localization"). This is how scoping works in most high-level languages.

```
printa := Print[a]
a = 7
btest := Block[{a = 5}, printa]
mtest := Module[{a = 5}, printa]
btest res 5
mtest res 7
```

Definitions are usually assigned to the symbol being defined: this is called DownValue.

For seldomly used definitions, it is better to assign the definition to the next lower level: this is an UpValue.

$$
\begin{aligned}
\mathrm{x} /: & \text { Plus }[\mathrm{x}, \mathrm{y}]=\mathrm{z} \\
\text { ? } \mathrm{x} & \text { Global } \mathrm{x} \\
& \mathrm{x} /: \mathrm{x}+\mathrm{y}=\mathrm{z}
\end{aligned}
$$

This is better than assigning to Plus directly, because Plus is a very common operation.
In other words, Mathematica "looks" one level inside each object when working off transformations.

Mathematica knows some functions to be Output Forms.

 These are used to format output, but don't "stick" to the result:
$\{\{1,2\},\{3,4\}\} / /$ MatrixForm res $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

Head [\%] List - not MatrixForm

Some important output forms:

InputForm, FullForm, Shallow, MatrixForm, TableForm, TeXForm, CForm, FortranForm.

```
TeXForm[alpha/(4 Pi)] res \frac{\alpha}{4\pi}
CForm[alpha/(4 Pi)] 看 alpha/(4.*Pi)
FullForm[alpha/(4 Pi)]
&&
```


The MathLink API connects Mathematica with external C/C++ programs (and vice versa). J/Link does the same for Java.

```
:Begin:
:Function: copysign
:Pattern: CopySign[x_?NumberQ, s_?NumberQ]
:Arguments: {N[x],N[s]}
:ArgumentTypes: {Real, Real}
:ReturnType: Real
:End:
#include "mathlink.h"
double copysign(double x, double s) {
    return (s < 0) ? -fabs(x) : fabs(x);
}
int main(int argc, char **argv) {
    return MLMain(argc, argv);
}
```

In-depth tutorial: http://library.wolfram.com/infocenter/TechNotes/174

Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh
Shell Magic
math << \_EOF_ ............ start Here document (note the \)
    << FeynArts'
    << FormCalc'
    top = CreateTopologies[...];
_EOF_
end Here document
```

Everything between "<< \tag" and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

- Everything contained in one compact shell script, even if it involves several Mathematica sessions.
- Can combine with arbitrary shell programming, e.g. can use command-line arguments efficiently:
\#! /bin/sh
math -run "arg1=\$1" -run "arg2=\$2" ... << \END

END

- Can easily be run in the background, or combined with utilities such as make.

Debugging hint: -x flag makes shell echo every statement, \#! /bin/sh -x

- Mathematica makes it wonderfully easy, even for fairly unskilled users, to manipulate expressions.
- Most functions you will ever need are already built in. Many third-party packages are available at MathSource, http://Iibrary.wolfram.com/infocenter/MathSource.
- When using its capabilities (in particular list-oriented programming and pattern matching) right, Mathematica can be very efficient.
Wrong: FullSimplify [veryLongExpression].
- Mathematica is a general-purpose system, i.e. convenient to use, but not ideal for everything.
For example, in numerical functions, Mathematica usually selects the algorithm automatically, which may or may not be a good thing.

Mathematica

- Much built-in knowledge,
- Slow if used indiscriminately,
- Very general,
- GUI, add-on packages...

FORM

- Limited mathematical knowledge,
- Fast also on large problems (if known how to handle),
- Optimized for certain classes of problems,
- Batch program (edit-run cycle).
- V.I. Borodulin et al.

CORE (Compendium of Relations) hep-ph/9507456.

- Herbert Pietschmann

Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

- Andrei Grozin

Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.

The Antisymmetric Tensor in n dimensions is denoted by $\varepsilon_{i_{1} i_{2} \ldots i_{n}}$. You can think of it as a matrix-like object which has either $-1,0$, or 1 at each position.

For example, the Determinant of a matrix, being a completely antisymmetric object, can be written with the ε-tensor:

$$
\operatorname{det} A=\sum_{i_{1}, \ldots, i_{n}=1}^{n} \varepsilon_{i_{1} i_{2} \ldots i_{n}} A_{i_{1} 1} A_{i_{2} 2} \cdots A_{i_{n} n}
$$

In practice, the ε-tensor is usually contracted, e.g. with vectors. We will adopt the following notation to avoid dummy indices:

$$
\varepsilon_{\mu \nu \rho \sigma} p^{\mu} q^{\nu} r^{\rho} s^{\sigma}=\varepsilon(p, q, r, s) .
$$

(* for actual vectors, this evaluates to the determinant, but take care of the signs from the g_\{mu nu\}s *)

Eps[args__List] := I (-1)^Length[\{args\}] Det[\{args\}]
(* implement linearity: *)
Eps[a_--, p_Plus, b_--] := Eps[a, \#, b] \&/@ p
Eps [a_--, n_{-}?NumberQ $\left.\mathrm{r}_{-}, \mathrm{b}_{---}\right]:=\mathrm{n} \operatorname{Eps}[\mathrm{a}, \mathrm{r}, \mathrm{b}]$
(* otherwise sort the arguments into canonical order: *)
Eps[args__] := Signature[\{args\}] Eps@@ Sort[\{args\}] /; ! OrderedQ[\{args\}]

One of the most powerful tricks to both reduce the size of an expression and reveal its structure is to substitute subexpressions by new variables.

The essential function here is Unique with which new symbols are introduced. For example,

Unique ["test"]

generates e.g. the symbol test1, which is guaranteed not to be in use so for.

The Module function which implements lexical scoping in fact uses Unique to rename the symbols internally because Mathematica can really do dynamical scoping only.
(* the main abbreviationing function *)

```
$AbbrPrefix = "c";
abbr[expr_] := abbr[expr] = Unique[$AbbrPrefix]
    (* apply abbr e.g. like this: *)
Structure[expr_, x_] := Collect[expr, x, abbr]
    (* get list of abbreviations introduced so far *)
AbbrList[] := Cases[ DownValues[abbr],
    _[_[_[f_]], s_Symbol] -> (s -> f) ]
```

Restore[expr_] := expr /. AbbrList []

In Feynman diagrams four type of Colour structures appear:

The SUNF's can be converted to SUNT's via

$$
f^{a b c}=2 \mathrm{i}\left[\operatorname{Tr}\left(T^{c} T^{b} T^{a}\right)-\operatorname{Tr}\left(T^{a} T^{b} T^{c}\right)\right] .
$$

We can now represent all colour objects by just SUNT:

- $\operatorname{SUNT}[i, j]=\delta_{i j}$
- SUNT $[a, b, \ldots, i, j]=\left(T^{a} T^{b} \cdots\right)_{i j}$
- SUNT $[a, b, \ldots, 0,0]=\operatorname{Tr}\left(T^{a} T^{b} \ldots\right)$

This notation again avoids unnecessary dummy indices. (Mainly namespace problem.)

For purposes such as the "Iarge- N_{c} limit" people like to use SU(N) rather than an explicit SU(3).

The Fierz Identities relate expressions with different orderings of external particles. The Fierz identities essentially express completeness of the underlying matrix space.

They were originally found by Markus Fierz in the context of Dirac spinors, but can be generalized to any finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (colour) reordering, we need

$$
T_{i j}^{a} T_{k \ell}^{a}=\frac{1}{2}\left(\delta_{i \ell} \delta_{k j}-\frac{1}{N} \delta_{i j} \delta_{k \ell}\right)
$$

For an Amplitude:

- convert all colour structures to (generalized) SUNT objects,
- simplify as much as possible, i.e. use the Fierz identity on all internal gluon lines.

For a Squared Amplitude:

- use the Fierz identity for SU(N) to get rid of all SUNT objects.

For "hand" calculations, a pictorial version of this algorithm exists in the literature.

In colour-chain notation we can distinguish two cases:

a) Contraction of different chains:

$$
\langle A| T^{a}|B\rangle\langle C| T^{a}|D\rangle=\frac{1}{2}\left(\langle A \mid D\rangle\langle C \mid B\rangle-\frac{1}{N}\langle A \mid B\rangle\langle C \mid D\rangle\right),
$$

b) Contraction on the same chain:

$$
\langle A| T^{a}|B| T^{a}|C\rangle=\frac{1}{2}\left(\langle A \mid C\rangle \operatorname{Tr} B-\frac{1}{N}\langle A| B|C\rangle\right) .
$$

(* in-chain version of the Fierz identity *)
sunt[t1-_-, $\left.a_{-} S y m b o l, ~ t 2_{---}, a_{-}, t 3_{---}, i_{-}, j_{-}\right]:=$ (sunT[t1, t3, i, j] (sunT[t2, \#, \#]\&[Unique["c"]]) sunT[t1, t2, t3, i, j]/SUNN)/2
(* across-chain version of the Fierz identity *)
sunT[t1_--, a_Symbol, t2__-, $\left.i_{-}, j_{-}\right]$*
$\operatorname{sunT}\left[t 3_{---}, a_{-}, t 4_{---}, k_{-}, l_{-}\right]$^:=
(sunT[t1, t4, i, l] $\operatorname{sunT}[t 3, t 2, k, j]-$ $\operatorname{sun} T[t 1, t 2, i, j] \operatorname{sun} T[t 3, t 4, k, 1] /$ SUNN $) / 2$
(* apply e.g. like this: *)
ColourSimplify [expr_] := expr /. SUNT -> sunT

Leaving apart problems due to γ_{5} in d dimensions, we have as the main algorithm for the 4 d case:

$$
\begin{aligned}
\operatorname{Tr} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \cdots= & +g_{\mu \nu} \operatorname{Tr} \gamma_{\rho} \gamma_{\sigma} \cdots \\
& -g_{\mu \rho} \operatorname{Tr} \gamma_{\nu} \gamma_{\sigma} \cdots \\
& +g_{\mu \sigma} \operatorname{Tr} \gamma_{\nu} \gamma_{\rho} \cdots
\end{aligned}
$$

This algorithm is recursive in nature, and we are ultimately left with

$$
\operatorname{Tr} \mathbb{1}=4
$$

(Note that this 4 is not the space-time dimension, but the dimension of spinor space.)

> (* pick out one index, mu, at a time *)

```
Trace4[mu_, g_-] :=
Block[ {Trace4, s = -1},
    Plus@@ MapIndexed[
        ((s = -s) Pair[mu, #1] Drop[Trace4 [g], #2]) &,
        {g} ] ]
            (* the unit trace *)
Trace4[] = 4
```

