ANGELOTTI – IKP

Accelerators: the Next GEneration – materiaLs, cOmponents, sysTems and simulaTIons

Work supported by DFG (GRK 2128, SFB 1245), BMBF (05H21RDRB1), State of Hesse (Cluster Project ELEMENTS and LOEWE Research Cluster Nuclear Photonics)

Challenges of Twofold ERL

nstitut für Kernphysik

5 DALINAC

Concept based on: R. Koscica et al., Phys. Rev. Accel. Beams 22, 091602 (2019)

Objective functions result from splitter magnet ratio: $p_{\rm I}: p_{\rm F}: p_{\rm S} = 1:4.73:8.32$

Degrees of freedom:

Nuclea

 $\vec{A}, \vec{\phi}, \vec{L}, \vec{R}_{56}$

Phase Slippage

S DALINAC

Simplified model of energy gain

Phase Slippage

Simplified model of energy gain

More complex model of energy gain

Nuclear

Photonics

Phase Slippage

Simplified model of energy gain

More complex model of energy gain

Speed changes along the cavity

Influences interaction with alternating electric field

Nuclear

Numerical simulations required

nstitut für Kernphysik

5 DALINAC

TECHNISCHE UNIVERSITÄT

DARMSTADT

nstitut für Kernphysik

$$\begin{pmatrix} \bar{p}_{1x \text{ acc.}} \\ \bar{p}_{2x \text{ acc.}} \\ \bar{p}_{1x \text{ dec.}} \\ \bar{p}_{2x \text{ dec.}} \end{pmatrix} = \begin{pmatrix} 4.73 \cdot \bar{p}_{\text{inj.}} \\ 8.32 \cdot \bar{p}_{\text{inj.}} \\ 4.73 \cdot \bar{p}_{\text{inj.}} \\ 1.00 \cdot \bar{p}_{\text{inj.}} \end{pmatrix} \quad \bar{p}_{\text{inj.}} = 5 \text{ MeV/c}$$

$$\min \left\| \begin{pmatrix} \operatorname{sene}(\bar{p}_{0,1x \text{ acc.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ acc.}}, 8.32 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \end{pmatrix} \right\|_{1^*} \quad \text{s.t.} \begin{cases} A_i \in [0, 5] \text{ MV/m } \forall i \in \{1, \dots, 8\} \\ \phi_i \in [0, 360) \circ \forall i \in \{1, \dots, 8\} \\ L_1 \in [0, 74.0] \text{ mm} \\ L_2 \in [0, 101.2] \text{ mm} \end{cases} \quad \|\vec{x}\|_{1^*} := \sum_i x_i$$

stitut für Kernphysik

Bundesministerium für Bildung und Forschung

$$\begin{pmatrix} \bar{p}_{1x \text{ acc.}} \\ \bar{p}_{2x \text{ acc.}} \\ \bar{p}_{1x \text{ dec.}} \\ \bar{p}_{2x \text{ dec.}} \end{pmatrix} = \begin{pmatrix} 4.73 \cdot \bar{p}_{\text{inj.}} \\ 8.32 \cdot \bar{p}_{\text{inj.}} \\ 4.73 \cdot \bar{p}_{\text{inj.}} \\ 1.00 \cdot \bar{p}_{\text{inj.}} \end{pmatrix} \quad \bar{p}_{\text{inj.}} = 5 \text{ MeV/c}$$

$$\min \left\| \begin{pmatrix} \operatorname{sene}(\bar{p}_{0,1x \text{ acc.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ acc.}}, 8.32 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \end{pmatrix} \right\|_{1^*} \quad \text{s.t.} \begin{cases} A_i \in [0, 5] \text{ MV/m } \forall i \in \{1, \dots, 8\} \\ \phi_i \in [0, 360) \circ \forall i \in \{1, \dots, 8\} \\ L_1 \in [0, 74.0] \text{ mm} \\ L_2 \in [0, 101.2] \text{ mm} \end{cases} \quad \|\vec{x}\|_{1^*} := \sum_i x_i$$

sene
$$(V_1, V_2, T) = \begin{cases} 0, & |V_1 - V_2| \le T \\ ((|V_1 - V_2| - T)/T)^2, & |V_1 - V_2| > T \end{cases}$$
 $T = 1 \text{ eV/c}$

S DALINAC

$$\begin{pmatrix} \bar{p}_{1x \text{ acc.}} \\ \bar{p}_{2x \text{ acc.}} \\ \bar{p}_{1x \text{ dec.}} \\ \bar{p}_{2x \text{ dec.}} \end{pmatrix} = \begin{pmatrix} 4.73 \cdot \bar{p}_{\text{inj.}} \\ 8.32 \cdot \bar{p}_{\text{inj.}} \\ 4.73 \cdot \bar{p}_{\text{inj.}} \\ 1.00 \cdot \bar{p}_{\text{inj.}} \end{pmatrix} \quad \bar{p}_{\text{inj.}} = 5 \text{ MeV/c}$$

$$\min \left\| \begin{pmatrix} \operatorname{sene}(\bar{p}_{0,1x \text{ acc.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ acc.}}, 8.32 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \end{pmatrix} \right\|_{1^*} \quad \text{s.t.} \begin{cases} A_i \in [0, 5] \text{ MV/m } \forall i \in \{1, \dots, 8\} \\ \phi_i \in [0, 360) \circ \forall i \in \{1, \dots, 8\} \\ L_1 \in [0, 74.0] \text{ mm} \\ L_2 \in [0, 101.2] \text{ mm} \end{cases} \quad \|\vec{x}\|_{1^*} := \sum_i x_i$$

sene
$$(V_1, V_2, T) = \begin{cases} 0, & |V_1 - V_2| \le T \\ ((|V_1 - V_2| - T)/T)^2, & |V_1 - V_2| > T \end{cases}$$
 $T = 1 \text{ eV/c}$

 $\min \sigma_{\delta}(s) \qquad \text{ s.t. } \begin{cases} R_{56,\mathrm{I}} \in [-0.7, 0.4] \,\mathrm{m} \\ R_{56,\mathrm{F}} \in [-0.1, 0.8] \,\mathrm{m} \\ R_{56,\mathrm{S}} \in [-0.7, 0.7] \,\mathrm{m} \end{cases}$

02. Dec. 2022 | F. Schliessmann | TOSCA Meeting | 9

Photonics

stitut für Kernphysik

Bundesministerium für Bildung und Forschung

$$\begin{pmatrix} \bar{p}_{1x \text{ acc.}} \\ \bar{p}_{2x \text{ acc.}} \\ \bar{p}_{1x \text{ dec.}} \\ \bar{p}_{2x \text{ dec.}} \end{pmatrix} = \begin{pmatrix} 4.73 \cdot \bar{p}_{\text{inj.}} \\ 8.32 \cdot \bar{p}_{\text{inj.}} \\ 4.73 \cdot \bar{p}_{\text{inj.}} \\ 1.00 \cdot \bar{p}_{\text{inj.}} \end{pmatrix} \quad \bar{p}_{\text{inj.}} = 5 \text{ MeV/c}$$

$$\min \left\| \begin{pmatrix} \operatorname{sene}(\bar{p}_{0,1x \text{ acc.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ acc.}}, 8.32 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,1x \text{ dec.}}, 4.73 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \\ \operatorname{sene}(\bar{p}_{0,2x \text{ dec.}}, 1.00 \cdot p_{\text{inj.}}, T) \end{pmatrix} \right\|_{1^*} \quad \text{s.t.} \begin{cases} A_i \in [0, 5] \text{ MV/m } \forall i \in \{1, \dots, 8\} \\ \phi_i \in [0, 360) \circ \forall i \in \{1, \dots, 8\} \\ L_1 \in [0, 74.0] \text{ mm} \\ L_2 \in [0, 101.2] \text{ mm} \end{cases} \quad \|\vec{x}\|_{1^*} \coloneqq \sum_i x_i \|\vec{x}\|_{1^*} = \sum_i x_i \|$$

sene
$$(V_1, V_2, T) = \begin{cases} 0, & |V_1 - V_2| \le T \\ ((|V_1 - V_2| - T)/T)^2, & |V_1 - V_2| > T \end{cases}$$
 $T = 1 \text{ eV/c}$

$$\min \sigma_{\delta}(s) \qquad \text{s.t.} \begin{cases} R_{56,\mathrm{I}} \in [-0.7, 0.4] \,\mathrm{m} \\ R_{56,\mathrm{F}} \in [-0.1, 0.8] \,\mathrm{m} \\ R_{56,\mathrm{S}} \in [-0.7, 0.7] \,\mathrm{m} \\ \end{array} \end{cases} \qquad \begin{array}{l} \text{Code Availability:} \\ \text{F. Schliessmann et al., TUdatalib (2022), https://doi.org/10.48328/tudatalib-963} \end{cases}$$

Solution for Longitudinal Quantities

S DALINAC

Solution for Longitudinal Quantities

02. Dec. 2022 | F. Schliessmann | TOSCA Meeting | 12

Nuclear

Photonics

Longitudinal Setup

LINAC Cavity	#1	#2	#3	#4	#5	#6	#7	#8	$R_{56,I} = -0.$
Off-crest phase (°) (during 1st LINAC pass)	-9.7	-5.7	13.2	4.0	6.1	7.2	5.6	3.2	$R_{56,F} = +0.$ $R_{56,S} = +0$
Off-crest momentum gain (MeV/c) (during 1st LINAC pass)	2.34	2.32	2.29	2.34	2.33	2.33	2.35	2.36	
On-crest momentum gain (MeV/c) (during 1st LINAC pass)	2.37	2.33	2.35	2.35	2.34	2.34	2.36	2.37	

Longitudinal Phase Space

9.7 m, Cavity (1,1)	11.3 m, Cavity (1,2)	13.1 m, Cavity (1,3)	14.7 m, Cavity (1,4)	16.5 m, Cavity (1,5)	18.1 m, Cavity (1,6)	19.9 m, Cavity (1,7)	21.5 m, Cavity (1,8)

53.3 m, 1st rec. (1st pass)

02. Dec. 2022 | F. Schliessmann | TOSCA Meeting | 14

 Nuclear Museuministerium Photonics

Twofold ERL Mode (August 2021)

nstitut für Kernphysi

5 DALINAC

Operation mode	Load at main LINAC (W)
1x acc.	43.5 ± 0.2
2x acc.	86.3 ± 0.3
1x dec.	42.6 ± 0.2
2x dec.	13.8 ± 1.1

Energy-recycling efficiency:

 $\eta_{\text{main LINAC}} = \frac{P_{\text{b,main LINAC,2x acc.}} - P_{\text{b,main LINAC,2x ERL}}}{P_{\text{b,main LINAC,2x acc.}}}$ $= (84.0 \pm 1.2) \%$

Nuclear

Photonics

Twofold ERL Mode (August 2021)

TECHNISCHE UNIVERSITÄT DARMSTADT

5 DALINAC

Photonics

Limits of Transverse Tuning

02. Dec. 2022 | F. Schliessmann | TOSCA Meeting | 17

Nuclear

Instrumentation of Superimposing Beams

stitut für Kernphysik

Instrumentation of Superimposing Beams

 (Non-)destructive position measurement for both beams simultaneously

- Options
 - Screen with hole
 - Beam loss monitors
 - Wire scanner
 - 6 GHz cavity BPM (double of fundamental frequency)
 - 3 GHz cavity BPM in combination with bunch trains

Wire Scanner

Measurement routine:

- (1) Measure single-accelerated beam alone
- (2) Measure both beams simultaneously
- (3) Substract (1) from (2)
- $\rightarrow\,$ Gain position of single-decelerated beam
- Tuning of the first beam requires re-calibration of the system
- measurement time: ~ 10 sec.

M. Dutine et al., Proc. of IPAC 2022, p. 254-256 (2022)

6 GHz Cavity BPM

Measurement routine:

- Identical to wire scanner
- Advantage: online measurement instead of defined measurement points
- Tested at test stand
- Read out electronics under development
- Test with beam planned for 2023
- Comparison to wire scanner

M. Dutine et al., Proc. of IPAC 2022, p. 254-256 (2022)

6 GHz Cavity BPM

02. Dec. 2022 | F. Schliessmann | TOSCA Meeting | 22

S DALINAC

6 GHz Cavity BPM

02. Dec. 2022 | F. Schliessmann | TOSCA Meeting | 23

S DALINAC

Summary

- Twofold ERL mode at S-DALINAC with up to 87 % efficiency
- Challenges of multi-turn energy-recovery:
 - Low injection energy \rightarrow Phase slippage
 - Shared beam transport
- Remedies:
 - Numerical simulations
 - Special diagnostic units

Thank you for your Attention.

Backup

Possible Threefold ERL Mode

Compton backscattering at the S-DALINAC

- can provide a quasi-monochromatic highly polarized
 X-ray beam
- weak influence of electron beam due to small recoil and small Compton cross-section
 - → diagnostic tool for energy and energy spread

Compton backscattering at the S-DALINAC

Coupling Chamber Design:

- can provide a quasi-monochromatic highly polarized
 X-ray beam
- weak influence of electron beam due to small recoil and small Compton cross-section
 - → diagnostic tool for energy and energy spread
- Maximum energy in head-on geometry: $E_{\gamma} \approx 4\gamma^2 E_{\rm L}$
 - ➔ 180 keV photons from 99 MeV electrons and 1030 nm laser

M. Meier et al., Proc. of IPAC 2022, p. 1121-1124 (2022)

