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Abstract

Lecture notes on quantum mechanics: precision tests of Bell’s inequalities.

i



Contents

Contents ii

1 Precision tests of Bell’s inequalities 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Clauser’s proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Aspect’s group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Zeilinger’s group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Bell’s theorem with inequalities . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Bell’s theorem without inequalities . . . . . . . . . . . . . . . . . . . . . . 4

Bibliography 8

ii



Chapter 1

Precision tests of Bell’s inequalities

1.1 Overview

Bell’s inequalities test possibility of a replacement of quantum mechanics (QM) by classical
theories where the probabilistic nature of the QM is reproduced by statistical average over certain
hidden classical variables λ. This was inspired by the famous Einstein, Podolsky, Rosen (EPR)
paper [1] where they argued that either

1. the QM description of reality given by the wave function is not complete, or

2. when operators corresponding to two physical quantities that do not commute, the two
properties described by them cannot have simultaneous reality.

While the second does hold true in QM, EPR argued that if local realism was to be taken seriously,
independent measurements on entangled particles at space-like separations can indeed imply a
simultaneous reality of two non-commuting observables. The only way out of this paradox was to
treat even space-like separated particles (or the wavefunction thereof) as one entity, such that a
measurement of properties of one immediately affects that of the other, such that simultaneous
measurement of two noncommuting observables on either of the particles is no longer permitted.

John S. Bell in 1964 pointed out [2] that all attempts to construct local, realist model of
quantum phenomena must lead to statistical correlations that are distinctly different from those
predicted by quantum mechanics. Such (hidden variable)theories were shown by Bell to satisfy
inequalities constructed out of specific measurements, that QM necessarily will violate in certain
situations. Bell considered the gedankenexperiment of Bohm [3] where a pair of entangled spins
measured in different directions, each of which take discrete values ±1 (such as electron spin in
unites of ~/2) ∣∣∣〈(s1 · â)(s2 · b̂)〉− 〈(s1 · â)(s2 · ĉ)〉∣∣∣ ≤ ~2

2
+
〈
(s1 · b̂)(s2 · ĉ)

〉
. (1.1)

This inequality is violated by QM for certain directions and hence provides a pathway for
definitively testing validity of QM.

1.2 Clauser’s proposal

In practice, however, it is challenging to consider correlated spins. Instead a more reasonable
option is to consider correlated photon emissions. The first definitive step in this direction was
taken by Clauser, Horne, Shimony and Holt (CHSH) [4]. The considered correlations between
the polarizations of the photons in four directions â, â′, b̂, b̂′ and considered the quantity:〈

S1(â)S2(b̂)
〉
−
〈
S1(â)S2(b̂

′)
〉
+
〈
S1(â

′)S2(b̂)
〉
+
〈
S1(â)S2(b̂

′)
〉
. (1.2)

Here S1(â) corresponds to measurement of (linear) polarization of photon-1 in the direction â. If
the photon is found polarized in the direction (orthogonal to) â then S1(â) = +1(−1). Likewise
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Figure 2. The source S produces pairs of entangled photons, sent in opposite directions. Each 
photon encounters a two-channel polarizer whose orientation can be set by the Alice  and Bob . 
Emerging  signals  from  each  channel  are  detected  by  single  photon  detector  D+  and D- and 
coincidences counted   by the coincidence unit. The   correlation     𝐸𝐸(𝑎𝑎, 𝑏𝑏) =  (𝑁𝑁++-  𝑁𝑁+−  - 𝑁𝑁−+ + 
𝑁𝑁−−)/(𝑁𝑁+++ 𝑁𝑁+− + 𝑁𝑁−+ + 𝑁𝑁−−)   where 𝑁𝑁++, 𝑁𝑁+−, 𝑁𝑁−+,  and 𝑁𝑁−− are  the number of  coincidence 
events  recorded corresponding to the simultaneous detection at  Alice’s  and  Bob’s detectors D+ 
and D+ , D+ and D-, D- and D+ , and D- and D- ,  respectively. 
 
 
 
We can now compare this result with what is predicted by quantum theory. If the pair is in the 
state |𝜓𝜓−〉 given in Eq. (3), it is straightforward to show that 𝐸𝐸(𝐴𝐴1,𝐵𝐵1) = −𝒂𝒂1 ⋅ 𝒃𝒃1, and the same 
holds true for the other combinations. It is now possible to see that one can choose the vectors so 

that 𝒂𝒂1 ⋅ 𝒃𝒃1 = 𝒂𝒂1 ⋅ 𝒃𝒃2 = 𝒂𝒂2 ⋅ 𝒃𝒃1 =
1
√2
, and thus 〈𝑆𝑆〉 = 2√2, which is in clear violation of the CHSH 

version of the Bell inequality (5). 
 

The Freedman-Clauser experiment 
 
The story might have stopped here. Some people said, ‘Well, this is really weird’, but dismissed 
that  thought  because  the  status  quo  already  held  that  quantum  mechanics  is  strange, 
Schrödinger’s cat is bizarre, and so on. And despite the bizarreness, it all seemed to work, so the 
inclination of the research community at the time was to just carry on using quantum mechanics 
to study new and exciting phenomena. 
 
Indeed, initially very few people took notice of Bell’s work. However, those few who did, worried. 
Could  it  be  that  quantum  mechanics  does  not  always  work?  What  about  performing  an 
experiment that  tests quantum mechanics  in one of  those situations where  it contradicts  local 
realism? These were clearly the questions behind the CHSH work, and one of the authors, Clauser, 
set out to perform the experiment, together with the now-deceased Freedman. 
 
Clauser  had  a  background  in molecular  astrophysics  from his  Ph.D.  thesis, working with  Pat 
Thaddeus as his advisor at Columbia University in the City of New York. As a Ph.D. student, he 
had acquired an interest in the foundations of quantum mechanics. Thus, when he arrived at the 
University  of  California,  Berkeley  (UC  Berkeley),  to  work  as  a  postdoctoral  researcher  with 
Charles Townes in 1970, Clauser was prepared: he knew that Carl Kocher had built experimental 
equipment as part of his Ph.D. thesis at UC Berkeley in 1967 to study the time correlation between 
pairs of photons originating from a common source [10].  
 

Figure 1.1 Schematic of the setup proposed by Clauser et al. (involving measurement only in single
channel) and later on improved by Aspect et al.. Taken from [5].

for photon-2. The directions a, â (b, b̂) correspond to two different choices for polarizer at the
first (second) detector. See Fig. 1.1.

In a hidden variable theory, we assume the photons to carry their spin all-along with them
during the flight, which is determined at their production at the source. Assuming such a
production involves certain “hidden-variables” λ with a probability distribution ρ(λ), the value of
the correlation above will be given by∫

dλ ρ(λ)
[
S1(â, λ)S2(b̂, λ)− S1(â, λ)S2(b̂′, λ) + S1(â

′, λ)S2(b̂, λ) + S1(â, λ)S2(b̂
′, λ)

]
. (1.3)

Since each particle in this theory carries a definite value of polarizations in any given direction,
we find that for any given λ the magnitude of the quantity in the brackets is at most +2, such
that the absolute value of the correlation in Eq. (1.2) is constrained to be less than 2. This is
because demanding the first three terms to be +1 constrains the last term to be −1. Hence, we
have ∣∣∣〈S1(â)S2(b̂)〉− 〈S1(â)S2(b̂′)〉+

〈
S1(â

′)S2(b̂)
〉
+
〈
S1(â

′)S2(b̂
′)
〉∣∣∣

cl
≤ 2 . (1.4)

Let us now derive the expectation in QM. In their experiment, CHSH considered double
photon emission between energy levels 61S0 and 41S0 of Calcium ions, such that the probability
is given by square of the amplitude

〈γγ(41S0)|(61S0)〉 (1.5)

Both the states have j = 0, such that the two photon state must be a scalar function of the
polarizations. The two possibilities are k̂ · (e1 × e2) or e1 · e2, where k̂ is the direction of the
photon. The matrix element must be even in parity due to the even parity states, such that
e1 · e2 is the only allowed possibility. The probability will involve squaring this amplitude, such
that probability for photon 1 polarized in direction â and the other in direction b̂ is given by

P (++) ∝ (â · b̂)2 = cos2 θab (1.6)

The other possibilities with one of them minus correspond to photon polarized in a direction
orthogonal to â (and also orthogonal to direction of the photon k̂ itself), such that

P (−+) ∝ sin2 θab , (1.7)
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Demanding that the probability for the four cases add up to one fixes the coefficient to be 1/2.
Thus, the QM expectation is〈

S1(â)S2(b̂)
〉
QM

= P (++)− P (−+)− P (+−) + P (−−) = cos 2θab (1.8)

This can be plugged into the formula above in Eq. (1.4). One finds that this is maximum when
θab = θa′b = θa′b′ = 22.5 and the fourth θab′ = 67.5, in which case the expectation value is 2

√
2.

Note that at any given point we only have two directions, one from {â, â′} and the other from
{b̂, b̂′}.

1.3 Aspect’s group

Subsequent to Bell’s significant theoretical discovery, several experimental tests followed. Each
experimental test was required to satisfy the following requirements as best as possible:

1. Observations on the entangled particles must be made at space-like distances.

2. Observations must involve two non-commuting observables

3. The directions â, â′ be chosen independently of b̂, b̂′, such that any possible hidden
correlations between the two detectors are ruled out.

4. The directions â, etc. be randomly chosen while the particles are in flight, such that any
possible correlations between the directions and the original event leading to production of
entangled particles are ruled out.

5. Observations be made at high efficiency, so that violations of the inequalities due to incorrect
observations may be ruled out.

The first two points test the weirdest property of QM, “spooky action at a distance”. This must
necessarily involve non-commuting observables which in the words of EPR paper cannot have a
“simultaneous reality”. In the tests conducted by Clauser et al. the first two assumptions were
definitely incorporated. They, however, used single channel polarizers which meant that their
detectors could only detect the photons if they had certain polarization, whereas the opposite
polarization went undetected. This however, is not ideal as the non-appearance of the opposite
polarization can also result from simply having missed the photon. The third criteria was satisfied
to certain degree: their setup involved static polarizers that could not be rotated during the
flight of the particles. Thus, in demonstrating violation of the Bell’s inequality, they had to
make a crucial assumption that the rates of photons impinging on the detectors with any given
polarization are independent of the directions of the two polarizers. However, the static nature of
the experiment left the fourth point as a loop hole.

This was overcome to certain extent by later experiments by Aspect, Dalibard and Roger [6].
Their setup involved using ultrasonic standing waves in the water to enable fast switching between
two polarizer directions during the flight of the photons. The detectors were positioned 12m
apart such that L/c = 40 ns. Their setup, shown in Fig. 1.2, involved double channel polarizers,
and hence they were able to tell apart between ± polarizations of the impinging photons. The
acoustic switching was achieved at 10ns, and the lifetime of the intermediate cascade as 5 ns.
Hence their setup enabled randomly choosing direction of either detector while photons were
en-route. They found the Bell inequality violated by 5 standard deviations. However, it was
noted that the polarizers were switched in a quasiperiodic fashion, and the ideal scheme wasn’t
fully completed. One could argue that the sinusoidal switching using ultrasonic waves can be
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Figure 1.2 Schematic of setup by Aspect et al.. Taken from [6].

predictable into the future, and one instead requires a truly random switching of the directions
while the photons are in the flight. They proposed that “a more ideal experiment with random
and complete switching would be necessary for a fully conclusive argument against the whole
class of supplementary-parameter (hidden-parameter) theories obeying Einstein’s causality” [6].

1.4 Zeilinger’s group

1.4.1 Bell’s theorem with inequalities

The final milestone of random switching of detectors during photon-flight was achieved in a
remarkable experiment by Weihs, Jennewein, Simon, Weinfurter and Zeilinger [7] in 1998. Their
experiment was conducted using optical fibers stretched 400 meters apart across the Innsbruck
university science campus. This gave them 1.3µs to perform individual measurements. They
used a physical random number generator, a light-emitting diode, for fast switching of polarizer
directions. Their random number generator did not have a perfectly even distribution though
they argued that they normalized all the correlation functions to total number of events for a
certain combination of the analyzers’ settings. They managed to keep the distribution within 2%.
With their electronics under control they ensured that their analyzer setting wouldn’t have been
influenced by any event more than 100 ns earlier, clearly much shorter than 1.3 µs.

This set up succeeded in achieving completely the locality criterion of the gedankenexperiment.
One could argue if an unfair sampling of all the photon pairs that were created was responsible for
the violation of the ineqaulity. This was overcome in the Orsay experiments where two-channel
polarizers were used. Here the orthogonal polarization was deflected and detected as −. Lastly,
the efficiency of the detectors in the last experiment was about 5%. Their final results were
violation of the Bell’s inequality by 30 standard deviations.

1.4.2 Bell’s theorem without inequalities

Next we discuss another set-up where Bell’s theorem can be recast without inequalities and
without statistical terms. For two particle state, local realism can be only tested using statistical
predictions of the theory. We will now see that for three particles, we see a conflict even for
definite predictions. The statistics now is limited to the inevitable limitations of the experiments
that are also present in classical physics.
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VOLUME 81, NUMBER 23 P HY S I CA L REV I EW LE T T ER S 7 DECEMBER 1998
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FIG. 1. Spacetime diagram of our Bell experiment. Selecting
a random analyzer direction, setting the analyzer, and finally
detecting a photon constitute the measurement process. This
process on Alice’s side must fully lie inside the shaded region
which is invisible to Bob’s during his own measurement. For
our setup this means that the decision about the setting has
to be made after point “X” if the corresponding photons are
detected at spacetime points “Y” and “Z”, respectively. In our
experiment the measurement process (indicated by a short black
bar) including the choice of a random number took less than
only one-tenth of the maximum allowed time. The vertical
parts of the kinked photon world lines emerging from the
source represent the fiber coils at the source location, which
are obviously irrelevant to the locality argument.

In our experiment, for the first time, any mutual influ-
ence between the two observations is excluded within the
realm of Einstein locality. To achieve this condition the
observers “Alice” and “Bob” were spatially separated by
400 m across the Innsbruck University science campus,
which in turn means that the individual measurements as
defined above had to be shorter than 1.3 ms, the time for
direct communication at the speed of light. We used polar-
ization entangled photon pairs which were sent to the ob-
servers through optical fibers [11]. About 250 m of each
500 m long cable was laid out and the rest was left coiled
at the source (see Fig. 1). The difference in fiber length
was less than 1 m, which means that the photons were reg-
istered simultaneously within 5 ns. The duration of an in-
dividual measurement was kept far below the 1.3 ms limit
using high speed physical random number generators and
fast electro-optic modulators. Independent data registra-
tion was performed by each observer having his own time
interval analyzer and atomic clock, synchronized only once
before each experiment cycle.
Our source of photon pairs is degenerate type-II para-

metric down-conversion [5] where we pump a BBO crys-
tal with 400 mW of 351 nm light from an argon-ion laser.

A telescope was used to narrow the UV-pump beam [12],
in order to enhance the coupling of the 702 nm photons
into the two single-mode glass fibers. On the way to the
fibers, the photons passed a half-wave plate and the com-
pensator crystals necessary to compensate for in-crystal
birefringence and to adjust the internal phase w of the
entangled state jCl ≠ 1y

p
2 sjHl1jV l2 1 eiwjV l1jHl2d,

which we chose w ≠ p .
The single-mode optical fibers had been selected for a

cutoff wavelength close to 700 nm to minimize coupling
losses. Manual fiber polarization controllers were inserted
at the source location into both arms to be able to
compensate for any unitary polarization transformation in
the fiber cable. Depolarization within the fibers was found
to be less than 1% and polarization proved to be stable
(rotation less than 1±) within 1 hour.
Each of the observers (see Fig. 2) switched the di-

rection of local polarization analysis with a transverse
electro-optic modulator. Its optic axis was set at 45±

with respect to the subsequent polarizer. Applying a volt-
age causes a rotation of the polarization of light passing
through the modulator by an angle proportional to the
voltage [13]. For the measurements the modulators were
switched fast between a rotation of 0± and 45±.
The modulation systems (high-voltage amplifier and

electro-optic modulator) had a frequency range from dc
to 30 MHz. Operating the systems at high frequencies
we observed a reduced polarization contrast of 97% (Bob)
and 98% (Alice). This, however, is no real depolarization
but merely reflects the fact that we are averaging over
the polarization rotation induced by an electrical signal
from the high-voltage amplifier, which is not of perfectly
rectangular shape.
The actual orientation for local polarization analysis was

determined independently by a physical random number

FIG. 2. One of the two observer stations. A random num-
ber generator is driving the electro-optic modulator. Silicon
avalanche photodiodes are used as detectors. A “time tag” is
stored for each detected photon together with the corresponding
random number “0” or “1” and the code for the detector “1”
or “2” corresponding to the two outputs of the polarizer.

5040

Figure 1.3 Setup of experiment by Zeilinger’s group. Here the black vertical bar in the light-cone shows
the amount of time they needed to implement random switching of the polarizer direction, which was
about one tenth of the total flight time of the entangled photons. Taken from [7].

Let us first consider three spin-1/2 particles a, b, c and a set of observables,

O1 = σaxσ
b
yσ

c
y , O2 = σayσ

b
xσ

c
y , O3 = σayσ

b
yσ

c
x . (1.9)

It can be checked that the three observables commute and hence we can decompose any arbitrary
state as simultaneous eignevectors of these observables. When applied on the state

|ψ〉 = |+++〉 − | − −−〉√
2

, (1.10)

using

σx|±〉 = |∓〉 , iσy|±〉 = ∓|∓〉 , (1.11)

we find

σaxσ
c
yσ

c
y|ψ〉 = |ψ〉 , (1.12)

and likewise +1 eigenvalue for the other two observables. Thus we have

O1,2,3|ψ〉 = |ψ〉 , (1.13)

If we instead consider the state

|φ〉 = |+++〉+ | − −−〉√
2

, (1.14)

we find

O1,2,3|φ〉 = −|φ〉 . (1.15)
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FIG. 1. Schematic drawing of the experimental setup for the
demomstration of the Greenberger-Horne-Zeilinger entangle-
ment for spatially separated photons. Conditioned on the regis-
tration of one photon at the trigger detector T, the three
photons registered at D1, D2, and D3 exhibit the desired GHZ
correlations.

generated by a short pulse of ultraviolet (UV) light
(¯200 fs, l ≠ 394 nm from a frequency-doubled, mode-
locked Ti-sapphire laser), which passes through a nonlin-
ear crystal (here, b-barium-borate, BBO). The probability
per pulse to create a single pair in the desired modes, se-
lected by irises, about 1.5 mm wide and 25 cm behind the
crystal, is low and of the order of a few 1024. The pair
creation is such that the following polarization entangled
state is obtained [3]:

1p
2

sjHlajV lb 2 jV lajHlbd . (1)

This state indicates a superposition of the possibility that
the photon in arm a is horizontally polarized and the
one in arm b is vertically polarized sjHlajV lbd, and the
opposite possibility sjV lajHlbd. The minus sign indicates
that there is a fixed phase difference of p between the two
possibilities. For our GHZ experiment this phase factor is
actually allowed to have any value, as long as it is fixed
for all pair creations.
The setup is such that arm a continues towards a

polarizing beam splitter, where V photons are reflected
and H photons are transmitted towards detector T (behind
an interference filter dl ≠ 4.6 nm at 788 nm). Arm b

continues towards a 50y50 polarization-independent beam
splitter. From each beam splitter, one output is directed
to a final polarizing beam splitter. In between the two
polarizing beam splitters, vertical polarization is rotated to
45± polarization using a ly2 plate. The remaining three
output arms continue through interference filters sdl ≠
3.6 nmd and single-mode fibers towards the single-photon
detectors D1, D2, and D3. Including filter losses, coupling

into single-mode fibers, and the Si-avalanche detector
efficiency, the total collection and detection probability of
a photon is about 10%.
Consider now the case that two pairs are generated by a

single UV pulse, and that the four photons are all detected,
one by each detector T, D1, D2, and D3. Our claim is
that, by the coincident detection of the four photons and
because of the brief duration of the UV pulse and the
narrowness of the filters, one can conclude that a three-
photon GHZ state has been recorded by detectors D1, D2,
and D3. The reasoning is as follows. When a fourfold
coincidence recording is obtained, one photon in path a

must have been horizontally polarized and detected by the
trigger detector T. Its companion photon in path b must
then be vertically polarized, and it has a 50% chance to
be transmitted by the beam splitter (see Fig. 1) towards
detector D3 and a 50% chance to be reflected by the beam
splitter towards the final polarizing beam splitter, where
it will be reflected to D2. Consider the first possibility,
i.e., the companion of the photon detected at T is detected
by D3 and necessarily carried polarization V . Then the
counts at detectors D1 and D2 were due to a second pair,
one photon traveling via path a and the other one via path
b. The photon traveling via path a must necessarily be V

polarized in order to be reflected by the polarizing beam
splitter in path a; thus its companion, taking path b, must
be H polarized and, after reflection at the beam spliter in
path b, it will be transmitted by the final polarizing beam
splitter and arrive at detector D1. The photon detected by
D2 therefore must be H polarized since it came via path a

and had to transit the last polarizing beam splitter. Note
that this latter photon was V polarized but after passing
the ly2 plate it became polarized at 45± which gave it a
50% chance to arrive as an H polarized photon at detector
D2. Thus we conclude that, if the photon detected by
D3 is the companion of the T photon, the coincidence
detection by D1, D2, and D3 then corresponds to the
detection of the state

jHl1jHl2jV l3 . (2)

By a similar argument one can show that, if the photon
detected by D2 is the companion of the T photon, the
coincidence detection by D1, D2, and D3 corresponds to
the detection of the state

jV l1jV l2jHl3 . (3)

In general, the two possible states (2) and (3), cor-
responding to a fourfold coincidence recording, will not
form a coherent superposition, i.e., a GHZ state, because
they could, in principle, be distinguishable. Besides the
possible lack of mode overlap at the detectors, the ex-
act detection time of each photon can reveal which state
is present. For example, state (2) is identified by not-
ing that T and D3, or D1 and D2, fire nearly simultane-
ously. To erase this information it is necessary that the
coherence time of the photons is substantially longer than

1346

Figure 1.4 Setup to produce Greenberger-Horne-Zeilinger entangled state. Taken from [9].

The state |φ〉 is termed as the Greenberger-Horne-Zeilinger state [8]. To understand the significance
of these eigenstates, consider applying the operator

Ox ≡ σaxσbxσcx = −O1O2O3 . (1.16)

This must result -1 when applied on |ψ〉 (or +1 for |φ〉). However, it turns out that if these
three particles in this state were detected at space-like separations by three observers as in
the experiments described above, with each observer making a random choice between x and
y directions, the last result will be in contradiction with local realism where each of the three
particles carry information about x and y spin components from the point they are created.
In other words, local realism implies that measurement of Ox must result in +1 if the three
measurements O1,2,3 also result in +1, in direct contradiction with QM!

To see how this works, let us consider the case when Oi|ψ〉 = +|ψ〉. In a hidden-variable
theory, the three measurements using Oi will result in +1 outcome only for certain specific
combinations. We can check explicitly the outcome of measuring Ox for all these configurations,
the product of the spins in x directions must be positive, unlike the quantum mechanical result
above. Suppose we consider first operating with O1 that results in +1 times the state. Thus, the
particles can be assumed to carry spins, for example

|ψ〉cl =
(
+
)(
−

)(
−

)
(1.17)

Here the first row represents outcome of the x-component spin and the second y. The three
matrices represent three particles (not to be confused with the column vector labeling Sz
components!). The empty slots are not constrained by O1 measurement. We can now consider
application of O2 and again demand a +1 eigenvalue. Note that O1 has already fixed the σcy
eigenvalue. This is because once the particles are created, in the local realism explanation, they
must carry these values to the detector where any of the two directions can be measured. Thus,
for example, a viable configuration is

|ψ〉cl =
(
+
−

)(
+
−

)(
−

)
(1.18)
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Finally, application of O3 on this state must now fully constrain all the entries. Since both σa,by

are −1, the σcx ought to be +1, such that

|ψ〉cl =
(
+
−

)(
+
−

)(
+
−

)
(1.19)

However, now the application of σaxσbxσcx results in positive eigenvalue. It can be checked that
the remaining cases also result in a plus sign, in direct contraction with quantum mechanics.

This state was prepared by Zeilinger’s group in 1999 [9] and used for testing Bell’s theorem
in 2000 [10]. In their setup, shown in Fig. 1.4, they employed a β-barium Borate source which
almost always emits a pair of entangled photons, each pair with zero total angular momentum.
These photons are directed towards a setup consisting of polarizing and normal beam splitters
and four detectors T , D1, D2 and D3. In the event when all the four detectors detect photons,
with the one in T being always horizontally polarized, the three photons in measured in D1,2,3

correspond to a measurement on the GHZ state. This can be seen through a series of checks.
For definiteness, let us stick to the terminology of [9] and refer to + as horizontal polarization
(H), and − as the vertical (V ). Now, let us consider the event where all the four detectors are
triggered:

1. The detector T must have H-polarized photon, so let’s call it H1, and it’s companion V1

2. The companion V1 must go through arm b. It can either be reflected at the BS or
transmitted. Let us say it was simply transmitted, then it will be detected at detector D3.

3. Now let us consider the other pair. Since we have found a photon in the trigger T , one of
the photons from the other pair traveling along the arm a must have had polarization V so
as to be reflected by the PBS. Let’s call it V2, but leave this here for a moment.

4. The other photon from the second pair thus carries horizontal polarization, and let’s call it
H2. From point 2 above, we’ve already assigned D3 to V1, so H2 must be reflected at BS.
Eventually it will encounter the PBS on top, and having horizontal polarization, it will be
transmitted and registered at D1.

5. Let us now return to the V2. If upon passing through λ/2 plate its polarization does not
rotate, it will be detected at D1, which we have already assigned to H2. Thus, the only
possibility that remains is that it does get rotated V2 → H ′

2, and goes right through PBS
into D2.

Hence, the outcome of this is

|T 〉 ⊗ |D1D2D3〉 = |H1〉 ⊗ |H2H
′
2V1〉 → |H〉 ⊗ |HHV 〉 , (1.20)

Similarly, the other outcome when photon V1 gets reflected at BS, is given by

|T 〉 ⊗ |D1D2D3〉 = |H1〉 ⊗ |V2V1H2〉 → |H〉 ⊗ |V V H〉 . (1.21)

In the second outcome we see that the photon that was initially V2 does not get rotated into
horizontal polarization. Thus we see that the two outcomes occuring with equal probability lead
to the state

|GHZ〉 = 1√
2

(
|HHV 〉+ |V V H〉

)
. (1.22)

This may not look quite like |φ〉 in Eq. (1.14), but it’s just a matter of redefining the relative
orientation of the third detector D3 so as to call V = + and H = −. Using this state, Zeilinger’s
group confirmed the validity of QM to 8 standard deviations [10].
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