Quantum Spectral Curve and string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Paul Ryan

King's College, London

2210.xxxx Andrea Cavaglia, S. Ekhammar, N. Gromov, P.R

Overview

Quantum Spectral Curve

- Integrability-based framework for computing exact spectrum of single-trace local operators in planar $\mathrm{N}=4 \mathrm{SYM}$ (spectrum of free closed strings on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$)
- Also for ABJM $\left(\mathrm{AdS}_{4} \times \mathrm{CP}^{3}\right)$
- Takes the form of a concise set of Riemann-Hilbert problems for Q-functions

String theory on $A d S_{3} \times S^{3} \times T^{4}$ with pure RR flux

- Integrable, but qualitatively different from the well-studied AdS_{5} and AdS_{4} models
- Unknown CFT_{2} dual
- Worldsheet theory contains massless modes

Quantum Spectral Curve recently conjectured
[Ekhammar, Volin]

Punchline

- Solved QSC for string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with pure RR flux
- First ever predictions for generic unprotected string excitations
- Develop new tools to deal with massless modes in QSC
- Solve QSC numerically at finite coupling
- Solve QSC perturbatively at weak coupling
- Shed light on mysterious CFT_{2} dual?

Outline

Review of string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Quantum Spectral Curve: From $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Solving the $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ QSC

Summary + Outlook

Review of string theory on $\mathrm{AdS}_{3} \times S^{3} \times \mathrm{T}^{4}$

String theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ and holography

Maximally supersymmetric background: 16 supercharges

Background supports RR and NSNS flux

In contrast to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$, dual CFT_{2} is largely unknown

Pure NSNS flux - significant recent progress, can be studied using conventional worldsheet CFT methods
" $\mathrm{k}=1$ " unit of NSNS flux CFT dual known [Eberhardt, Gaberdiel, Gopakumar]

We focus on pure RR flux, closest analogue to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

String theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ and integrability

Isometries

$$
\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}
$$

$$
\mathfrak{s o}(2,2) \oplus \mathfrak{s o}(4) \simeq \mathfrak{s u}(1,1)^{2} \oplus \mathfrak{s u}(2)^{2} \subset \mathfrak{p s u}(1,1 \mid 2)^{2}
$$

Classically integrable - infinitely many commuting conserved quantities

Expected to be quantum integrable

Exact S-matrices known
AdS_{5} : massive

Spectrum for large strings described by Asymptotic Bethe Ansatz (ABA) equations

ABA only valid for large operators

$$
L \rightarrow \infty, \quad \Delta \sim L
$$

in a tiny region around this limit

After that: " $w r a p p i n g ~ e f f e c t s " ~$

$$
\begin{aligned}
& \mathcal{O}\left(e^{-L}\right) \text { for massive } \\
& \mathcal{O}(1 / L) \text { for massless [Abbott, Aniceto] }
\end{aligned}
$$

Massive sector

$$
\operatorname{psu}(1,1 \mid 2)
$$

$$
1=\prod_{j=1}^{K_{2}} \frac{y_{1, k}-x_{j}^{+}}{y_{1, k}-x_{j}^{-}} \prod_{j=1}^{K_{\overline{2}}} \frac{1-\frac{1}{y_{1, k} \bar{x}_{j}^{-}}}{1-\frac{1}{y_{1, k} \bar{x}_{j}^{+}}}
$$

$$
\operatorname{psu}(1,1 \mid 2)
$$

Problem even in the massive sector - virtual massless particles

[Abbott, Aniceto]

Wrapping effects captured by TBA

Wrapping effects can be taken into account via Thermodynamic Bethe Ansatz (TBA)
Successfully done for AdS_{5} and AdS_{4} and recast as Quantum Spectral Curve

TBA $\longrightarrow \mathrm{Y}$-system $\longrightarrow \mathrm{T}$-system \longrightarrow Quantum Spectral Curve

Wrapping effects captured by TBA

Wrapping effects can be taken into account via Thermodynamic Bethe Ansatz (TBA)
Successfully done for AdS_{5} and AdS_{4} and recast as Quantum Spectral Curve

AdS_{3} : significant technical difficulties coming from massless modes, only recently resolved
[Frolov, Sfondrini]

Quantum Spectral Curve proposed based on symmetry + analogy with previous known cases
Opened the way to precision spectroscopy
[Ekhammar, Volin]
[Cavaglia, Gromov, Stefanski, Torreilli]

Review of Quantum Spectral Curve

Quantum Spectral Curve

A complex analysis problem for functions $Q_{i}(u)$
single complex variable

Modern formulation of spectral problem of integrable systems

- \quad su(2) Heisenberg spin chain (discrete lattice models)
- KdV hierarchy (1+1 dim QFT)
- $\quad N=4$ SYM (4d gauge theory)
su(2) invariant Heisenberg XXX spin chain
Periodic boundary conditions

$$
\begin{gathered}
H=\frac{1}{4} \sum_{\alpha, n} \sigma_{n}^{\alpha} \otimes \sigma_{n+1}^{\alpha}-1 \\
\alpha=x, y, z
\end{gathered}
$$

QQ relations

$$
Q_{12} Q_{\varnothing}=Q_{1}^{+} Q_{2}^{-}-Q_{1}^{-} Q_{2}^{+} \quad E=\lim _{u \rightarrow 0} \partial_{u} \log \frac{Q_{1}^{+}}{Q_{1}^{-}}
$$

Analytic properties $\left.\quad \begin{array}{lll}Q_{12}=u^{L} & Q_{1} \\ Q_{\varnothing}=1 & Q_{2}\end{array}\right\}$ polynomial

$$
f^{ \pm}:=f\left(u \pm \frac{i}{2}\right)
$$

Planar N=4 Supersymmetric Yang-Mills

't Hooft coupling

$$
Q_{A \mid I} Q_{A a b \mid I}=Q_{A a \mid I}^{+} Q_{A b \mid I}^{-}-Q_{A a \mid I}^{-} Q_{A b \mid I}^{+}
$$

$$
g=\frac{\downarrow}{4 \pi}
$$

Analytic continuation a symmetry of QQ relations

Global charges of state in asymptotics

$$
Q(u) \sim u^{\Delta}
$$

QSC: The triumph of integrability

Numerics

[Gromov, Levkovich-Maslyuk, Sizov]
[Grabner, Gromov, Julius] [Cavaglia, Gromov, Julius, Preti]
Defect CFT on Wilson line

Perturbative tool

$$
\Delta=4+12 g^{2}-48 g^{4}+336 g^{6}+\cdots+\# g^{20}
$$

$$
+\mathcal{O}\left(g^{22}\right)
$$

Any question about the planar spectrum can be answered!

QSC even gives correlation functions!

Separation of Variables

$$
\frac{\langle\Psi| \partial_{\phi}(2 \sin \phi \hat{D})|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}= \pm \frac{\left.\left(u Q^{2}\right)\right)}{\left(Q^{2}\right)}
$$

[Cavaglia, Gromov, Julius, Preti]
[Caron-Huot, Coronado, Trinh, Zahraee]
"Bootstrability"
QSC + numerical bootstrap

QSC + Hexagons
[Basso, Georgoudis, Sueiro]

QSC for AdS_{3} conjectured based on symmetries + analogy with $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

AdS_{5} : QSC takes the form of $\operatorname{PSU}(2,2 \mid 4) \sim \operatorname{SL}(4 \mid 4) \mathrm{Q}$-system

$$
\begin{array}{rl}
Q_{A \mid I} & A \subset\{1,2,3,4\} \\
& I \subset\{1,2,3,4\}
\end{array}
$$

QQ relations

$$
\begin{aligned}
& Q_{A \mid I} Q_{A a b \mid I}=Q_{A a \mid I}^{+} Q_{A b \mid I}^{-}-Q_{A a \mid I}^{-} Q_{A b \mid I}^{+} \quad+\text { others } \\
& f^{ \pm}:=f\left(u \pm \frac{i}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{a}:=Q_{a \mid \varnothing} \\
& \mathbf{Q}_{i}:=Q_{\varnothing \mid i} \\
& \mathrm{~S}^{5} \\
& \mathrm{AdS}_{5}
\end{aligned}
$$

Power-like asymptotics

$$
\mathbf{P}_{a}(u) \sim A_{a} u^{M_{a}} \quad \mathbf{Q}_{i}(u) \sim B_{i} u^{\hat{M}_{i}}
$$

Analytic continuation

$$
\mathbf{P}_{a}^{\gamma}=\mu_{a b} \mathbf{P}^{b}
$$

All branch points quadratic

QSC for AdS_{3} conjectured based on symmetries + analogy with $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Defining sheet of P

Power-like asymptotics

$$
\begin{aligned}
& \mathbf{P}_{a}(u) \sim A_{a} u^{M_{a}} \\
& \mathbf{Q}_{i}(u) \sim B_{i} u^{\hat{M}_{i}} \\
& \quad+\text { dotted }
\end{aligned}
$$

Analytic continuation relates the two Q -systems

$$
\mathbf{P}_{a}^{\gamma}=\mu_{a}{ }^{\dot{c}} \mathbf{P}_{\dot{c}}
$$

Cuts cannot be quadratic!

$$
\bar{\gamma} \neq \gamma
$$

Riemann Surface of P functions

AdS_{3}
In AdS_{5} all branch cuts are quadratic, i.e. square root type

Defining sheet

In AdS_{3} we are forced to deal with logarithmic branch cuts

Solving the AdS_{3} Quantum Spectral Curve

Set-up

We consider an analogue of the $\operatorname{SL}(2)$ sector of $N=4$ SYM

Weak coupling - SL(2) spin chain, length L, S magnons

> QSC drastically simplifies in this sector

Set-up

$\mathrm{AdS}_{5} \times \mathrm{S}^{5} \mathrm{QSC}$ in $\mathrm{SL}(2)$ sector + parity invariance

$$
\chi^{a b}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{cc}
\text { Left / Right symmetry } & \text { Parity } \\
\mathbf{P}^{a}(u)=\chi^{a c} \mathbf{P}_{c}(u) & \mathbf{P}_{a}(-u)= \pm \mathbf{P}_{a}(u)
\end{array}
$$

AdS_{3} : don't know the CFT_{2} dual, so no way to construct a parity-symmetric $\mathrm{SL}(2)$ sector
But we can define it at the level of QSC

Left / Right symmetry

$$
\mathbf{P}^{a}=-\varepsilon^{a b} \mathbf{P}_{b}
$$

$$
\mathbf{P}_{a}(-u)= \pm \mathbf{P}_{a}(u)
$$

Review of AdS_{5} numerical algorithm

$$
\begin{aligned}
& \text { Input } \quad \mathbf{P}_{a}=A_{a}(g x)^{M_{a}}\left(1+\sum_{n=1}^{\infty} \frac{c_{a, n}}{x^{n}}\right) \quad \text { Initial real parameters } \mathrm{C}_{\mathrm{a}, \mathrm{n}} \text { and } \triangle \\
& \text { Known function of } \triangle
\end{aligned}
$$

Known function of Δ
Implement gluing $\quad \tilde{\mathbf{Q}}_{i}(u)=\alpha_{i}^{j} \mathbf{Q}_{j}(-u) \quad \longrightarrow \quad \tilde{\mathbf{Q}}_{1}(u)=\alpha_{13} \mathbf{Q}_{3}(-u), \quad \tilde{\mathbf{Q}}_{3}(u)=\alpha_{31} \mathbf{Q}_{1}(-u)$

Recast as optimisation problem:
$\tilde{\mathbf{Q}}_{1}(u) / \mathbf{Q}_{3}(-u)$ must be constant on cut.

Compute at sampling points on cut Variance from mean value must be 0 Hence minimize variance by updating $c_{a, n}$ and Δ to their true values

Non-quadratic cuts present a significant challenge

P-functions on the defining sheet in AdS_{5}

- Power-like asymptotics $\quad \mathbf{P}_{a}(u) \sim A_{a} u^{M_{a}}$
- Square root branch cut [-2g,2g]
- No other singularities

Such functions admit a convergent expansion

$$
\mathbf{P}_{a}=A_{a}(g x)^{M_{a}}\left(1+\sum_{n=1}^{\infty} \frac{c_{a, n}}{x^{n}}\right)
$$

Converges everywhere on defining sheet and a finite region of next sheet

Non-quadratic cuts present a significant challenge

P-functions on the defining sheet in AdS_{5}

- Power-like asymptotics $\quad \mathbf{P}_{a}(u) \sim A_{a} u^{M_{a}}$
- Square root branch cut [-2g,2g]
- No other singularities

Such functions admit a convergent expansion

$$
\mathbf{P}_{a}=A_{a}(g x)^{M_{a}}\left(1+\sum_{n=1}^{\infty} \frac{c_{a, n}}{x^{n}}\right)
$$

Converges everywhere on defining sheet and a finite region of next sheet

Non-quadratic cuts present a significant challenge

P-functions on the defining sheet in AdS_{3}

- Power-like asymptotics

$$
\mathbf{P}_{a}(u) \sim A_{a} u^{M_{a}}
$$

- Branch cut $[-2 g, 2 g]$ no longer square root
- No other singularities

Can still use

$$
\mathbf{P}_{a}=A_{a}(g x)^{M_{a}}\left(1+\sum_{n=1}^{\infty} \frac{c_{a, n}}{x^{n}}\right)
$$

But very poor convergence near branch cut and no convergence on other sheets

> Significant problem for closing QSC equations via gluing!

Solution: Construct a new object with square root branch points
Solve QSC with this object

Analytic continuation takes P-functions to their dotted cousins $\quad \mathbf{P}_{a}^{\gamma}=\mu_{a}{ }^{\dot{c}} \mathbf{P}_{\dot{c}}$

Going around the cut twice brings us back to the original P-functions $\quad \mathbf{P}_{a}^{2 \gamma}=W_{a}{ }^{b} \mathbf{P}_{b}$

Completely fixed in terms of P!
W has no cut on the real axis!

We introduce

$$
\mathbb{P}_{a} \equiv\left(W^{l}\right)_{a}^{b} \mathbf{P}_{b} \quad l=\frac{i}{2 \pi} \log \left(\frac{x-1}{x+1}\right)
$$

$$
\mathbb{P}^{2 \gamma}=W^{l-1} \mathbf{P}^{2 \gamma}=W^{l-1} W \mathbf{P}=\mathbb{P}
$$

Cut on the real axis is quadratic!

In the vicinity of the branch cut on the real axis

We can now compare!

$$
\left.\begin{array}{rl}
\mathbf{P}_{a}=A_{a}(g x)^{M_{a}}\left(1+\sum_{n=1}^{\infty} \frac{c_{a, n}}{x^{n}}\right) \longrightarrow W \longrightarrow \mathbb{P} \longrightarrow d_{a, n} \\
\mathbf{P}_{a}^{\gamma}=\mu_{a}{ }^{c} \mathbf{P}_{c} \longrightarrow \quad \mathbb{P}^{\gamma}=W \mathbf{P}^{\gamma} \longrightarrow d_{a, n}
\end{array}\right)
$$

Computed in two different ways, must be equal on true solution of QSC!

Leads to optimisation problem for $\mathrm{C}_{\mathrm{a}, \mathrm{n}}$ and Δ

Numerical algorithm converges!

Dimension seen to be a continuous function of g.
Strongly supports the QSC proposal - not an empty mathematical object!

We can now compare numerics with perturbation theory (small g expansion) $\quad l=\frac{i}{2 \pi} \log \left(\frac{x-1}{x+1}\right)$

$$
\mathbb{P}_{a} \equiv\left(W^{l}\right)_{a}^{b} \mathbf{P}_{b} \longrightarrow \mathbf{P}=W^{-l} \mathbb{P}=\sum_{n=0}^{\infty} l^{n} \mathbf{P}^{(n)} \quad \mathbf{P}^{(0)}=\mathbb{P}
$$

Under excellent control from numerics!

$$
\begin{aligned}
& W=1+\mathcal{O}(g) \\
& \mathbf{P}^{(n)} / \mathbf{P}^{(n-1)}=\mathcal{O}(g) \\
& l=\mathcal{O}(g)
\end{aligned}
$$

Can consistently expand ing and determine dimension using methods from AdS_{5}
Unlike AdS_{5} we have no field theory to compare with

Results

$$
\begin{aligned}
\gamma_{\mathcal{S}=2} & =12 g^{2}+\frac{864}{35 \pi} g^{3}+\left(-48-\frac{576}{7 \pi^{2}}\right) g^{4}+\left(-\frac{405504}{875 \pi^{3}}-\frac{51552}{143 \pi}\right) g^{5} \\
& +\left(444-\frac{70665216}{4375 \pi^{4}}+\frac{230121984}{175175 \pi^{2}}\right) g^{6} \\
& +\left(-\frac{16896}{35 \pi} \zeta_{3}-\frac{4965482496}{21875 \pi^{5}}+\frac{6791453184}{875875 \pi^{3}}+\frac{1102677696}{146965 \pi}\right) g^{7} \\
& +\left(-288 \zeta_{3}+\frac{1898496}{1225 \pi^{2}} \zeta_{3}-576 \zeta_{5}-5844\right. \\
& \left.\quad-\frac{302725824512}{109375 \pi^{6}}-\frac{9030729728}{25025 \pi^{4}}+\frac{25695082110528}{282907625 \pi^{2}}\right) g^{8}
\end{aligned}
$$

Perfect agreement with numerics!

Comparing with asymptotic Bethe ansatz:

$$
\gamma_{\mathcal{S}=2}^{A B A}=12 g^{2}+\mathcal{O}(g)^{4} \Longrightarrow \frac{864}{35 \pi} g^{3} \quad \text { non-trivial correction! }
$$

Comments on the results

$$
\begin{aligned}
\gamma_{\mathcal{S}=2} & =12 g^{2}+\frac{864}{35 \pi} g^{3}+\left(-48-\frac{576}{7 \pi^{2}}\right) g^{4}+\left(-\frac{405504}{875 \pi^{3}}-\frac{51552}{143 \pi}\right) g^{5} \\
& +\left(444-\frac{70665216}{4375 \pi^{4}}+\frac{230121984}{175175 \pi^{2}}\right) g^{6} \\
& +\left(-\frac{16896}{35 \pi} \zeta_{3}-\frac{4965482496}{21875 \pi^{5}}+\frac{6791453184}{875875 \pi^{3}}+\frac{1102677696}{146965 \pi}\right) g^{7} \\
& +\left(-288 \zeta_{3}+\frac{1898496}{1225 \pi^{2}} \zeta_{3}-576 \zeta_{5}-5844\right. \\
& \left.\quad-\frac{302725824512}{109375 \pi^{6}}-\frac{9030729728}{25025 \pi^{4}}+\frac{25695082110528}{282907625 \pi^{2}}\right) g^{8}
\end{aligned}
$$

Even and odd powers of g - in AdS_{5} only even powers appear

Powers of $1 / \pi$ related to log-type monodromies (massless modes)

Curious feature: $1 / \pi$ a coupling constant for massless modes?

$$
\pi \rightarrow \infty \text { reproduce } \mathrm{N}=4 \mathrm{SYM} \text { at } \mathrm{g}^{2} \text { and } \mathrm{g}^{4}!
$$

Summary \& Outlook

Summary

- Solved conjectured QSC for string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with pure RR flux
- Solutions exist! Solutions isolated (no continuous parameters for fixed coupling)
- Provides a highly non-trivial test for the validity of the proposed QSC
- First ever predictions for generic unprotected string excitations
- New tools necessary to deal with massless modes - QSC harder, but still solvable
- New features in perturbative expansion vs AdS_{5} : inverse powers of π

Outlook

- We consider pure RR flux. Can we extend to mixed flux? Pure NSNS?
- Comparisons with TBA of Frolov + Sfondrini
- Smaller system - ideal playground for Separation of Variables approach to correlators
- 2d CFT - ideal playground for bootstrability approach to correlators

Thank you!

