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The search for a non-perturbative understanding of
topological string theory has been going on for many years.

In 2006-2008 it was proposed in [M.M., M.M.-Schiappa-Weiss] tO
look at this problem by using the theory of resurgence, i.e. by

using traditional tools which had been very successful in QM
and QFT.

An key aspect of this approach:

“make use as much as possible of the
important pieces of information contained in
the coupling constant expansion”

(G.'t Hooft, 1979)



The quartic oscillator

The “role model” for this approach is the Bender-Wu analysis of
perturbative series in the quantum anharmonic oscillator

A

Sharp question: what is the asymptotic behavior of the
coefficients @,, at large n?
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We examine the large-order behavior of perturbation theory for the anharmonic oscil-
lator, a simple quantum-field-theory model. New analytical techniques are exhibited
and used to derive formulas giving the precise rate of divergence of perturbation theory
for all energy levels of the x2¥ oscillator. We compute higher-order corrections to
these formulas for the x* oscillator with and without Wick ordering.

In a remarkable series of papers in 1969-73, Bender and Wu
found the answer to this question:
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Perhaps the most interesting aspect of this formula is the
connection to non-perturbative effects
(which makes concrete an insight by Dyson in 1952)

The large order behavior can be deduced from an instanton
effect in the theory with negative coupling!




In the unstable potential, the ground state becomes
metastable. Its energy picks an imaginary piece which is
exponentially small and can be computed with instanton

methods
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This determines the asymptotics of perturbation theory.

For example, the action of the instanton, which is A=1/3,

leads to the subleading factorial growth in the Bender-Wu
formula



From non-perturbative effects to
asymptotics

More generally, if we have a non-perturbative effect of the
form
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The take home message is that perturbation theory
encodes information about non-perturbative
effects. Conversely, one can use non-perturbative
corrections to derive asymptotic results

In particular, proposals about putative non-perturbative
effects in a theory can (and should) be tested against the
large order behavior of the perturbative series

This is particularly relevant for string theory, where in
many cases perturbation theory is all we have. Can we
answer similar questions in e.g. topological string theory?



Topological string theory

Let X be a Calabi-Yau (CY) threefold. At each genus g we can
compute the topological string free energy F,(t), which
depends on the Kahler modulus t (for simplicity | will only
consider one-modulus CY's)

At large t this has an expansion encoding Gromov-Witten

invariants of X, which “count” holomorphic curves of genus g
in X:
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| will use mirror symmetry throughout, so for example the
Kahler modulus will be given by a mirror map

t =1t(z)

relating it to the complex structure modulus z of the
mirror CY



String perturbation theory tells us that the total free
energy is given by a genus expansion in the string coupling
constant
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How much do we know about this series! How easy it is to
effectively compute the coefficients!?

This is important if we want e.g. to check explicit statements
about asymptotics. In the Bender-Wu case, they tested their
formula with ~150 terms of the perturbative series.



The holomorphic anomaly equations

One of the most successful methods to calculate the

topological string perturbation series is the holomorphic
anomaly equations (HAE) of BCOV.

For simplicity, | will first consider the so-called local or
toric, non-compact CY case.The total free energy of the
topological string satisfies a partial differential equation

involving a propagator S and the complex modulus z of
the CY
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This equation can be solved recursively, genus by genus.
One obtains expressions for the genus g free energies
which are polynomials in the propagator, and involve known

functions of the complex modulus z [BCOV,Yamaguchi-Yau, Grimm-
Klemm-M.M.-Weiss, Alim-Lange, Klemm et al,, ...]
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Y (%) : Yukawa coupling (third derivative of Fy )

In this formulation, $ is essentially an arbitrary variable.The

conventional topological string free energies are recovered

in the so-called holomorphic limit, where $ becomes a
(known) function of z.



By using this method, one can calculate the genus expansion
efficiently, up to an integration constant called the
holomorphic ambiguity, which is a function of z.

In the local case, the ambiguity can be determined at all
genera by using the behavior at the conifold point , where
the CY becomes singular [Haghighat-Klemm-Rauch].

In practice, one can calculate ~150 terms of the series

One can set up more complicated HAE in the compact
case, but it is more difficult to fix the ambiguity. For some
compact CYs, like the famous quintic, it can be fixed up to

genus ~50 by using additional geometric constraints [Huang-
Klemm-Quackenbush].



Sharp question: what is the asymptotic behavior of the
F,(t) at large genus!?

General string theory arguments [Shenker] predict that they
grow double-factorially,

Fy(t) ~ (29)!,  g>1

but we want to be much more precise than that.

Note that this asymptotic problem is more difficult than in
Bender-Wu, since the coefficients of the perturbative
series are themselves functions of the modulus t (or z)!



Their general lesson should still apply, though, and the
physics approach to the problem would be to calculate a
(spacetime) instanton amplitude in topological

string theory, exponentially small in the string
coupling constant.

However, it is not even clear what is the framework to
do instanton calculus!

In the case of toric CYs there are explicit, non-
perturbative matrix model duals [MM.-zakany], but the

calculation of large N instantons in these models seems
difficult.



The CESV framework

In two remarkable papers in 2013-4, CESV [Couso-Edelstein-
Schiappa-Vonk] proposed to use the holomorphic anomaly
equations of BCOV to calculate instanton amplitudes.

This was inspired by trans=series solutions in ODEs,
which involve exponentially small terms [Ecalle, Costin, ...]

Euler equation: %y (x) —y(x) = —o

. . 1
perturbative solution:  Yp () = E nlz™™
n >0

trans-series solution: y(aj) = Yn (:13) _I_[Ce—l/xj
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with a trans-series ansatz
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perturbative series instanton correction

One additional assumption of the ansatz is that the
instanton action A is a CY period [Drukker-M.M.-Putrov]



In the local case, this means that
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This conjecture is motivated by results in quantum mechanics
and matrix models. It can be verified empirically by looking at
the asymptotic behavior of the perturbative series.

| will assume that o # 0, otherwise the one-instanton

amplitude is very simple: it is two-loop exact and given by
[Pasquetti-Schiappa] (see also [Alim et al.,Grassi et al.])
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In the trans-series ansatz one can include subleading
instanton corrections. For example, we can have multi-
instanton amplitudes, involving an action m A, where m is
a positive integer

CESV solved for the very first F,il) (S, z) in the toric case.
One finds e.g.

Fél)(S, z) = Aexp (%(@AFS)

which gives the prefactor in the Bender-Wu-like asymptotic
formula. They verified in detail these predictions against
perturbative data



Exact solutions

The CESV results for instanton corrections get increasingly
complicated for higher order terms, and their physical
interpretation is not clear.

In a recent paper with Jie Gu, we found the exact
solution for all multi-instanton trans-series.

In the holomorphic limit, it can be shown that the instanton
corrections only involve the perturbative topological string
free energies and their derivatives.

[ Technical point: we will redefine the genus zero free energy
in such a way that A = a0, Fy]



In the one-instanton case, one finds the all-orders solution
FU = (g5 + g2a0,F(t — ags)) e 17 09:) =10

In the case of m-instantons there are different solutions, but
they all involve the exponent

ol (t—mags)—F(t)

This has an easy interpretation: the m-th instanton
sector corresponds to a background where the Kahler
parameter t is shifted

L — T — mags



This suggests that t is quantized, as postulated in large N
dualities. However, in reaching this conclusion we have only
used the holomorphic anomaly equations.

The resulting amplitude is also similar to large N instanton
effects in matrix models, which are obtained by “eigenvalue
tunneling”

AW,




The compact case

So far | have only considered toric CYs where life is
comparatively simple. However, in ongoing work with Gu,
Kashani-Poor and Klemm, we have generalized some of
these results to compact, one-modulus CYs, like the famous
quintic.

Now the BCOV equations involve three propagators instead
of one, but we can still compute instanton amplitudes.

Let me present a concrete asymptotic result, which is is the
analogue of the Bender-Wu formula for the topological
string on the quintic CY.



For real values of the modulus z in between the LR point
and the conifold, we find the asymptotics

exp( 0)
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z = () large radius
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Experimental evidence
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What are the possible instanton
actions?

The procedure explained above tells us what are the
instanton amplitudes, up to an overall multiplicative constant,
once the instanton action is known.

In general, it does not tell us what are the possible
instantons, nor their actual multiplicative constant. This
information is part of what | call the resurgent
structure of the theory, and has to be determined
independently.



The possible instanton actions turn out to be the
singularities of the Borel transform

F\(t7C) —

An example of singularities
in the Borel place of local
P2, for a point in moduli
space near large radius

More examples and plots in
2211.0143
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The local behavior of the Borel transform near these
singularities is determined by the instanton amplitudes we
have computed, plus a numerical constant called Stokes

constant

Recent work indicates that Stokes constants have
interesting enumerative information on the CY. Finding
efficient ways to extract this information is one of the main
challenges of the theory.



Conclusions and outlook

We have developed the framework of CESV to calculate
instanton amplitudes in topological string theory, by
using a trans-series ansatz in the holomorphic anomaly
equations of BCOV. We are doing instanton calculus in
Kodaira-Spencer theory!

We managed to find exact answers for these amplitudes,
in the toric case, and show that they involve only
perturbative information. The underlying physics involves
the quantization of flat coordinates, as in large N dualities.



We are now extending these results to the compact
case, and much of the underlying physics seems to be the
same.What is the meaning of the quantization there !

s it possible to realize these instantons in terms of
extended objects? They have the form of D-brane
amplitudes, as in the non-critical string.

The full resurgent structure requires determining the
possible instanton actions and the Stokes constants,
and we expect very rich mathematics and physics in

this resurgent structure



Thank you for your attention!



