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Electro-Stress-Thermal (E-S-T) Shape Optimization
A fast model with sufficiently good accuracy

– CST Studio Suite®: unidirectional stochastic coupled (E-S-T) problem in steady state

– Static Lorentz force: scaled by a factor to mimic dynamic Lorenz force based on simulation
in time domain in COMSOL®

– Trade-off between computational time & accuracy due to the Pareto-front framework

– Due to the multi-objective steepest descent method: shape derivative of mean & variance
for all the merit functions incl. max. temperature

Illustration of the CERN-QPR [MCCHT03, J12]
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Reliable & predictable simulations of QPRs
Uncertainty Quantification (UQ) studies of QPR:

– Material and geometric imperfections

– QPR model in steady state incl. broken symmetry of rods

– Local and global sensitivity without any additional effort

Exact methods to compute shape derivative not implemented in CST Studio®:
– Slater formula for only shift of frequency

– Lack of discrete/continuum design sensitivity analysis (DSA)

– Lack of inhomogeneous boundary conditions in Maxwell’s eigenvalue problem formulation
or access to mass and stiffness matrices

UQ-based worst-case analysis for multi-physics simulations of QPRs

Algorithmic complexity for shape derivatives of N objectives:
– Discrete/continuous DSA: 2 · (N + 1) · Q compared to developed method: 2 · Q

with Q denoted parameters number
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Parametrized model of QPRs
A three-dimensional model (3D)
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RS(p)
.
=

2 [PDC1(p) − PDC2(p)]∫
ΩS

∥H(p)∥2 dx
(1)

where p : geometrical parameters, PDC1 & PDC2 : heater power at equilibrium for Tint and

reduced heater power PDC2 after switching on RF antenna, H : magnetic field
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Target values for functioning QPR
Basic functions of merit: m = 1, . . . , 3; k = 1, . . . , 6; p = (p1, . . . , pQ)

– Operating frequencies [GHz] :

y1,1(p) = 0.429 [GHz], y1,2(p) = 0.866 [GHz], y1,3(p) = 1.3 [GHz],

– Focusing factor [A2/J] : – Homogeneity factor [1/1] :

y2,m(H; p) .
=

1
2U

∫
ΩS

∥ H∥2 dx, y3,m(H; p) .
=

∫
ΩS

∥H∥2 dx

|ΩS| max
x∈ΩS

(∥H∥2)
,

– Operating range [1/1] : – Risk of field emission [mT/(MV/m)] :

y5,m(H; p) .
=

max
x∈ΩS

(∥H∥)

max
x∈ΩR

(∥H∥)
, y6,m(H; p) .

=

µ0 max
x∈ΩS

(∥H∥)

max
x∈ΩR

(∥E∥)
,

– Dimensionless factor (to study meas. bias) [1/1] :

y4,m(H; p) .
=

∫
ΩS

∥H∥2 dx∫
ΩF

∥H∥2 dx
,

where E: electric field, ΩS: surface of sample, ΩR: domain of rods, ΩF: domain of flange
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Unidirectional Stochastic E-S-T coupled problem
A full three-dimensional model (3D):

∇ × ∇ × E(θ) − ω
2(θ)µ(θ) ϵ(θ)E(θ) = 0, in Dc (2a)

∇ ·
(
η(θ)(∇u(θ) + ∇u(θ)⊤) + λ(θ)I∇ · u(θ)

)
︸ ︷︷ ︸

=:σ(θ)

= 0, in Dw (2b)

∇ · κ(θ)∇T (θ) + γ(θ)|E(θ)|2 = 0, in Dw (2c)

with radiation pressure t(θ) defined as: (2d)

σ(θ) · nw =
1
4

(
ϵ|E(θ)|2 +

1
ω2µ

|∇ × E(θ)|2
)

︸ ︷︷ ︸
=:t(θ)

· nw, on ∂Dcw (2d)

for θ = (x, f , p) ∈ D × F × Π, ∂D = ∂DD ∪ ∂DN, p = (p1, . . . , pQ ) ∈ Π ⊂ RQ ,
with D ∈ R3: computational domain, F ∈ R: frequency range, Π: parameter domain,
γ: electric conductivity, µ: magnetic permeability, ϵ: electric permittivity, ω: angular frequency
η,λ: Lamé coefficients, σ: stress tensor, κ: thermal conductivity, u: displacement, T : temp.,

Discretization : finite element method (tetrahedral mesh, piecewise linear functions (hp))
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Influence of shape variations by Taylor expansion
Truncated polynomial chaos (PC) response surface model

Stochastic variables (Ω,Σ, µ): p(ξ) = (p1(ξ), . . . , pQ(ξ)) , p : Ω → Π,
independent, Gaussian, uniform, beta, etc.

PC expansion: a finite second moment of yn, [f0, . . . , fend]:

yn(x, f ; p)
.
=

P∑
i=0

αi (x, f )Φi (p) , n = 1, . . . ,N (3)

Shape derivative approximation (assuming a joint PDF ρ exists):

E
[
∂yn

∂pq

]
.
=

∑
i

(
αi

∫
∂Φi (p)
∂pq

ρdp

)
, n = 1, . . . ,N (4)

First-order Taylor expansion:

yn(δp + p)
.
= yn(p) +

∑
q

∂yn

∂pq
· δpq +O(|δp|2), (5)

with worst-case scenario: δp
.
= max

x∈DR

|u(x)|
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Variance-based sensitivity analysis
Main Sobol indices : 0 ≤ Sj ≤ 1 with lower and upper bounds

Sj =
Vj

Var(f )
with Vj :=

∑
i∈Ij

|vi |2, j = 1, . . . ,Q, (6)

Ij : sets Ij := {j ∈ N : ϕj (p) is not constant in pj},Var(f ): the total variance
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UQ-based worst-case algorithm
Flow of algorithm in the pseudo-code Algorithm for UQ
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Parameters of stochastic simulation
Variations of geometrical parameters:

−→ Modeled by Gaussian distribution, Q = 8

Random variations of parameters:

−→ gap: p1 = p1(1 + δ1ξ1), wloop: p5 = p5(1 + δ5ξ5)
−→ rrods: p2 = p2(1 + δ2ξ2), dloop: p6 = p6(1 + δ6ξ6)
−→ hloop: p3 = p3(1 + δ3ξ3), rcoil : p7 = p7(1 + δ72ξ7)
−→ rloop: p4 = p4(1 + δ4ξ4), rsample: p8 = p8(1 + δe8ξ8)

• Independent normal random variables: ξ1, ξ2, ξ3, ξ4, ξ5; ξ6, ξ7, ξ8

• Magnitude of perturbations : σi := δi · pi = 0.05 [mm], i = 1 . . . ,Q

• HZB-QPR: p = (0.5, 13.0, 10.0, 5.0, 44.0, 6.0, 22.40, 37.50)[mm]
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Lorenz force, air pressure & resulting displacement
Assuming: 1bar pressure, ι = 10, and k = 3

– pk=3 = (0.527, 13.06, 9.93, 4.97, 44.065, 5.973, 22.38, 37.56)[mm]

– Worst-case scenario: for ι = 10, max[|(uap + ι · urp)/2|] = 0.1054505 [mm]
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Statistical moments & variance-based decomposition
Means of merit-function:

Name E[f0(p)] E[f1(p)] E[f2(p)] E[f3(p)] E[f4(p)] E[f5(p)]
Unit [GHz] [MA2/J] [1/1] [M1/1] [1/1] [mT/(V/m)]
Initial design 1.308 43.006 0.12 0.712 0.932 5.377
Perturbed design 1.320 46.99 0.1293 0.720 0.9124 5.027
Change: △fn(p) 0.008139 -5.429 0.001946 -0.04691 -0.0214 0.11
Change: δfn(p)(%) 0.62 ↑ 10.0 ↓ 1.53 ↑ 6.11 ↓ 2.29 ↓ 2.56 ↑
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Results for PDFs of merit-function changes:
Estimated change of operating frequency & focusing factor
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Results for PDFs of merit-function changes:
Estimated change of homogeneity & dimensionless factors
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Results for PDFs of merit-function changes:
Estimated change of operating range & risk of field emission
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Conclusions and further research
Advantages:

−→ Reliable simulation for QPRs considering deformation
−→ Efficient approximation of shape derivatives
−→ With upper bounds as δp := max

x∈DR

|u(x)|
due to scaled Lorentz force and pressure of 1bar

−→ Algorithmic complexity: 2 · Q, Q - no. of paramters
−→ Good for multi-physics & -objective optimization

Disadvantages:

−→ Only the worst-case scenario (upper bounds)
−→ Well approximation of shape derivatives (verified)
−→ Results of frequency shift can be verified

Further research directions :

−→ Robust, multi-physics and multi-objective optimization
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Thank you for your attention
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