

Bootstrapping RG Flows through AdS: sine-Gordon and friends
António Antunes, DESY arXiv 2109.13261+W.I.P.
w/ M.S.Costa, J.Penedones, A.Salgarkar, (B.C.van Rees) E. Lauria

<u>Main Idea</u>
 We want to study QFTs undergoing RG Flow. Place it in a fixed AdS metric and use the radius as a scale.
- The Symmetries of AdS provide us with a one parameter family of boundary conformal correlators. Use the Bootstrap to obtain non-perturbative information.

Outline:	•
I) Motivation: QFT in AdS, Flat Space Limit, S-Matrix vs Conformal Bootstrap	• • • •
II) Bounds on sG Breathers (Z2 Symmetry)	•
III) Bounds on sG Kinks (O(2) Symmetry)	•
IV) Staircase+Outlook	•
	•

I) Massive QFT in AdS_{d+1} $ds^2 = \frac{L_{AdS}^2}{y^2} \left(dy^2 + dx^2 \right)$ $\langle \phi(y_1, x_1) \dots \phi(y_4, x_4) \rangle$ L^2_{AdS} IR reg RG scale Isometries SO(d+1,1) same as Conformal(d) maximally $\partial \mathrm{AdS}_{d+1} = \mathrm{CFT}_d$ symmetric box Bulk Fields -----> Boundary Operators Asymptotic states $\phi_i(y,x) = \sum a_{ik} y^{\Delta_k} \mathcal{O}_k(x) +$ [PPTvRV] '16 $m_i^2 L_{\rm AdS}^2 = \underline{\Delta_i}(\underline{\Delta_i} - d)$

Conformal correlators on the Boundary	$u = \frac{x_{12}^2 x_{34}^2}{x_{12}^2 x_{24}^2} = z\bar{z}$ Cross ratios
$\left\langle \mathcal{O}_1(x_1)\mathcal{O}_1(x_2)\mathcal{O}_1(x_3)\mathcal{O}_1(x_4)\right\rangle = \frac{\mathcal{A}(z,\bar{z})}{x_{12}^{2\Delta_1}x_{34}^{2\Delta_1}}$	$v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2} = (1 - z)(1 - \bar{z})$
Boundary OPE $\mathcal{O}_i(x)\mathcal{O}_j(0) = \sum_k c_{ijk}$	$ x ^{\Delta_k - \Delta_i - \Delta_j} \left[\underline{\mathcal{O}_k(0)} + desc$
-We have all the bootstrap axioms:	
Conformality, OPE, Unitarity \longrightarrow	Conformal bootstrap:
Non-perturbative (numerical) bounds on (CFT data: $\Delta_i {\cal C}_{ijk}$
Non-local C(F)T No Stress-Tensor <-	> No graviton

<u>General Logic</u>
- Take the finite radius, non-perturbative bootstrap results seriously, not just as a data set to extrapolate upon.
 Attempt to see the flows as (approximately) saturating the bounds, even at finite radius.

II) Bounds on Breathers at finite L_{AdS}										
$S = \int_{AdS_2} d^2x \sqrt{g} \begin{bmatrix} \frac{1}{2} (\partial \phi)^2 + \lambda \cos(\beta \phi) \\ \frac{1}{2} (\partial \phi)^2 + \lambda \cos(\beta \phi) \end{bmatrix} $ Releven deform the deformation of the second se	ant nation if $eta^2/(4\pi)~\leq~2$									
Free $ \underbrace{ 0 } \lambda L_{\rm AdS}^{2-\Delta_\beta} \underbrace{ \infty } \\ {\rm BCFT} $	IR → Flat Space									
Dirichlet $egin{array}{ccc} \mathcal{O}_1 = \partial_\perp \phi & \mathcal{O}_1 imes \mathcal{O}_1 = 1 + c_{112}\mathcal{O}_2 \\ \mathcal{O}_2 = (\partial_\perp \phi)^2 & \text{Nearly bound state} \\ c_{112}^2 = 2 & \Delta_1 = 1 & \Delta_2 = 2 \end{array}$	Bosonic MFT maximizes c_{112}^2 UV									

III) Bounds on Kinks	Breathers ϕ quanta
$\cos(\beta\phi) \longrightarrow \bigvee_{\text{Kinks}} \xrightarrow{\text{Kinks}} \text{Kin$	Bound states
Non-perturbative in ϕ	Breathers U(1)_neutral
$\binom{K}{K} \longrightarrow O(2)_{T}$ doublet	\pm charge under $Z_2 \subset O(2)$
Sensitive to β the inverse radius of	of ϕ Excludes $\sum_n a_n \phi^{2n}$

What are the CFT kinks in the UV?
Compact boson has O(2) x O(2) sym. $\cos(\beta\phi)$ explicitly
Charged bulk operators: \Box \Box \Box breaks \rightarrow O(2) _T
Momentum $V_{n,\underline{m}} =: e^{ip_L\phi_L + ip_R\phi_R}:$
Vertex Ops. $p_{L,R} = n\beta \pm \frac{2\pi}{\beta}$
$\binom{K}{K} \to V_{0,\pm 1} =: e^{\pm \frac{2\pi i}{\beta} \tilde{\phi}} : \qquad \tilde{\phi} = \phi_L - \phi_R$
Bulk dimension π/eta^2 (non-pert in small eta)
Can tune to have no bound states

O(2) symmetric correlators $i, j, k, l \in \{1, 2\}$ Irreps S,T,A $x_{12}^{2\Delta_v} x_{34}^{2\Delta_v} \langle K_i(x_1) K_j(x_2) K_k(x_3) K_l(x_4) \rangle$ $= \delta_{ij}\delta_{kl} g_1(z) + \delta_{il}\delta_{jk} g_2(z) + \delta_{ik}\delta_{jl} g_3(z)$ In the deep UV we can compute the boundary correlators: $g_{+-+-}(x_i) = \left\langle V_{0,+1}(x_1, y_1) V_{0,-1}(x_2, y_2) V_{0,+1}(x_3, y_3) V_{0,-1}(x_4, y_4) \right\rangle \Big|_{y_i \to 0}$ $g_{+-+-} = \frac{1}{(x_{12}x_{34})^{4\pi/\beta^2}} (1-z)^{-4\pi/\beta^2}$ $\mathbf{S} \rightarrow \mathbf{0,2,4,...} \quad (\partial_{\perp}\phi)^2$ \longrightarrow A \rightarrow 1,3,... $\partial_{\perp}\phi$ $\Delta_v \!= 2\pi/\beta^2$ $1 \rightarrow 1 \rightarrow 1 4\Delta_v \qquad 1 V_{0,\pm 2}$

IV) Sinh-Gordon and Staircase model

Studying no bound states gave controllable setup. Back to breathers but without bound states. Sinh-Gordon and Staircase saturate flat space bounds.

Outlook

	•••
 More useful 2d bounds (O(N)), higher d bounds. 	
 Is there a systematic way to add more correlators and approach a realistic dense spectrum? 	
 Is there a sharp connection to integrability in AdS? 	• •
	• •

										. 5		Pitt	ľ			•	ž		•		ŧ				-		6 6	ľ				•												• •
				•							- 1	Ē	J	7	, L	Å		7		×K,	• . •			Įζ			A		•		•								• •					
				•								•	.,		-				· · ·				·		• • • •		- 194g		•		•	•												
																						· •	e, k																• •					• •
																-		•	• •				•																• •					
				•	•		0																						•		•	•							• •					
																			-1-																									
																	44			-																								
																		11			S																							
														-	200	0		V		T																								
													-		2		6		-																									
													(~	2	E		>	E																		. ,	•						
											1	Ċ	è	R	9	1	~	-		A.										•	•	•												• •
												Э	1	1	~	1	7			Y																								•
		•			•									R	1	-	~	>	>		V					1			•		•	•												• •
	•					•							(8	+	_	-	2	~			- V								•	•	•							• •					•
				•										6	6	5	0	0		1			00	202	200				•		ⁱ A	'n	ti	ni	ni	ir	<u>ن</u>	้ว	'n	ti.	ir	۱Ċ	<u>ک</u> ر	<u>.</u> .
									•						4	2	<u> </u>	_												•	u		L.				/ = '	u		ιι	1 I	I.C.)
				•												_	_				1	_	>	/ '					•		6	$\overline{\mathbf{v}}$	Ч		C	1	1	4						
				•															1	1	.).	Τ					•		•		U	צ	u	C	J	y	<u> </u>	J						
															1	2			1	_																								
																	-		KA																									
																7	2		V)																						-			
																. "																												
																																			,									

Unphysical solutions to crossing and multiple correlators $\langle \mathcal{O}_1 \mathcal{O}_1 \mathcal{O}_1 \mathcal{O}_1 \rangle \langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_1 \mathcal{O}_1 \rangle \langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \rangle$ c_{11n}^2 c_{22n}^2 $c_{22n}c_{11n}$ Mixes both Decoupled $f_{\chi}(z) = \sum_{k, \Delta_k \ge 2\Delta_{\phi}} \mu_k^2 g(\Delta_k, z)$ Can add w/ arbitrary coefficient to c_{22n}^2 With tiny c_{11n}^2 , cross term is arbitrary. No better bound...

Kink correlators at first order	
Winding	omentum
$ \sqrt{e^{i\alpha\phi(w_1)}e^{i\alpha\phi(w_1^*)}e^{-i\alpha\phi(w_2)}e^{-i\alpha\phi(w_2^*)}\left(e^{i\beta(\phi(w)-\phi(w^*))}+\right)} $	$- e^{-i\beta(\phi(w) - \phi(w^*))} - 2 \Big) \Big\rangle$
$lphaeta=2\pi$ Rational integrand	
$\int_{AdS_2} \frac{dxdy}{y^2} \frac{-2(x_{12})^2 y^2}{(y^2 + (x - x_1)^2)(y^2 + (x - x_2)^2)}$	
$\langle V_{\alpha_1} \dots V_{\alpha_n} \rangle_{\mathbb{R}^2}$	$=\prod_{i< j} z_i - z_j ^{\alpha_i \alpha_j/4\pi}$

