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Steps to solve a problem

I Diagrams generation, classification into topologies,
routing momenta

I Tensor and Dirac algebra in numerators,
reduction to scalar Feynman integrals

I Reduction of scalar Feynman integrals
to master integrals

I Calculation of master integrals

Expansion in small ratios of momenta and masses
(the method of regions)
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Feynman graphs and Feynman integrals

Loop momenta k1, . . . , kL
External momenta p1, . . . , pE
qi = k1, . . . ,kL, p1, . . . , pE
Line momenta l1, . . . , lI — linear combinations of qi

l

=
1

−l2 − i0

l
=

1

m2 − l2 − i0

l
=

1

−2l · v − i0

Denominators Di are linear in sij = ki · qj
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Symmetries
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Irreducible numerators

There are

N =
L(L+ 1)

2
+ LE

scalar products sij = ki · qj

(E + 1)-legged L-loop diagrams:
the maximum number of denominators

M = 3L+ E − 2 N −M =
(L− 1)(L+ 2E − 4)

2

Vacuum diagrams

M = 3(L− 1) N −M =
(L− 2)(L− 3)

2

Irreducible numerators DM+1, . . . , DN



Irreducible numerators

There are

N =
L(L+ 1)

2
+ LE

scalar products sij = ki · qj
(E + 1)-legged L-loop diagrams:
the maximum number of denominators

M = 3L+ E − 2 N −M =
(L− 1)(L+ 2E − 4)

2

Vacuum diagrams

M = 3(L− 1) N −M =
(L− 2)(L− 3)

2

Irreducible numerators DM+1, . . . , DN



Irreducible numerators

There are

N =
L(L+ 1)

2
+ LE

scalar products sij = ki · qj
(E + 1)-legged L-loop diagrams:
the maximum number of denominators

M = 3L+ E − 2 N −M =
(L− 1)(L+ 2E − 4)

2

Vacuum diagrams

M = 3(L− 1) N −M =
(L− 2)(L− 3)

2

Irreducible numerators DM+1, . . . , DN



Scalar Feynman integral

I(n1, . . . , nN) =

∫
ddk1 · · · ddkL f(k1, . . . , kL)

f(k1, . . . , kL) =
1

Dn1
1 · · ·D

nN
N

Di are linear functions of sij = ki · qj
Point in L-dimensional integer space
For irreducible numerators, ni ≤ 0



Dimensionality: 0 scales

[mass]Ld−n

= 0

p2 = 0
= 0

p · v = 0
= 0
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Dimensionality: 1 scale

= mLn−nI(d)

p
= (−p2)Ld/2−nI(d)

p
= (−2p · v)Ld−nI(d)

p2 = m2
= mLd−nI(d)
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Self-energy insertions

n1 n2
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n1 + n2
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Linearly-dependent denominators
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Subdiagrams connected at 1 vertex

=



Subdiagrams connected at 1 vertex
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Subdiagrams connected at 1 vertex

p2 = 0

= 0



Subdiagrams connected at 2 vertices

=



Sectors

Partial ordering



Sectors

I For irreducible numerators, sectors ni > 0 don’t exist

I Trivial sectors: I = 0
(at least, the sector with all ni ≤ 0 is trivial)

I Sectors just above trivial ones:
often an explicit formula via Γ functions

I Some sectors are related by symmetries



Non-integer indices

⇒
−Ld

2
+ n

⇒
−Ld+ n

d cannot be compared with integers
⇒ No sectors along this index



Integration momenta substitutions

Lie group

ki →Mijqj = Aijkj +Bijpj

M =

 A11 · · · A1L B11 · · · B1E
...

. . .
... B11 · · · B1E

AL1 · · · ALL BL1 · · · BLE


detA 6= 0

Infinitesimal transformations ki → ki + αqj

f → f + αqj · ∂if

If j = i
ddki → (1 + α)dddki = (1 + αd)ddki
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Lie algebra

∫
ddk1 · · · ddkLOijf = 0

Oij = ∂i · qj ∂i =
∂

∂ki

R. Lee (2008)

[Oij, Oi′j′ ] = δij′Oi′j − δi′jOij′

Oij = dδij + qj ·
∑
n

∂Dn

∂ki

∂

∂Dn
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Operator notation

(niF )(n1, . . . , ni, . . . , nN) = niF (n1, . . . , ni, . . . , nN)

(i+F )(n1, . . . , ni, . . . , nN) = F (n1, . . . , ni + 1, . . . , nN)

(i−F )(n1, . . . , ni, . . . , nN) = F (n1, . . . , ni − 1, . . . , nN)

i+i− = i−i+ = 1 [i±,nj] = ±δiji±

î+ = nii
+

[̂i+, j−] = δij

∫
ddk1 · · · ddkLOijf = 0 = Pij (̂i

+, i−)I(n1, . . . , nN)

[Pij, Pi′j′ ] = δij′Pi′j − δi′jPij′
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1-loop vacuum diagram

k

n

1

iπd/2

∫
ddk

Dn
= md−2nV (n) D = m2 − k2 − i0

by dimensionality

V (n) =
1

iπd/2

∫
ddk

Dn
D = 1− k2 − i0



1-loop vacuum diagram

k

n

1

iπd/2

∫
ddk

Dn
= md−2nV (n) D = m2 − k2 − i0

by dimensionality

V (n) =
1

iπd/2

∫
ddk

Dn
D = 1− k2 − i0



1-loop vacuum diagram
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Vacuum diagram with masses m and 0

1

2

D1 = 1− k2 D2 = −k2

D1 −D2 = 1
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Vacuum diagram with masses m and 0

(1− 1− + 2−)I = 0



Vacuum diagram with masses m and 0

(1− 1− + 2−)I = 0



Linear dependent HQET denominators

D1 = −2(k + p1) · v = −2(k · v + ω1)

D2 = −2(k + p2) · v = −2(k · v + ω2)

D1 −D2 + 2(ω1 − ω2) = 0

1− − 2− + 2(ω1 − ω2) = 0
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1-loop massless self-energy

k + p

k

p p

p2 = −1 (restore by dimensionality)

D1 = −(k + p)2 D2 = −k2

p2 = −1 k2 = −D2 2p · k = 1−D1 +D2

∂ · k = d− 2k · (k + p)
∂

∂D1

− 2k · k ∂

∂D2



1-loop massless self-energy

[
d− n1 − 2n2 + n11

+(1− 2−)
]
I = 0



1-loop massless self-energy

[
d− n1 − 2n2 + n11

+(1− 2−)
]
I = 0



Some codes

I Mincer (Form) — 3-loop massless self-energies

I Recursor (Reduce) — 2-loop massive on-shell
self-energies, 3-loop massive vacuum diagrams

I SHELL2 (Form) — 2-loop massive on-shell self-energies

I Matad (Form) — 3-loop massive vacuum diagrams

I Slicer (Reduce) — 3-loop massless self-energies

I Grinder (Reduce) — 3-loop HQET self-energies

I SHELL3 (Form) — 3-loop massive on-shell self-energies



Homogeneity relations

(∑
i

pi ·
∂

∂pi
+
∑
i

mi
∂

∂mi

)
I =

(
Ld− 2

∑
i

ni

)
I

(∑
i

pi ·
∂

∂pi
+
∑
i

mi
∂

∂mi

− Ld+ 2
∑
i

ni

)
f

=

(∑
i

qi ·
∂

∂qi
+
∑
i

mi
∂

∂mi

−
∑
i

ki ·
∂

∂ki
− Ld+ 2

∑
i

ni

)
f

=

(
−
∑
i

ki ·
∂

∂ki
− Ld

)
f = −

(∑
i

∂

∂ki
· ki

)
f
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Lorentz-invariance relations
E ≥ 2 (i 6= j)

pµi p
ν
j

(∑
n

p[µn
∂

∂p
ν]
n

)
I = 0

They are linear combinations of IBP relations

pµi p
ν
j

(∑
n

p[µn
∂

∂p
ν]
n

)
f = pµi p

ν
j

(∑
n

q[µn
∂

∂q
ν]
n

−
∑
n

k[µn
∂

∂k
ν]
n

)
f

= −pµi pνj

(∑
n

k[µn
∂

∂k
ν]
n

)
f

=
∑
n

(
pj · kn pi ·

∂

∂kn
− pi · kn pj ·

∂

∂kn

)
f

=
∑
n

∂

∂kn
· (pi pj · kn − pj pi · kn) f
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2-loop massless self-energy

k1 k2

k1 + p k2 + p

k1 − k2
n1 n2

n3 n4

n5

D1 = −(k1 + p)2 D2 = −(k2 + p)2

D3 = −k21 D4 = −k22 D5 = −(k1 − k2)2



Trivial cases

n1 n2

n3 n4

= ×

n2

n3 n4

n5

n5

n3

n2

n4 + n3 + n5 − d/2



IBP

∂2·(k2−k1) = d−n2−n4−2n5−(D1−D5)
∂

∂D2

−(D3−D5)
∂

∂D4

[d− n2 − n4 − 2n5 + n22
+(1− − 5−) + n44

+(3− − 5−)]G = 0









Master integrals

= G2
1 = G2

Gn =
gn(

n+ 1− nd
2

)
n

(
(n+ 1)d

2
− 2n− 1

)
n

gn =
Γ(1 + nε)Γn+1(1− ε)

Γ(1− (n+ 1)ε)

· · ·



Homogeneity relation

∂1 · k1

[d− n2 − n5 − 2n4 + n22
+(1− 4−) + n55

+(3− − 4−)]G = 0

∂1 · k1 mirrir-symmetric

p · (∂/∂p)G

[2(d−n3−n4−n5)−n1−n2+n11
+(1−3−)+n22

+(1−4−)]G = 0



Homogeneity relation
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[d− n2 − n5 − 2n4 + n22
+(1− 4−) + n55

+(3− − 4−)]G = 0

∂1 · k1 mirrir-symmetric

p · (∂/∂p)G

[2(d−n3−n4−n5)−n1−n2+n11
+(1−3−)+n22

+(1−4−)]G = 0



Larin relation
Insert (k1 + p)µ. The vector integral ∼ pµ:

k1 + p→ (k1 + p) · p
p2

p =

(
1 +

D1 −D3

−p2

)
p

2

∂/∂pµ (
3
2
d−

∑
ni

)(
1 +

D1 −D3

−p2

)
Explicit differentiation

d+
n1

D1

2(k1 + p)2 +
n2

D2

2(k2 + p) · (k1 + p)

[
1
2
d+ n1 − n3 − n4 − n5 +

(
3
2
d−

∑
ni

)
(1− − 3−)

+ n22
+(1− − 5−)

]
G = 0



Ordering



Statement of the problem
Suppose we have n variables x1, . . . , xn. They are not
independent, but satisfy some polynomial equations p1 = 0,
. . . , pm = 0 (pj are polynomials of xi). Let’s consider a
polynomial q. Is it equal to 0 due to the constraints on our
variables? If there is another polynomial q2, there is the
question of their equality.

These questions would become very easy if we had an
algorithm reducing polynomials of dependent variables to a
canonical form. Two equal polynomials reduce to the same
canonical form; a polynomial equal to 0 reduces to the
canonical form 0.
We can try to use the equations pj = 0 for simplifying the
polynomial q, i.e. for replacing its more complicated terms
by combinations of simpler ones. But to do so we first have
to accept some convention which terms are more
complicated and which are more simple.
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Monomial orders

We need a total order of monomials (i.e. products of powers
of the variables xn1

1 · · ·xnn
n ). An order is total if for any

monomials s and t either s < t, or s > t, or s = t is true.
An order is admissible if two properties are satisfied:

I 1 ≤ s for any monomial s,

I if s < t then su < tu for any monomial u.



Monomial orders
Lexicographic order
We are comparing two monomials: s = xn1

1 x
n2
2 · · ·xnn

n and
t = xm1

1 xm2
2 · · ·xmn

n

I n1 > m1 ⇒ s > t
I n1 < m1 ⇒ s < t
I n1 = m1

I n2 > m2 ⇒ s > t
I n2 < m2 ⇒ s < t
I n2 = m2

. . .

By total degree than lexicographic
First we compare the total degree n = n1 + n2 + · · ·+ nn of
the monomial s and the total degree
m = m1 +m2 + · · ·+mn of the monomial t.

I n > m ⇒ s > t
I n < m ⇒ s < t
I n = m — compare lexicographically
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Reduction of polynomials

Let’s fix some admissible monomial order. We’ll write
polynomials in descending order: the leading term first,
followed by the rest ones. We’ll normalize all polynomials
pj in such a way that the coefficient of the leading term is
1. Now they can be used as substitutions which replace the
leading term by minus sum of the remaining ones.



Example

Lexicographic order with x > y

p1 = x2 + y2 − 1 p2 = xy − 1
4

q = x2y
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Lexicographic order with x > y

p1 = x2 + y2 − 1 p2 = xy − 1
4

q = x2y

q1 = −y3 + y
p1 :
x2 → −y2 + 1



Example

Lexicographic order with x > y

p1 = x2 + y2 − 1 p2 = xy − 1
4

q = x2y

q1 = −y3 + y
p1 :
x2 → −y2 + 1

q2 = 1
4
x

p2 :
xy → 1

4



Definition

Every time when more than one substitution can be
applied to a term of a polynomial q, a fork appears; maybe,
its branches join later, but maybe, they don’t.
A set of polynomials p1, . . . , pn is called a Gröbner basis
(for a given monomial order) if reduction of any polynomial
q with respect to this set is unique.
(This definition is not constructive.)



S-polynomials

The constraints p1 = 0 and p2 = 0 allow us to simplify the
monomials x2 and xy. Do these constraints contain an
extra information usable for simplification but not obvious?
Yes, they do!

p1 = x2 + y2 − 1 = 0

× y x2y + y3 − y = 0

p2 = xy − 1
4

= 0

× x x2y − 1
4
x = 0

1
4
x+ y3 − y = 0

S-polynomial S(p1, p2)

p3 = x+ 4y3 − 4y
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Example

Lexicographic order with x > y

p1 = x2 + y2 − 1 p2 = xy − 1
4

q = x2y

q1 = −y3 + y
p1 :
x2 → −y2 + 1

q2 = 1
4
x

p2 :
xy → 1

4



Example

Lexicographic order with x > y

p1 = x2 + y2 − 1 p2 = xy − 1
4

q = x2y

q1 = −y3 + y
p1 :
x2 → −y2 + 1

q2 = 1
4
x

p2 :
xy → 1

4

p3 :
x→ −4y3 + 4y



Reduced Gröbner basis

p1, p2, p3 form a Gröbner basis (though we have not proven
this). We can reduce them with respect to each other
(omitting vanishing polynomials). The reduced Gröbner
basis is

p1 = y4 − y2 + 1
16

p2 = x+ 4y3 − 4y

It has triangular structure.



Buchberger algorithm

Given a set of polynomials P = {pj}
I S = set of all pairs (i, j) of integer numbers

from 1 to n with i < j

I while S is not empty

I Choose and remove some pair (i, j) from S

I Calculate S-polynomial S(pi, pj)

I Reduce it with respect to P

I if the result is not 0, add this polynomial to P
and the corresponding pairs to S

The set of pairs S alternatingly shrinks and grows. But it
can be proved that this process terminates after a finite
number of steps, and produces a Gröbner basis P .
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Sectors and corners

I(n1, n2) =
(
1−
)−n1

(
2+
)n2−1 I(0, 1)



Normal form of IBP relations in a sector

∑
j1j2

Cj1j2(ni)
(
1−
)j1 (2+

)j1 ∼ 0



S-bases

Find a Gröbner-like basis, reduce (1−)
−n1 (2+)

n2−1

and apply to I(0, 1)



Gröbner bases for PDE

Each line has a separate mass mi

∂

∂m2
i

⇒ −nii+

IBP∑
Cj1...jN (m2

1, . . . ,m
2
N)

(
∂

∂m2
1

)j1
· · ·
(

∂

∂m2
N

)jN
∼ 0

2-loop self-energy diagrams with all different masses



Approaches

I Generic ni
I Construct an algorithm and implement by hand:
Mincer, . . .

I More automated approaches
I Gröbner-based approaches
I Lie-algebra based approaches
I Baikov’s methods

I Specific numeric ni: Laporta algorithm
(Air, FIRE, reduze. . . )



2-loop self-energy diagram

k1 k2

k1 + p k2 + p

k1 − k2
n1 n2

n3 n4

n5



3-loop vacuum diagram

k1

k2 k3k2 − k3

k3 − k1

k1 − k2

n1

n2
n3

n4

n5

n6
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