

Timeline of ATTAVANTI subproject

Problems & motivation

Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problem

UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Timeline of ATTAVANTI subproject

Problems & motivation

Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problem

UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Timeline of ATTAVANTI subproject

Problems & motivation

Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problem

UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Timeline of ATTAVANTI subproject

- Problems & motivation
- Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problem
- UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Timeline of ATTAVANTI subproject

- Problems & motivation
- Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problem
- UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Preliminary results & Conclusions

Proof-of-concept example Results for PDFs of merit-function due to QPR deformation

Timeline of ATTAVANTI subproject

Multiphysical Shape Optimization of a QPR under Uncertainties

	AD	Aufenha		2021		2022			2023				2024	
	Ar.	Auigabe	3	4	1	2	3	4	1	2	3	4	1	2
	3.1	Modeling of the electromagnetic-stress-heat coupled problem of the QPR under uncertainties												
→	3.2	Analysis of the existing QPR design to understand the detuning mechanism and microphonics												
	3.3	Stochastic MO (parametric) design optimization of the QPR under coupling												
	3.4	Topology optimization of the pole shoes for a homogeneous penetration of the sample												

	Nr.	Zieldatum (Quartal/Jahr)	Beschreibung der Meilensteine von AP 3	
	1	I / 2022	Modeling of the electromagnetic-stress-heat coupled problem of the QPR under uncertainties	1 st interim report: IV. 22
۲	2	IV / 2022	Analysis of the existing QPR design to understand the detuning mechanism and microphonics	2 nd interim report: IV. 23
	3	III / 2023	Stochastic MO (parametric) design optimization of the QPR under coupling	
	4	II / 2024	Topology optimization of the pole shoes for homogeneous penetration of the sample	

Electro-Stress-Thermal (E-S-T) Shape Optimization A fast model with sufficiently good accuracy

- CST Studio Suite[®]: unidirectional stochastic coupled (E-S-T) problem in steady state
- Static Lorentz force: scaled by a factor to mimic dynamic Lorenz force based on simulation in time domain in COMSOL[®]
- Trade-off between computational time & accuracy due to the Pareto-front framework
- Due to the multi-objective steepest descent method: shape derivative of mean & variance for all the merit functions incl. max. temperature

Illustration of the CERN-QPR [MCCHT03, J12]

Reliable & predictable simulations of QPRs

Uncertainty Quantification (UQ) studies of QPR:

- Material and geometric imperfections
- QPR model in steady state incl. broken symmetry of rods
- Local and global sensitivity without any additional effort

Exact methods to compute shape derivative not implemented in CST Studio®:

- Slater formula for only shift of frequency
- Lack of discrete/continuum design sensitivity analysis (DSA)
- Lack of inhomogeneous boundary conditions in Maxwell's eigenvalue problem formulation or access to mass and stiffness matrices

UQ-based worst-case analysis for multi-physics simulations of QPRs

Algorithmic complexity for shape derivatives of N objectives:

- Discrete/continuous DSA: $2 \cdot (N + 1) \cdot Q$ compared to developed method: $2 \cdot Q$ with Q denoted parameters number

Timeline of ATTAVANTI subproject

Problems & motivation

Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problem

UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Traditio et Innovatio

Parametrized model of QPRs

A three-dimensional model (3D)

Name (mm)	CERN	HZB	SolA	SolA	stdDev
p1(gap)	0.70	0.5	0.58	0.55	0.05
p2(rrods)	15.00	13.0	9.76	9.14	0.05
p ₃ (hloop)	10.00	10.0	9.72	9.64	0.05
p₄(rloop)	8.00	5.0	5.92	5.56	0.05
p ₅ (wloop)	40.93	44.0	43.79	43.79	0.05
p ₆ (dloop)	5.00	6.0	4.0	4.0	0.05
p7(rcoil)	23.00	22.40	25.00	25.00	0.05
p ₈ (rsample)	37.50	37.5	35.00	35.00	0.05
p ₉ (aBentRight)	0	0	0	0	0.25
p10(aBentLeft)	0	0	0	0	0.25

$$R_{\rm S}(\mathbf{p}) \doteq \frac{2\left[P_{\rm DC1}(\mathbf{p}) - P_{\rm DC2}(\mathbf{p})\right]}{\int_{\Omega_{\rm S}} \|\mathbf{H}(\mathbf{p})\|^2 \, \mathrm{d}\mathbf{x}} \tag{1}$$

where p : geometrical parameters, $P_{\rm DC1}$ & $P_{\rm DC2}$: heater power at equilibrium for $T_{\rm int}$ and reduced heater power $P_{\rm DC2}$ after switching on RF antenna, H : magnetic field

Traditio et Innovatio

Target values for functioning QPR Basic functions of merit: $m = 1, ..., 3; k = 1, ..., 6; p = (p_1, ..., p_0)$ - Operating frequencies [GHz] : $y_{1,1}(\mathbf{p}) = 0.429 \,[\text{GHz}], \quad y_{1,2}(\mathbf{p}) = 0.866 \,[\text{GHz}], \quad y_{1,3}(\mathbf{p}) = 1.3 \,[\text{GHz}],$ - Focusing factor [A²/J] : - Homogeneity factor [1/1] : $y_{2,m}(\mathbf{H};\mathbf{p}) \doteq \frac{1}{2U} \int_{\Omega_{\mathrm{S}}} \|\mathbf{H}\|^2 \,\mathrm{dx}, \qquad y_{3,m}(\mathbf{H};\mathbf{p}) \doteq \frac{\int_{\Omega_{\mathrm{S}}} \|\mathbf{H}\|^2 \,\mathrm{dx}}{|\Omega_{\mathrm{S}}| \max_{\mathbf{y} \in \Omega_{-}} (\|\mathbf{H}\|^2)},$ - Risk of field emission [mT/(MV/m)]: Operating range [1/1] : $y_{5,m}(\mathbf{H};\mathbf{p}) \doteq \frac{\max_{\mathbf{x} \in \Omega_{\mathrm{S}}} (\|\mathbf{H}\|)}{\max_{\mathbf{x} \in \Omega_{\mathrm{S}}} (\|\mathbf{H}\|)}, \qquad \qquad y_{6,m}(\mathbf{H};\mathbf{p}) \doteq \frac{\mu_{\mathbf{0}} \max(\|\mathbf{H}\|)}{\max_{\mathbf{x} \in \Omega_{\mathrm{S}}} (\|\mathbf{E}\|)},$ Dimensionless factor (to study meas. bias) [1/1] : $y_{4,m}(\mathbf{H};\mathbf{p}) \doteq \frac{\int_{\Omega_{\mathrm{S}}} \|\mathbf{H}\|^2 \,\mathrm{dx}}{\int_{\Omega_{\mathrm{C}}} \|\mathbf{H}\|^2 \,\mathrm{dx}},$

where **E**: electric field, Ω_S : surface of sample, Ω_R : domain of rods, Ω_F : domain of flange

Unidirectional Stochastic E-S-T coupled problem A full three-dimensional model (3D):

 $=: \sigma(\theta)$

$$\nabla \times \nabla \times \mathsf{E}(\theta) - \omega^{2}(\theta) \,\mu(\theta) \,\epsilon(\theta) \mathsf{E}(\theta) = 0, \qquad \qquad \text{in } D_{c} \qquad (2a)$$

$$\nabla \cdot \underbrace{\left(\eta(\theta)(\nabla \mathsf{u}(\theta) + \nabla \mathsf{u}(\theta)^{\top}) + \lambda(\theta) \mathsf{I} \nabla \cdot \mathsf{u}(\theta)\right)}_{= 0, \qquad \text{in } D_{\mathrm{w}} \qquad (2b)$$

$$abla \cdot \kappa(\theta) \nabla T(\theta) + \gamma(\theta) |\mathsf{E}(\theta)|^2 = 0,$$
 in D_{w} (2c)

with radiation pressure $t(\theta)$ defined as: (2d)

$$\sigma(\theta) \cdot \mathbf{n}_{w} = \underbrace{\frac{1}{4} \left(\epsilon |\mathsf{E}(\theta)|^{2} + \frac{1}{\omega^{2}\mu} |\nabla \times \mathsf{E}(\theta)|^{2} \right)}_{=:t(\theta)} \cdot \mathbf{n}_{w}, \qquad \text{on } \partial D_{cw} \qquad (2d)$$

for $\theta = (x, f, p) \in D \times \mathcal{F} \times \Pi$, $\partial D = \partial D_D \cup \partial D_N$, $p = (p_1, \dots, p_Q) \in \Pi \subset \mathbb{R}^Q$, with $D \in \mathbb{R}^3$: computational domain, $\mathcal{F} \in \mathbb{R}$: frequency range, Π : parameter domain, γ : electric conductivity, μ : magnetic permeability, ϵ : electric permittivity, ω : angular frequency η, λ : Lamé coefficients, σ : stress tensor, κ : thermal conductivity, **u**: displacement, \mathcal{T} : temp.,

Discretization : finite element method (tetrahedral mesh, piecewise linear functions (*hp*))

Timeline of ATTAVANTI subproject

Problems & motivation

Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problen

UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Influence of shape variations by Taylor expansion Truncated polynomial chaos (PC) response surface model

Stochastic variables (Ω, Σ, μ) : $\mathbf{p}(\xi) = (p_1(\xi), \dots, p_Q(\xi)), \mathbf{p} : \Omega \to \Pi,$ independent, Gaussian, uniform, beta, etc.

PC expansion: a finite second moment of y_n , [f_0 , ..., f_{end}]:

$$y_n(\mathbf{x}, f; \mathbf{p}) \doteq \sum_{i=0}^{P} \alpha_i(\mathbf{x}, f) \Phi_i(\mathbf{p}), \quad n = 1, \dots, N$$
(3)

Shape derivative approximation (assuming a joint PDF ρ exists):

$$\mathbb{E}\left[\frac{\partial y_n}{\partial p_q}\right] \doteq \sum_i \left(\alpha_i \int \frac{\partial \Phi_i(\mathbf{p})}{\partial p_q} \rho d\mathbf{p}\right), \quad n = 1, \dots, N$$
(4)

First-order Taylor expansion:

$$y_n(\delta \overline{\mathbf{p}} + \overline{\mathbf{p}}) \doteq y_n(\overline{\mathbf{p}}) + \sum_q \frac{\partial y_n}{\partial \overline{p_q}} \cdot \delta \overline{p_q} + \mathcal{O}(|\delta \overline{\mathbf{p}}|^2),$$
(5)

with worst-case scenario: $\delta \overline{\mathbf{p}} \doteq \max_{\mathbf{x} \in D_R} |\mathbf{u}(\mathbf{x})|$

Variance-based sensitivity analysis

Main Sobol indices : $0 \le S_j \le 1$ with lower and upper bounds

$$S_j = \frac{\mathsf{V}_j}{\mathsf{Var}(f)} \quad \text{with} \quad \mathsf{V}_j := \sum_{i \in I_j} |v_i|^2, \quad j = 1, \dots, Q, \tag{6}$$

 $I_j: \text{sets } I_j:=\{j\in\mathbb{N}: \phi_j(\mathsf{p}) \text{ is not constant in } p_j\}, \mathsf{Var}(f): \text{the total variance}$

Traditio et Innovatio

Create Parameter Variations

Generate Input File

Create Output File

matlab

UQ-based worst-case algorithm Flow of algorithm in the pseudo-code

Algorithm for UQ

Timeline of ATTAVANTI subproject

Problems & motivation

Stochastic modeling of coupled problem Parametrized QPR model Unidirectional Stochastic Coupled Problem

UQ-based worst-case analysis for multi-physics QPR simulations Influence of shape variations by Taylor expansion UQ-based worst-case method

Preliminary results & Conclusions

Proof-of-concept example Results for PDFs of merit-function due to QPR deformation

Rostock

Parameters of stochastic simulation Variations of geometrical parameters:

 \rightarrow Modeled by Gaussian distribution, Q = 8

Random variations of parameters:

$$\begin{array}{ll} \longrightarrow \mathsf{gap:} & p_1 = \overline{p}_1(1 + \delta_1\xi_1), \\ \longrightarrow \mathsf{rrods:} & p_2 = \overline{p}_2(1 + \delta_2\xi_2), \\ \longrightarrow \mathsf{hloop:} & p_3 = \overline{p}_3(1 + \delta_3\xi_3), \\ \longrightarrow \mathsf{rloop:} & p_4 = \overline{p}_4(1 + \delta_4\xi_4), \end{array} \begin{array}{ll} \mathsf{wloop:} & p_5 = \overline{p}_5(1 + \delta_5\xi_5) \\ \mathsf{dloop:} & p_6 = \overline{p}_6(1 + \delta_6\xi_6) \\ \mathsf{rcoil:} & p_7 = \overline{p}_7(1 + \delta_7\xi_7) \\ \mathsf{rsample:} & p_8 = \overline{p}_8(1 + \delta_{\mathrm{e8}}\xi_8) \end{array}$$

- Independent normal random variables: $\xi_1, \xi_2, \xi_3, \xi_4, \xi_5; \xi_6, \xi_7, \xi_8$
- Magnitude of perturbations : $\sigma_i := \delta_i \cdot \overline{p}_i = 0.05 \text{ [mm]}, i = 1 \dots, Q$
- HZB-QPR: $\overline{\mathbf{p}} = (0.5, 13.0, 10.0, 5.0, 44.0, 6.0, 22.40, 37.50)$ [mm]

Lorenz force, air pressure & resulting displacement Assuming: Ibar pressure, $\iota = 10$, and k = 3

- $\ \overline{\mathbf{p}}^{k=\mathbf{3}} = (0.527, 13.06, 9.93, 4.97, 44.065, 5.973, 22.38, 37.56) [mm]$
- Worst-case scenario: for $\iota = 10$, max[$|(u_{ap} + \iota \cdot u_{rp})/2|$] = 0.1054505 [mm]

Statistical moments & variance-based decomposition Means of merit-function:

Name	$\mathbb{E}[f_0(\mathbf{p})]$	$\mathbb{E}[f_1(\mathbf{p})]$	$\mathbb{E}[f_2(\mathbf{p})]$	E[f ₃ (p)]	$\mathbb{E}[f_4(\mathbf{p})]$	$\mathbb{E}[f_5(\mathbf{p})]$	
Unit	[GHz]	[MA ² / J]	[1/1]	[M1/1]	[1/1]	[mT/(V/m)]	
Initial design	1.308	43.006	0.12	0.712	0.932	5.377	
Perturbed design	1.320	46.99	0.1293	0.720	0.9124	5.027	
Change: $\triangle f_n(\mathbf{p})$	0.008139	-5.429	0.001946	-0.04691	-0.0214	0.11	
Change: $\delta f_n(\mathbf{p})(\%)$	0.62 ↑	10.0 ↓	1.53 ↑	6.11 ↓	2.29 ↓	2.56 ↑	

Results for PDFs of merit-function changes: Estimated change of operating frequency & focusing factor

Results for PDFs of merit-function changes: Estimated change of homogeneity & dimensionless factors

Results for PDFs of merit-function changes: Estimated change of operating range & risk of field emission

Conclusions and further research

Advantages:

Rostock

- \rightarrow Efficient approximation of shape derivatives
- \longrightarrow With upper bounds as $\delta \overline{p} := \max_{\substack{x \in D_R \\ x \in D_R}} |u(x)|$ due to scaled Lorentz force and pressure of 1bar
- \rightarrow Algorithmic complexity: 2 \cdot Q, Q no. of parameters
- \longrightarrow Good for multi-physics & -objective optimization

Disadvantages:

- \rightarrow Only the worst-case scenario (upper bounds)
- \rightarrow Well approximation of shape derivatives (verified)

Further research directions :

Traditio et Innovatio

Thank you for your attention

2. Dec. 2022 © 2022 UNIVERSITÄT ROSTOCK I FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING

References

- MCCHT03 New instrument to measure the surface resistance of superconducting samples at 400-MHz," *Rev.Sci.Instrum.* 74, 3390–3394, 2003
 - J12 Investigation of the surface resistance of superconducting materials, Ph.D. thesis, University of Heidelberg, 2012
 - K17 R. Kleindienst, Radio Frequency Characterization of Superconductors for Particle Accelerators, Ph.D. thesis, University of Siegen, 2017
 - ABG05 Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the international linear collider, *J. Phys. Conf. Ser.*, 16, 2005
 - FS00 Steepest descent methods for multicriteria optimization, Math. Method. Oper. Res. 51, 2000
 - LR A multiobjective steepest descent method with applications to optimal well control, *Comput. Geosci.* 20, 2016
 - PGZWvR Multiobjective design optimization of a quadrupole resonator under uncertainties, *Phys. Rev. Accel. Beams*, 25, 2022
 - S08 Global sensitivity analysis using polynomial chaos expansion, *Reliab.Eng.Syst.Safe.*, 93, 964–979, 2008