
EDM4hep and PODIO
Introduction and Overview

This project has received funding from the
European Union’s Horizon 2020 Research and
Innovation programme under grant agree-
ment No 101004761.

Thomas Madlener

LUXE Computing & DAQ meeting
Nov 09, 2022

The EDM at the core of HEP software

• Different components of HEP experiment software have to talk to each other
• The event data model defines the language for this communication
• Users express their ideas in the same language

Nov 09, 2022 T.Madlener | EDM4hep and podio 1

EDM4hep - Goals & Motivation

• The Key4hep project aims to develop a common software stack for all future
collider projects

• ILC, CLIC, FCC-ee & FCC-hh, CEPC, EIC, ...

• EDM4hep is the shared, common EDM that can be used by all communities in
the Key4hep project (and others)

• EDM4hep has to uspport different use cases from these communities
• Efficiently implemented, support for multi-threading and with usage on
heterogeneous resources in mind

• Built on experience from the “past” - mainly LCIO, which has been
successfully shared by the LC communities

Nov 09, 2022 T.Madlener | EDM4hep and podio 2

EDM4hep schema

Nov 09, 2022 T.Madlener | EDM4hep and podio 3

podio as generator for EDM4hep

• Traditionally HEP c++ EDMs are heavily
Object Oriented

• Use podio to generate thread safe code
starting from a high level description

• Provide an easy to use interface to the
users

.cc
.cc

class MCParticleData{
 int PDG;
 float charge;
 double mass;
 Vector3d vertex;
};

.h/.cc

MCParticle:
 Members:
 - int PDG
 - float charge
 - double mass
 - Vector3d vertex

YAML

(*podio code
generator) +=

AIDASoft/podio

Nov 09, 2022 T.Madlener | EDM4hep and podio 4

https://github.com/AIDASoft/podio

The three layers of podio

• podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible

• Layered design allows for efficient memory layout and performant I/O
implementation

Nov 09, 2022 T.Madlener | EDM4hep and podio 5

podio - datamodel definition
components:

edm4hep::Vector3f:
Members: [float x, float y, float z]

datatypes:
edm4hep::ReconstructedParticle:

Description: "Reconstructed Particle"
Author : "F.Gaede, DESY"
Members:

- edm4hep::Vector3f momentum // [GeV] particle momentum
- std::array<float, 10> covMatrix // energy-momentum covariance

OneToOneRelations:
- edm4hep::Vertex startVertex // start vertex associated to this particle

OneToManyRelations:
- edm4hep::Cluster clusters // clusters that have been used for this particle
- edm4hep::ReconstructedParticle particles // associated particles

ExtraCode:
declaration: "bool isCompund() const { return particles_size() > 0; }\n"

edm4hep::ParticleID:
VectorMembers:

- float parameters // hypothesis params

• Reusable components
• Fixed sized arrays as members
• VectorMembers for variable sized array members

• 1 – 1 and 1 – N relations
• Additional user-provided code

Nov 09, 2022 T.Madlener | EDM4hep and podio 6

*extracted from edm4hep.yaml

https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml

podio - features of generated code

Nov 09, 2022 T.Madlener | EDM4hep and podio 7

auto recos = ReconstructedParticleCollection();
// ... fill ...
for (auto reco : recos) {
auto vtx = reco.getStartVertex();
for (auto rp : reco.getParticles()) {
auto mom = rp.getMomentum();

}
}

← c++17 code with “value semantics”

↓ Python bindings via PyROOT
recos = ReconstructedParticleCollection()
#... fill ...
for reco in recos:
vtx = reco.getStartVertex()
for rp in reco.getParticles():

mom = rp.getMomentum()

d = ROOT.RDataFrame('events', 'events.root')
h = (d.Define('abs_pdg', 'abs(Particle.PDG)')

.Define('mu_sel', 'abs_pdg == 13')

.Define('mu_px',
'Particle.momentum.x[mu_sel]')

.Histo1D('mu_px'))
h.DrawCopy()

← Using RDataFrame to read ROOT
files (uproot also possible)

podio supports different I/O backends

• Default ROOT backend
• POD buffers are stored as
branches in a TTree

• Files can be interpreted without
EDM library(!)

• Can be used in RDataFrame or
with uproot

• Alternative SIO backend
• Persistency library used in LCIO
• Complete events are stored as
binary records

• Adding more I/O backends is
possible

Nov 09, 2022 T.Madlener | EDM4hep and podio 8

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O
Backend

POD buffers

CMake interface for projects using podio

Nov 09, 2022 T.Madlener | EDM4hep and podio 9

find_package(PODIO)

generate the c++ code from the yaml definition
PODIO_GENERATE_DATAMODEL(edm4hep edm4hep.yaml headers sources IO_BACKEND_HANDLERS "ROOT;SIO")
compile the core data model shared library (no I/O)
PODIO_ADD_DATAMODEL_CORE_LIB(edm4hep "${headers}" "${sources}")
generate and compile the ROOT I/O dictionary
PODIO_ADD_ROOT_IO_DICT(edm4hepDict edm4hep "${headers}" src/selection.xml)
compile the SIOBlocks shared library for the SIO backend
PODIO_ADD_SIO_IO_BLOCKS(edm4hep "${headers}" "${sources}")

Install the created targets
install(TARGETS edm4hep edm4hepDict edm4hepSioBlocks)

• Easy to use functions for integrating a podio generated EDM into a project
• Split into core EDM library and I/O handling for different backends

• Pick what you need
• I/O handling parts dynamically loaded by podio on startup

The Frame - A generalized (event) data container

• Container aggregating all relevant data
• Defines an interval of validity /
category for contained data

• Event, Run, readout frame, ...
• Easy to use and thread safe interface
for data access

• Immuatable read access only
• Ownership model reflected in API

• Decouples I/O from operating on the
data

Nov 09, 2022 T.Madlener | EDM4hep and podio 10

Prototyping of new datatypes

• podio comes with a mechanism to
extend existing (“upstream”)
datamodels

• EDM4hep uses this for prototyping
new datatypes

• Have to avoid to fracture EDM4hep
• Goal is always inclusion into
EDM4hep

• Used in Key4hep for some detector
prototyping

• Room for more detector concepts in
EDM4hep!

Nov 09, 2022 T.Madlener | EDM4hep and podio 11

Ongoing work & Future plans

• Release v1.0 with backwards compatibility from then on
• Need to finish schema evolution work first

• Propagate Frame based I/O to all currently existing “customers”
• Framework integration, ddsim (DD4hep) output, ...

• Implement currently missing features
• E.g. User defined associations between arbitrary types
• Interface types that allow for easier high level workflows (e.g. tracker hits for
different technologies)

• Start exploring work on heterogeneous resources

Nov 09, 2022 T.Madlener | EDM4hep and podio 12

Summary

• EDM4hep is the shared, common EDM for the Key4hep project
• Community effort is a success

• It is generated via the podio EDM toolkit
• Efficient implementation of data types and flexible I/O capabilities
• podio extension mechanism can be used to add new data types
• EDM4hep is open for new data types for not yet covered detector types

Nov 09, 2022 T.Madlener | EDM4hep and podio 13

Pointers to software (re)sources

• EDM4hep
key4hep/EDM4hep

cern.ch/edm4hep
• podio

AIDASoft/podio
• Biweekly meetings for
podio/EDM4hep discussion

• indico.cern.ch/category/11461/ xkcd.com/138

Nov 09, 2022 T.Madlener | EDM4hep and podio 14

https://github.com/key4hep/EDM4hep
https://key4hep.github.io/EDM4hep/doc/latest/index.html
https://github.com/AIDASoft/podio
https://indico.cern.ch/category/11461/
https://xkcd.com/138/

Nov 09, 2022 T.Madlener | EDM4hep and podio 14

Supplementary
Material

Frame I/O and multithreading model

• Readers provide data for a complete Frame in (almost) arbitrary format
• Assume that there is only one thread per file (i.e. Reader/Writer)

Frame

FrameDataT
ROOTFrameDataROOTReader provides

SIOFrameDataSIOReader provides Frame

FrameDataT

construct from

construct from

single threaded potentially multithreaded

• Reading raw data and constructing a
frame from it is a two step process

• Makes it possible to do unpacking on a
different thread than the one that reads

• Writing can happen with multiple threads, e.g. each
writer on its own thread

• Writers can write different contents, e.g. SIM & RECO
into separate files

• Need one writer “per content”

Frame

ROOTWriter

SIOWriter

re
ques

ts

buffe
rs

fro
m

requests

buffers from

potentially multihreaded

Nov 09, 2022 T.Madlener | EDM4hep and podio 1

LCIO vs EDM4hep
LCIO EDM4hep

EDM4hep DataModel Overview (v0.4)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

MCRecoCaloParticleAssociation

• Since EDM4hep is based on LCIO the high-level structure is very similar
• Largest differences between the two are due to their implementations
• LCIO has over 15 years of usage. A lot of time to develop tools for it.

• Not nearly as far with EDM4hep

Nov 09, 2022 T.Madlener | EDM4hep and podio 2

Interface types

• LCIO uses “classic” polymorphism
• Common LCObject base type for
all data types

• Impl classes offer the mutable
interface

• This is used in some places to add
some structure to data types

• E.g. TrackerHit has various
implementations different
detector technologies

• Not solved for podio (and EDM4hep)

Nov 09, 2022 T.Madlener | EDM4hep and podio 3

	Appendix

