# **Passive CMOS Strip Sensors**



Naomi Davis November 8<sup>th</sup>



HELMHOLTZ

# **Motivation**

The need for alternative silicon sensor designs

### The current status:

- Silicon sensors as the main tracking device in HEP
- Demand to cover ever-larger area (sensors as the main cost-driver)
- Current technology only available from few foundries

### Passive CMOS technology:

- Simplified CMOS process without active elements
  - Fast, large-scale production
  - Possible cost reduction
  - Wafer-scale industrial production (wafer size  $\geq$  200mm)
  - Many technology nodes to choose from
  - Designs are easy to port if e.g. company stops producing





# **Sensor Design**

## Stitched passive strip sensors on an 8" wafer

#### Specs

- LFoundry: 150nm process
- High resistivity wafer: 3-5 kΩcm
- Strip pitch: 75.5 um
- Designs: Regular and Low dose 30um/55um

#### Stitching

- Connect neighbouring reticles to obtain larger sensor
- Masks up to 1cm<sup>2</sup>: Long strips (4.1 cm) & Short strips (2.1 cm)

#### **Sensor Studies**

- Irradiation of sensors, TB measurements
- Edge TCT
- Lab tests with Sr-90 source
  - Charge collection at stitched areas (stitching successful!)

## Next Up: Submission of new sensor design

|   | REGULAR IMPLANT<br>40 strips       |
|---|------------------------------------|
| Ĩ | Low dose implant 55 µm (20 strips) |
|   | Low dose implant 30 µm (20 strips) |





# Thank you.