Integration by parts

Andrey Grozin

Institut für Theoretische Teilchenphysik
Karlsruher Institut für Technologie

Steps to solve a problem

- Diagrams generation, classification into topologies, routing momenta
- Tensor and Dirac algebra in numerators, reduction to scalar Feynman integrals
- Reduction of scalar Feynman integrals to master integrals
- Calculation of master integrals

Steps to solve a problem

- Diagrams generation, classification into topologies, routing momenta
- Tensor and Dirac algebra in numerators, reduction to scalar Feynman integrals
- Reduction of scalar Feynman integrals to master integrals
- Calculation of master integrals

Expansion in small ratios of momenta and masses
(the method of regions)

Feynman graphs and Feynman integrals

Loop momenta k_{1}, \ldots, k_{L}
External momenta p_{1}, \ldots, p_{E}
$q_{i}=k_{1}, \ldots, k_{L}, p_{1}, \ldots, p_{E}$
Line momenta l_{1}, \ldots, l_{I} - linear combinations of q_{i}

Feynman graphs and Feynman integrals

Loop momenta k_{1}, \ldots, k_{L}
External momenta p_{1}, \ldots, p_{E}
$q_{i}=k_{1}, \ldots, k_{L}, p_{1}, \ldots, p_{E}$
Line momenta l_{1}, \ldots, l_{I} - linear combinations of q_{i}

$$
\begin{aligned}
\xrightarrow[l]{\sim} & =\frac{1}{-l^{2}-i 0} \\
\bullet \longrightarrow & =\frac{1}{m^{2}-l^{2}-i 0} \\
\xrightarrow[l]{\longrightarrow} & =\frac{1}{-2 l \cdot v-i 0}
\end{aligned}
$$

Feynman graphs and Feynman integrals

Loop momenta k_{1}, \ldots, k_{L}
External momenta p_{1}, \ldots, p_{E}
$q_{i}=k_{1}, \ldots, k_{L}, p_{1}, \ldots, p_{E}$
Line momenta l_{1}, \ldots, l_{I} - linear combinations of q_{i}

$$
\begin{aligned}
\xrightarrow[l]{\sim} & =\frac{1}{-l^{2}-i 0} \\
\bullet \longrightarrow & =\frac{1}{m^{2}-l^{2}-i 0} \\
\longrightarrow & \frac{1}{-2 l \cdot v-i 0}
\end{aligned}
$$

Denominators D_{i} are linear in $s_{i j}=k_{i} \cdot q_{j}$

Routing momenta

Routing momenta

Routing momenta

Symmetries

Symmetries

Irreducible numerators

There are

$$
N=\frac{L(L+1)}{2}+L E
$$

scalar products $s_{i j}=k_{i} \cdot q_{j}$

Irreducible numerators

There are

$$
N=\frac{L(L+1)}{2}+L E
$$

scalar products $s_{i j}=k_{i} \cdot q_{j}$
$(E+1)$-legged L-loop diagrams:
the maximum number of denominators

$$
M=3 L+E-2 \quad N-M=\frac{(L-1)(L+2 E-4)}{2}
$$

Vacuum diagrams

$$
M=3(L-1) \quad N-M=\frac{(L-2)(L-3)}{2}
$$

Irreducible numerators

There are

$$
N=\frac{L(L+1)}{2}+L E
$$

scalar products $s_{i j}=k_{i} \cdot q_{j}$
$(E+1)$-legged L-loop diagrams:
the maximum number of denominators

$$
M=3 L+E-2 \quad N-M=\frac{(L-1)(L+2 E-4)}{2}
$$

Vacuum diagrams

$$
M=3(L-1) \quad N-M=\frac{(L-2)(L-3)}{2}
$$

Irreducible numerators D_{M+1}, \ldots, D_{N}

Scalar Feynman integral

$$
\begin{aligned}
I\left(n_{1}, \ldots, n_{N}\right) & =\int d^{d} k_{1} \cdots d^{d} k_{L} f\left(k_{1}, \ldots, k_{L}\right) \\
f\left(k_{1}, \ldots, k_{L}\right) & =\frac{1}{D_{1}^{n_{1}} \cdots D_{N}^{n_{N}}}
\end{aligned}
$$

D_{i} are linear functions of $s_{i j}=k_{i} \cdot q_{j}$
Point in L-dimensional integer space
For irreducible numerators, $n_{i} \leq 0$

Dimensionality: 0 scales

$$
[\mathrm{masS}]^{L d-n}
$$

Dimensionality: 0 scales

$$
p \cdot v=0
$$

Dimensionality: 1 scale

$$
p^{2}=m^{2}
$$

Dimensionality: 2 scales

$$
\text { 信立d-n } I\left(d ; \frac{-p^{2}}{m^{2}}\right)
$$

Dimensionality: 2 scales

$$
p^{2}=m^{2}=m^{L d-n} I\left(d ; \frac{m^{\prime}}{m}\right)
$$

Self-energy insertions

Self-energy insertions

Linearly-dependent denominators

Subdiagrams connected at 1 vertex

Subdiagrams connected at 2 vertices

Sectors

Partial ordering

Sectors

- For irreducible numerators, sectors $n_{i}>0$ don't exist
- Trivial sectors: $I=0$
(at least, the sector with all $n_{i} \leq 0$ is trivial)
- Sectors just above trivial ones: often an explicit formula via Γ functions
- Some sectors are related by symmetries

Non-integer indices

d cannot be compared with integers
\Rightarrow No sectors along this index

Integration momenta substitutions

Lie group

$$
\begin{aligned}
& k_{i} \rightarrow M_{i j} q_{j}=A_{i j} k_{j}+B_{i j} p_{j} \\
& M=\left(\begin{array}{cccccc}
A_{11} & \cdots & A_{1 L} & B_{11} & \cdots & B_{1 E} \\
\vdots & \ddots & \vdots & B_{11} & \cdots & B_{1 E} \\
A_{L 1} & \cdots & A_{L L} & B_{L 1} & \cdots & B_{L E}
\end{array}\right) \\
& \operatorname{det} A \neq 0
\end{aligned}
$$

Integration momenta substitutions

Lie group

$$
\begin{aligned}
& k_{i} \rightarrow M_{i j} q_{j}=A_{i j} k_{j}+B_{i j} p_{j} \\
& M=\left(\begin{array}{cccccc}
A_{11} & \cdots & A_{1 L} & B_{11} & \cdots & B_{1 E} \\
\vdots & \ddots & \vdots & B_{11} & \cdots & B_{1 E} \\
A_{L 1} & \cdots & A_{L L} & B_{L 1} & \cdots & B_{L E}
\end{array}\right) \\
& \operatorname{det} A \neq 0
\end{aligned}
$$

Infinitesimal transformations $k_{i} \rightarrow k_{i}+\alpha q_{j}$

$$
f \rightarrow f+\alpha q_{j} \cdot \partial_{i} f
$$

If $j=i$

$$
d^{d} k_{i} \rightarrow(1+\alpha)^{d} d^{d} k_{i}=(1+\alpha d) d^{d} k_{i}
$$

Lie algebra

$$
\begin{aligned}
& \int d^{d} k_{1} \cdots d^{d} k_{L} O_{i j} f=0 \\
& O_{i j}=\partial_{i} \cdot q_{j} \quad \partial_{i}=\frac{\partial}{\partial k_{i}}
\end{aligned}
$$

R. Lee (2008)

$$
\left[O_{i j}, O_{i^{\prime} j^{\prime}}\right]=\delta_{i j^{\prime}} O_{i^{\prime} j}-\delta_{i^{\prime} j} O_{i j^{\prime}}
$$

Lie algebra

$$
\begin{aligned}
& \int d^{d} k_{1} \cdots d^{d} k_{L} O_{i j} f=0 \\
& O_{i j}=\partial_{i} \cdot q_{j} \quad \partial_{i}=\frac{\partial}{\partial k_{i}}
\end{aligned}
$$

R. Lee (2008)

$$
\begin{aligned}
& {\left[O_{i j}, O_{i^{\prime} j^{\prime}}\right]=\delta_{i j^{\prime}} O_{i^{\prime} j}-\delta_{i^{\prime} j} O_{i j^{\prime}}} \\
& O_{i j}=d \delta_{i j}+q_{j} \cdot \sum_{n} \frac{\partial D_{n}}{\partial k_{i}} \frac{\partial}{\partial D_{n}}
\end{aligned}
$$

Operator notation

$$
\begin{aligned}
&\left(\mathbf{n}_{i} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=n_{i} F\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right) \\
&\left(\mathbf{i}^{+} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=F\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{N}\right) \\
&\left(\mathbf{i}^{-} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=F\left(n_{1}, \ldots, n_{i}-1, \ldots, n_{N}\right) \\
& \mathbf{i}^{+} \mathbf{i}^{-}=\mathbf{i}^{-} \mathbf{i}^{+}=1 \quad\left[\mathbf{i}^{ \pm}, \mathbf{n}_{j}\right]= \pm \delta_{i j} \mathbf{i}^{ \pm}
\end{aligned}
$$

Operator notation

$$
\begin{gathered}
\left(\mathbf{n}_{i} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=n_{i} F\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right) \\
\left(\mathbf{i}^{+} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=F\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{N}\right) \\
\left(\mathbf{i}^{-} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=F\left(n_{1}, \ldots, n_{i}-1, \ldots, n_{N}\right) \\
\mathbf{i}^{+} \mathbf{i}^{-}=\mathbf{i}^{-} \mathbf{i}^{+}=1 \quad\left[\mathbf{i}^{ \pm}, \mathbf{n}_{j}\right]= \pm \delta_{i j} \mathbf{i}^{ \pm} \\
\hat{\mathbf{i}}^{+}=\mathbf{n}_{i} \mathbf{i}^{+} \\
{\left[\hat{\mathbf{i}}^{+}, \mathbf{j}^{-}\right]=\delta_{i j}}
\end{gathered}
$$

Operator notation

$$
\begin{gathered}
\left(\mathbf{n}_{i} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=n_{i} F\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right) \\
\left(\mathbf{i}^{+} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=F\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{N}\right) \\
\left(\mathbf{i}^{-} F\right)\left(n_{1}, \ldots, n_{i}, \ldots, n_{N}\right)=F\left(n_{1}, \ldots, n_{i}-1, \ldots, n_{N}\right) \\
\mathbf{i}^{+} \mathbf{i}^{-}=\mathbf{i}^{-} \mathbf{i}^{+}=1 \quad\left[\mathbf{i}^{ \pm}, \mathbf{n}_{j}\right]= \pm \delta_{i j} \mathbf{i}^{ \pm} \\
\hat{\mathbf{i}}^{+}=\mathbf{n}_{i} \mathbf{i}^{+} \\
{\left[\hat{\mathbf{i}}^{+}, \mathbf{j}^{-}\right]=\delta_{i j}} \\
\int d^{d} k_{1} \cdots d^{d} k_{L} O_{i j} f=0=P_{i j}\left(\hat{\mathbf{i}}^{+}, \mathbf{i}^{-}\right) I\left(n_{1}, \ldots, n_{N}\right) \\
{\left[P_{i j}, P_{i^{\prime} j^{\prime}}\right]=\delta_{i j^{\prime}} P_{i^{\prime} j}-\delta_{i^{\prime} j} P_{i j^{\prime}}}
\end{gathered}
$$

1-loop vacuum diagram

$$
\frac{1}{i \pi^{d / 2}} \int \frac{d^{d} k}{D^{n}}=m^{d-2 n} V(n) \quad D=m^{2}-k^{2}-i 0
$$

by dimensionality

1-loop vacuum diagram

$$
\frac{1}{i \pi^{d / 2}} \int \frac{d^{d} k}{D^{n}}=m^{d-2 n} V(n) \quad D=m^{2}-k^{2}-i 0
$$

by dimensionality

$$
V(n)=\frac{1}{i \pi^{d / 2}} \int \frac{d^{d} k}{D^{n}} \quad D=1-k^{2}-i 0
$$

1-loop vacuum diagram

$$
\left(d-2 n+2 n \mathbf{1}^{+}\right) V(n)=0
$$

1-loop vacuum diagram

$$
\begin{gathered}
\left(d-2 n+2 n \mathbf{1}^{+}\right) V(n)=0 \\
V(n)=\frac{1}{\Gamma(n)} \frac{\Gamma\left(n-\frac{d}{2}\right)}{\Gamma\left(1-\frac{d}{2}\right)} V(1)
\end{gathered}
$$

Vacuum diagram with masses m and 0

$$
D_{1}=1-k^{2} \quad D_{2}=-k^{2}
$$

Vacuum diagram with masses m and 0

$$
D_{1}=1-k^{2} \quad D_{2}=-k^{2}
$$

$$
D_{1}-D_{2}=1
$$

Vacuum diagram with masses m and 0

Vacuum diagram with masses m and 0

$$
\left(1-\mathbf{1}^{-}+\mathbf{2}^{-}\right) I=0
$$

Linear dependent HQET denominators

$$
\begin{aligned}
& D_{1}=-2\left(k+p_{1}\right) \cdot v=-2\left(k \cdot v+\omega_{1}\right) \\
& D_{2}=-2\left(k+p_{2}\right) \cdot v=-2\left(k \cdot v+\omega_{2}\right) \\
& D_{1}-D_{2}+2\left(\omega_{1}-\omega_{2}\right)=0 \\
& 1^{-}-2^{-}+2\left(\omega_{1}-\omega_{2}\right)=0
\end{aligned}
$$

Linear dependent HQET denominators

$$
\begin{aligned}
& D_{1}=-2\left(k+p_{1}\right) \cdot v=-2\left(k \cdot v+\omega_{1}\right) \\
& D_{2}=-2\left(k+p_{2}\right) \cdot v=-2\left(k \cdot v+\omega_{2}\right) \\
& D_{1}-D_{2}+2\left(\omega_{1}-\omega_{2}\right)=0 \\
& 1^{-}-2^{-}+2\left(\omega_{1}-\omega_{2}\right)=0
\end{aligned}
$$

1-loop massless self-energy

$$
p^{2}=-1(\text { restore by dimensionality })
$$

$$
\begin{aligned}
& D_{1}=-(k+p)^{2} \quad D_{2}=-k^{2} \\
& p^{2}=-1 \quad k^{2}=-D_{2} \quad 2 p \cdot k=1-D_{1}+D_{2}
\end{aligned}
$$

$$
\partial \cdot k=d-2 k \cdot(k+p) \frac{\partial}{\partial D_{1}}-2 k \cdot k \frac{\partial}{\partial D_{2}}
$$

1-loop massless self-energy

1-loop massless self-energy

Some codes

- Mincer (Form) - 3-loop massless self-energies
- Recursor (Reduce) - 2-loop massive on-shell self-energies, 3-loop massive vacuum diagrams
- SHELL2 (Form) - 2-loop massive on-shell self-energies
- Matad (Form) - 3-loop massive vacuum diagrams
- Slicer (Reduce) - 3-loop massless self-energies
- Grinder (Reduce) - 3-loop HQET self-energies
- SHELL3 (Form) - 3-loop massive on-shell self-energies

Homogeneity relations

$$
\left(\sum_{i} p_{i} \cdot \frac{\partial}{\partial p_{i}}+\sum_{i} m_{i} \frac{\partial}{\partial m_{i}}\right) I=\left(L d-2 \sum_{i} n_{i}\right) I
$$

Homogeneity relations

$$
\begin{aligned}
&\left(\sum_{i} p_{i} \cdot \frac{\partial}{\partial p_{i}}+\sum_{i} m_{i} \frac{\partial}{\partial m_{i}}\right) I=\left(L d-2 \sum_{i} n_{i}\right) I \\
&\left(\sum_{i} p_{i} \cdot \frac{\partial}{\partial p_{i}}+\sum_{i} m_{i} \frac{\partial}{\partial m_{i}}-L d+2 \sum_{i} n_{i}\right) f \\
&=\left(\sum_{i} q_{i} \cdot \frac{\partial}{\partial q_{i}}+\sum_{i} m_{i} \frac{\partial}{\partial m_{i}}-\sum_{i} k_{i} \cdot \frac{\partial}{\partial k_{i}}-L d+2 \sum_{i} n_{i}\right) f \\
&=\left(-\sum_{i} k_{i} \cdot \frac{\partial}{\partial k_{i}}-L d\right) f=-\left(\sum_{i} \frac{\partial}{\partial k_{i}} \cdot k_{i}\right) f
\end{aligned}
$$

Lorentz-invariance relations

$E \geq 2(i \neq j)$

$$
p_{i}^{\mu} p_{j}^{\nu}\left(\sum_{n} p_{n}^{[\mu} \frac{\partial}{\partial p_{n}^{\nu]}}\right) I=0
$$

Lorentz-invariance relations

$E \geq 2(i \neq j)$

$$
p_{i}^{\mu} p_{j}^{\nu}\left(\sum_{n} p_{n}^{\mu \mu} \frac{\partial}{\partial p_{n}^{\nu \nu}}\right) I=0
$$

They are linear combinations of IBP relations

$$
\begin{aligned}
& p_{i}^{\mu} p_{j}^{\nu}\left(\sum_{n} p_{n}^{[\mu} \frac{\partial}{\partial p_{n}^{\nu]}}\right) f=p_{i}^{\mu} p_{j}^{\nu}\left(\sum_{n} q_{n}^{[\mu} \frac{\partial}{\partial q_{n}^{\nu]}}-\sum_{n} k_{n}^{[\mu} \frac{\partial}{\partial k_{n}^{\nu]}}\right) f \\
& =-p_{i}^{\mu} p_{j}^{\nu}\left(\sum_{n} k_{n}^{[\mu} \frac{\partial}{\partial k_{n}^{\nu \nu}}\right) f \\
& =\sum_{n}\left(p_{j} \cdot k_{n} p_{i} \cdot \frac{\partial}{\partial k_{n}}-p_{i} \cdot k_{n} p_{j} \cdot \frac{\partial}{\partial k_{n}}\right) f \\
& =\sum_{n} \frac{\partial}{\partial k_{n}} \cdot\left(p_{i} p_{j} \cdot k_{n}-p_{j} p_{i} \cdot k_{n}\right) f
\end{aligned}
$$

2-loop massless self-energy

$$
\begin{aligned}
& D_{1}=-\left(k_{1}+p\right)^{2} \quad D_{2}=-\left(k_{2}+p\right)^{2} \\
& D_{3}=-k_{1}^{2} \quad D_{4}=-k_{2}^{2} \quad D_{5}=-\left(k_{1}-k_{2}\right)^{2}
\end{aligned}
$$

Trivial cases

IBP

$$
\begin{aligned}
& \partial_{2} \cdot\left(k_{2}-k_{1}\right)=d-n_{2}-n_{4}-2 n_{5}-\left(D_{1}-D_{5}\right) \frac{\partial}{\partial D_{2}}-\left(D_{3}-D_{5}\right) \frac{\partial}{\partial D_{4}} \\
& {\left[d-n_{2}-n_{4}-2 n_{5}+n_{2} 2^{+}\left(1^{-}-5^{-}\right)+n_{4} 4^{+}\left(3^{-}-5^{-}\right)\right] G=0}
\end{aligned}
$$

$$
\text { ミ ミ } \equiv \text { 〇のく }
$$

$$
\equiv \Rightarrow \quad \text { 三〇® }
$$

$$
\text { ミ ミ } \equiv \text { 〇のく }
$$

Master integrals

$$
\begin{aligned}
& G_{n}=\frac{g_{n}}{\left(n+1-n \frac{d}{2}\right)_{n}\left((n+1) \frac{d}{2}-2 n-1\right)_{n}} \\
& g_{n}=\frac{\Gamma(1+n \varepsilon) \Gamma^{n+1}(1-\varepsilon)}{\Gamma(1-(n+1) \varepsilon)}
\end{aligned}
$$

Homogeneity relation

$\partial_{1} \cdot k_{1}$
$\left[d-n_{2}-n_{5}-2 n_{4}+n_{2} 2^{+}\left(1-4^{-}\right)+n_{5} 5^{+}\left(3^{-}-4^{-}\right)\right] G=0$
$\partial_{1} \cdot k_{1}$ mirrir-symmetric

Homogeneity relation

$\partial_{1} \cdot k_{1}$
$\left[d-n_{2}-n_{5}-2 n_{4}+n_{2} 2^{+}\left(1-4^{-}\right)+n_{5} 5^{+}\left(3^{-}-4^{-}\right)\right] G=0$
$\partial_{1} \cdot k_{1}$ mirrir-symmetric
$p \cdot(\partial / \partial p) G$

$$
\left[2\left(d-n_{3}-n_{4}-n_{5}\right)-n_{1}-n_{2}+n_{1} \mathbf{1}^{+}\left(1-\mathbf{3}^{-}\right)+n_{2} \mathbf{2}^{+}\left(1-\mathbf{4}^{-}\right)\right] G=0
$$

Larin relation

Insert $\left(k_{1}+p\right)^{\mu}$. The vector integral $\sim p^{\mu}$:

$$
k_{1}+p \rightarrow \frac{\left(k_{1}+p\right) \cdot p}{p^{2}} p=\left(1+\frac{D_{1}-D_{3}}{-p^{2}}\right) \frac{p}{2}
$$

$\partial / \partial p^{\mu}$

$$
\left(\frac{3}{2} d-\sum n_{i}\right)\left(1+\frac{D_{1}-D_{3}}{-p^{2}}\right)
$$

Explicit differentiation

$$
\begin{aligned}
& \quad d+\frac{n_{1}}{D_{1}} 2\left(k_{1}+p\right)^{2}+\frac{n_{2}}{D_{2}} 2\left(k_{2}+p\right) \cdot\left(k_{1}+p\right) \\
& {\left[\frac{1}{2} d+n_{1}-n_{3}-n_{4}-n_{5}+\left(\frac{3}{2} d-\sum n_{i}\right)\left(\mathbf{1}^{-}-3^{-}\right)\right.} \\
& \left.+n_{2} 2^{+}\left(\mathbf{1}^{-}-5^{-}\right)\right] G=0
\end{aligned}
$$

Ordering

Statement of the problem

Suppose we have n variables x_{1}, \ldots, x_{n}. They are not independent, but satisfy some polynomial equations $p_{1}=0$, $\ldots, p_{m}=0\left(p_{j}\right.$ are polynomials of $\left.x_{i}\right)$. Let's consider a polynomial q. Is it equal to 0 due to the constraints on our variables? If there is another polynomial q_{2}, there is the question of their equality.

Statement of the problem

Suppose we have n variables x_{1}, \ldots, x_{n}. They are not independent, but satisfy some polynomial equations $p_{1}=0$, $\ldots, p_{m}=0\left(p_{j}\right.$ are polynomials of $\left.x_{i}\right)$. Let's consider a polynomial q. Is it equal to 0 due to the constraints on our variables? If there is another polynomial q_{2}, there is the question of their equality.
These questions would become very easy if we had an algorithm reducing polynomials of dependent variables to a canonical form. Two equal polynomials reduce to the same canonical form; a polynomial equal to 0 reduces to the canonical form 0 .

Statement of the problem

Suppose we have n variables x_{1}, \ldots, x_{n}. They are not independent, but satisfy some polynomial equations $p_{1}=0$, $\ldots, p_{m}=0\left(p_{j}\right.$ are polynomials of $\left.x_{i}\right)$. Let's consider a polynomial q. Is it equal to 0 due to the constraints on our variables? If there is another polynomial q_{2}, there is the question of their equality.
These questions would become very easy if we had an algorithm reducing polynomials of dependent variables to a canonical form. Two equal polynomials reduce to the same canonical form; a polynomial equal to 0 reduces to the canonical form 0 .
We can try to use the equations $p_{j}=0$ for simplifying the polynomial q, i.e. for replacing its more complicated terms by combinations of simpler ones. But to do so we first have to accept some convention which terms are more complicated and which are more simple.

Monomial orders

We need a total order of monomials (i.e. products of powers of the variables $x_{1}^{n_{1}} \cdots x_{n}^{n_{n}}$). An order is total if for any monomials s and t either $s<t$, or $s>t$, or $s=t$ is true. An order is admissible if two properties are satisfied:

- $1 \leq s$ for any monomial s,
- if $s<t$ then $s u<t u$ for any monomial u.

Monomial orders

Lexicographic order
We are comparing two monomials: $s=x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{n}^{n_{n}}$ and $t=x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}}$

- $n_{1}>m_{1} \Rightarrow s>t$
- $n_{1}<m_{1} \Rightarrow s<t$
- $n_{1}=m_{1}$
- $n_{2}>m_{2} \Rightarrow s>t$
- $n_{2}<m_{2} \Rightarrow s<t$
- $n_{2}=m_{2}$
...

Monomial orders

Lexicographic order
We are comparing two monomials: $s=x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{n}^{n_{n}}$ and
$t=x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}}$

- $n_{1}>m_{1} \Rightarrow s>t$
- $n_{1}<m_{1} \Rightarrow s<t$
- $n_{1}=m_{1}$
- $n_{2}>m_{2} \Rightarrow s>t$
- $n_{2}<m_{2} \Rightarrow s<t$
- $n_{2}=m_{2}$

By total degree than lexicographic
First we compare the total degree $n=n_{1}+n_{2}+\cdots+n_{n}$ of the monomial s and the total degree
$m=m_{1}+m_{2}+\cdots+m_{n}$ of the monomial t.

- $n>m \Rightarrow s>t$
- $n<m \Rightarrow s<t$
- $n=m$ - compare lexicographically

Reduction of polynomials

Let's fix some admissible monomial order. We'll write polynomials in descending order: the leading term first, followed by the rest ones. We'll normalize all polynomials p_{j} in such a way that the coefficient of the leading term is

1. Now they can be used as substitutions which replace the leading term by minus sum of the remaining ones.

Example

Lexicographic order with $x>y$

$$
p_{1}=x^{2}+y^{2}-1 \quad p_{2}=x y-\frac{1}{4}
$$

$$
q=x^{2} y
$$

Example

Lexicographic order with $x>y$

$$
\begin{aligned}
& \quad p_{1}=x^{2}+y^{2}-1 \quad p_{2}=x y-\frac{1}{4} \\
& q_{1}=-y^{3}+y \\
& p_{1}: \\
& x^{2} \rightarrow-y^{2}+1 \\
& q=x^{2} y
\end{aligned}
$$

Example

Lexicographic order with $x>y$

$$
\begin{aligned}
& p_{1}=x^{2}+y^{2}-1 \quad p_{2}=x y-\frac{1}{4} \\
& p_{1}: \\
& x^{2} \rightarrow-y^{2}+1 \\
& q=x^{2} y \\
& p_{2}: \\
& x y \rightarrow \frac{1}{4}
\end{aligned}
$$

Definition

Every time when more than one substitution can be applied to a term of a polynomial q, a fork appears; maybe, its branches join later, but maybe, they don't. A set of polynomials p_{1}, \ldots, p_{n} is called a Gröbner basis (for a given monomial order) if reduction of any polynomial q with respect to this set is unique.
(This definition is not constructive.)

S-polynomials

The constraints $p_{1}=0$ and $p_{2}=0$ allow us to simplify the monomials x^{2} and $x y$. Do these constraints contain an extra information usable for simplification but not obvious? Yes, they do!

S-polynomials

The constraints $p_{1}=0$ and $p_{2}=0$ allow us to simplify the monomials x^{2} and $x y$. Do these constraints contain an extra information usable for simplification but not obvious? Yes, they do!

$$
\begin{aligned}
& p_{1}=x^{2}+y^{2}-1=0 \\
& p_{2}=x y-\frac{1}{4}=0
\end{aligned}
$$

S-polynomials

The constraints $p_{1}=0$ and $p_{2}=0$ allow us to simplify the monomials x^{2} and $x y$. Do these constraints contain an extra information usable for simplification but not obvious? Yes, they do!

$$
\begin{array}{lll}
p_{1}=x^{2}+y^{2}-1=0 & \times y & x^{2} y+y^{3}-y=0 \\
p_{2}=x y-\frac{1}{4}=0 & \times x & x^{2} y-\frac{1}{4} x=0
\end{array}
$$

S-polynomials

The constraints $p_{1}=0$ and $p_{2}=0$ allow us to simplify the monomials x^{2} and $x y$. Do these constraints contain an extra information usable for simplification but not obvious? Yes, they do!

$$
\begin{array}{lll}
p_{1}=x^{2}+y^{2}-1=0 & \times y & x^{2} y+y^{3}-y=0 \\
p_{2}=x y-\frac{1}{4}=0 & \times x & x^{2} y-\frac{1}{4} x=0 \\
& & \frac{1}{4} x+y^{3}-y=0
\end{array}
$$

S-polynomials

The constraints $p_{1}=0$ and $p_{2}=0$ allow us to simplify the monomials x^{2} and $x y$. Do these constraints contain an extra information usable for simplification but not obvious? Yes, they do!

$$
\begin{array}{lll}
p_{1}=x^{2}+y^{2}-1=0 & \times y & x^{2} y+y^{3}-y=0 \\
p_{2}=x y-\frac{1}{4}=0 & \times x & x^{2} y-\frac{1}{4} x=0 \\
& & \frac{1}{4} x+y^{3}-y=0
\end{array}
$$

S-polynomial $S\left(p_{1}, p_{2}\right)$

$$
p_{3}=x+4 y^{3}-4 y
$$

Example

Lexicographic order with $x>y$

$$
\begin{aligned}
& p_{1}=x^{2}+y^{2}-1 \quad p_{2}=x y-\frac{1}{4} \\
& p_{1}: \\
& x^{2} \rightarrow-y^{2}+1 \\
& q=x^{2} y \\
& p_{2}: \\
& x y \rightarrow \frac{1}{4}
\end{aligned}
$$

Example

Lexicographic order with $x>y$

$$
\begin{aligned}
& p_{1}=x^{2}+y^{2}-1 \quad p_{2}=x y-\frac{1}{4} \\
& p_{1}: \\
& x^{2} \rightarrow-y^{2}+1 \\
& q=x^{2} y \\
& p_{2}: \\
& x y \rightarrow \frac{1}{4} \\
& p_{3}: \\
& x \rightarrow-4 y^{3}+4 y \\
& q_{2}=\frac{1}{4} x
\end{aligned}
$$

Reduced Gröbner basis

p_{1}, p_{2}, p_{3} form a Gröbner basis (though we have not proven this). We can reduce them with respect to each other (omitting vanishing polynomials). The reduced Gröbner basis is

$$
\begin{aligned}
& p_{1}=y^{4}-y^{2}+\frac{1}{16} \\
& p_{2}=x+4 y^{3}-4 y
\end{aligned}
$$

It has triangular structure.

Buchberger algorithm

Given a set of polynomials $P=\left\{p_{j}\right\}$

- $S=$ set of all pairs (i, j) of integer numbers from 1 to n with $i<j$
- while S is not empty

Choose and remove some pair (i, j) from S
Calculate S-polynomial $S\left(p_{i}, p_{j}\right)$
Reduce it with respect to P
if the result is not 0 , add this polynomial to P and the corresponding pairs to S

Buchberger algorithm

Given a set of polynomials $P=\left\{p_{j}\right\}$

- $S=$ set of all pairs (i, j) of integer numbers from 1 to n with $i<j$
- while S is not empty
- \quad Choose and remove some pair (i, j) from S
- Calculate S-polynomial $S\left(p_{i}, p_{j}\right)$

Reduce it with respect to P
if the result is not 0 , add this polynomial to P and the corresponding pairs to S
The set of pairs S alternatingly shrinks and grows. But it can be proved that this process terminates after a finite number of steps, and produces a Gröbner basis P.

Sectors and corners

$$
I\left(n_{1}, n_{2}\right)=\left(1^{-}\right)^{-n_{1}}\left(2^{+}\right)^{n_{2}-1} I(0,1)
$$

Normal form of IBP relations in a sector

S-bases

Find a Gröbner-like basis, reduce $\left(\mathbf{1}^{-}\right)^{-n_{1}}\left(\mathbf{2}^{+}\right)^{n_{2}-1}$ and apply to $I(0,1)$

Gröbner bases for PDE

Each line has a separate mass m_{i}

$$
\frac{\partial}{\partial m_{i}^{2}} \Rightarrow-\mathbf{n}_{i} \mathbf{i}^{+}
$$

IBP

$$
\sum C_{j_{1} \ldots j_{N}}\left(m_{1}^{2}, \ldots, m_{N}^{2}\right)\left(\frac{\partial}{\partial m_{1}^{2}}\right)^{j_{1}} \cdots\left(\frac{\partial}{\partial m_{N}^{2}}\right)^{j_{N}} \sim 0
$$

2-loop self-energy diagrams with all different masses

Approaches

- Generic n_{i}
- Construct an algorithm and implement by hand: Mincer, ...
- More automated approaches
- Gröbner-based approaches
- Lie-algebra based approaches
- Baikov's methods
- Specific numeric n_{i} : Laporta algorithm (Air, FIRE, reduze...)

2-loop self-energy diagram

3-loop vacuum diagram

