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Introduction



What is Variance Reduction?

Path integral formulation of QFT (finite, discrete, Euclidean
space-time lattice): QFT vacuum expectation values <+ Ensemble
Averages
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Two observables f and &, such that (0|f|0) = (0|2]0) but
Var[f] > Var|g]. We should measure g, as it has a smaller error.

Simple example (Lischer '10, arXiv:1002.4232 [hep-lat]):
Translation Invariant observable O(x).
N 1 N
£€=1(00(0)j0) = ¢, > (0[0(x)[0)

X

Variance of the unsummed observable:

v = (0/0(0)%|0) — (0]O(0)[0)?



Variance of the summed observable:
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‘Variance Reduction’: The
clever construction of
observables g which attempt to

minimize Var|g].



Variance and the Signal-to-noise problem

Observables are typically extracted from the temporal fall-off of
correlation functions between hadron interpolating fields.

C#(t) = (O(1)0(0) = ) _ |As2e™ 5"

C3PH(t1, 1) = (O(t1 + £2)J(£2)O(0)) = > ApArsMpmpe Ertre=Eo®

mn

M = (m|J|n), A, =(0|O|n)

In order to get the desired asymptotic behaviour (i.e. the 'ground
state') all t's must be large.

Nearly all correlation functions have exponential decay of
signal-to-noise with t.



Treat the signal-to-noise ratio as a correlation function
C(t) = S(t)/N(t). Examine the effective ‘mass’
mesr = In(C(t)/C(t + 1))

Examine two representative cases: Pion and pseudoscalar
static-light meson (CLS ensemble, a = 0.07fm,
m,; = 230,400MeV).
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How can | understand this? Liischer '10 (arXiv:1002.4232
[hep-lat]), Lepage '89

Examine the variance of a pion correlation function:

Ox(t) =) Tsd(x, 1)

X

C2PH(t) = (Ox(1)Ox(0))
Var[C2PH(£)] ~ (Onn(8)Orr) — [C27 (1))
2pt
GT(t) | —(me—Ewn/2 g
Var[C2P(1)]
And a pseudoscalar static-light meson correlation function:
&' () = (08(£)0p(0))
Var[CZP*(£)] ~ (Ox(£)Or)
g (t)
Var[CZP'(¢)]

e (ms=mz/2)t



Things I'm not going to talk about

» Autocorrelation:
» Reduction in autocorrelation = reduction in ‘effective’
variance.
» Autocorrelation Refs: Sommer, Schaefer, Virotta '10
(arXiv:1009.5228 [hep-lat]); Wolff '04 (hep-lat/0306017)
» ‘Multi-level'-type algorithms
» In bosonic theories, an observable is factored into sub-lattice
expectation values.
» This achieves an exponential error reduction compared to
conventional simulations.
» Refs: Liischer, Weisz '01 (hep-lat/0108014); Della Morte,
Giusti '10 (0806.2601 [hep-lat]).
> Interpolator Improvement
» Hasten onset of asymptotic behavior, Improve signal to noise
» Quark/Link Smearing: Basak, et al. '06 (hep-lat/0509179)
» Solutions of a GEVP: Blossier, et al. '09 (arXiv:0902.1265
[hep-lat])
» Clever operator construction/choice: Basak, et al. '05
(hep-lat/0506029)



What | will talk about

Correlators with fermion fields must be wick-contracted down
fermion two-point functions (quark propagators)

(Or ZTr (x, t|y,0) ]

Q(x, ty,0) = <q(x t)a(y,0))

Quark propagators are the inverse of the (V3 X T X Ngpin X Neojor
dimensional) fermionic Dirac matrix, and cannot be inverted
directly.

(Costly) Algorithms (which iteratively apply the matrix) can obtain
the inverse (Q = M~1) acting on something.

My =n = =M1



Some correlation functions only require ‘point-to-all’ propagators,
i.e Q(x, t|x, to) = M L6y Oty

» ‘connected’ correlation functions (without definite pg)

» Mom. proj. at ‘sink’ will suffice

» Some over source sites will increase statistics. (Beware!)
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Others require ‘all-to-all’ propa-

gators
» Hadrons with definite p,
» Flavor singlet quantites
ty to

» Multi-hadron states

&
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All-to-all propagators cannot be done trivially. Clever estimators
can be constructed.

The topic of these lectures will be the construction and
improvement (i.e. variance reduction) of estimators for all-to-all
quark propagators.



Stochastic Estimation



Stochastic estimates of inverse matricies

Simple Idea: Choose random numbers 7; from some probability
distribution p with the properties

> (n) = [ dnnp(n) =0
> () = (n*) =1
Then for N independent random numbers we have: (i,j = 1...N)
] (n?)=1, i=j
nin;) = . .
iy ={iae 02
Var[[n?], =]
Var[nini] = .
i) = ity 1

So that by the Central Limit Thm.
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We can estimate a (N-dimensional) matrix inverse:

M) = plr) 5 (1) = pp=1p(0)

lim (yn")r = M~* + O(+/Var[y°]/R)

R—

What about the variance?
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What type of noise should | use?

Real Gaussian: 7 real, p(n) = e""/2/\/2x

() = /_oo dnn’p(n) =1
(n*) = h dnn'p(n) =3

So the variance is:

_ —112
Var[yin;] = Z |M;k1|2 + |M,j 1} 3-1)
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=Y IMM A+ MG
k



Complex Gaussian: i Complex, p(n) = e~ "/
(nl*) = [ dn G nPotn) =2

Var[[n?] = /C dy (Inf? — 1)2p(n) = 1

So the variance is:

_112 _
Var[pimi] = > M + [M; 1
k#j



Unimodular noise

Zo: p(1) = p(~1) = 1/2

Zy : p(1) = p(—1) = p(i) = p(—i) = 1/4
(or ZaxZy: p(l+i)=p(l—i)=p(-1+i)=p(-1—1i)=1/4)

Var[[|*] = 0
([nl*) =
u):n=e”  p(n) =1/(2n)

([n*) =
Var[|n|?] = 0



Stochastic Estimate of products of M1

For an unbiased estimator, need independent stochastic estimates
for each factor of M~1.

Caveat (the ‘sourceless’ method): | can obtain ), /\/Iizl[/\/ljil]*
with a single stochastic estimate

¢¢J ZM,kl[ /] 77k77/>
=ZM,-;1[M,;1
k

The variance of products of M~ can be easily calculated:
EXERCISE!



Introduce a set of projectors PIB ], d=1...Ny4
d
> 24 P/!j] = 0jj
> S PP = 0 P!

Now the matrix inverse can be estimated by

Myt =i
d

A = P g = a1



Variance Revisited

Var[z iyl = Z Var [t ]

d]* d] [d]x [d] [d]* d] [d]*
Var[w[‘” ] ZM,kl[M,, T ) — 1wl

Ifj ¢ d, (@) = 0 and Var[p!/[] = 0. So
[d;
Var[y_ ot yf] = Var[ul 1y (]
d
= MR+ M () — 1)

kEdj

There are now significantly fewer terms in the sum over k.



The Homeopathic Limit (Maximal Dilution)

Take Ny = N. Examine the Variance again:

Var[ " ol = ST MR + M2 ((nl*) - 1)
d

kedj
= M P ((nl*) - 1)

This estimate has zero variance for unimodular noise. The
Homeopathic limit can be reached with a single noise vector.

Start with a single (unimodular) noise vector. | can reduce the
error by

» Adding additional noise sources: decreases like ~ \/Var/R

» Adding additional dilution projectors: reaches the exact
answer with Ng = N



Fermionic Fields

All the above considerations apply to the Dirac matrix. Compound
indicies on n;: i = {a, a,x, t}

Dilution Schemes: (Possible choices of dilution projectors)
» Time Dilution : Ny = N, , Pl = §,0(®1spin @ Leotor @ Lopace)
» Spin Dilution : Ny = N, , Pl = 5,,
» Color Dilution : Ny = N, , Pldl = ¢,

» Space Even-Odd Dilution : Ny = 2. Each projector covers the
even or odd sites of the lattice.



Time dilution is a good idea

For connected correlation functions, full time dilution is a good
idea. Look at the variance:

Varl} " taa (%, ) Mnapae (X0, )] = D" [Maajwran (%, X, )]
d

(a’,a/ X', t')ed
If time dilution is not used, Var[¢(t)n*(to)] is independent of
t — tp resulting in a signal-to-noise problem.

For fully disconnected correlators, variance on the exact all-to-all is
independent of time, so full time dilution may be overkill.



Dilution tests

Examine a single observable (Nucleon correlator at a fixed time
seperation). Bulava, et al '08 (arXiv:0810.1469 [hep-lat])
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Correlator Construction

With full time dilution:

Q7 (tlto) = Y () (1))

d

= 3 el el (1)

dety

Meson 2pt correlation function:
C2Pt (1 — 1) = Zp[d ' to] [d7d’,t0]*(t0)
d,d’
() = kI (O 0 e)
de,d’;to](t) _ n[d,to]T(to)rnn[d’,to](to)

Baryon 2pt correlation function:

di,dp,d3; di,dz,d3,
Cr(t—t) = Y ARl a @l ()
di,d>,d3



Exact Smeared All-to-all



Quark Smearing

Quark Smearing reduces the level of excited state contamination.
Qfl N Qfl — SQflsT

S is diagonal in time, independent of spin, gauge covariant, and

isotropic.

Typical choice: § = e~ 7%, 5 is a tunable parameter controling the

‘width" of the ‘wavefunction’.

To tune, examine the effective mass:
ames(t) = In(C(t)/C(t + 1)).
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A new quark smearing algorithm

Examine the smearing operator in its eigenbasis:

g _g
S=e¢ 28 = g e 2y, vl
n

Gaussian decreases the weight of high-lying laplacian eigenmodes.
= a new kind of smearing: truncation in laplacian eigenmodes.
(Peardon, et al. '10 arXiv:0905.2160 [hep-lat])

S=0(2+A)= Z Vv (1)
nAn<o?

Ny

~ E v,,v,];

n=1



Exact Smeared all-to-all

This ‘distillation’ allows the exact smeared quark propagator (or
the smeared-unsmeared quark propagator) to be calculated with
Niny = Ny x N X Ngpip inversions.

n[n’t()’aO] = Vn[tO] ® 6aa0 ® 5tt0
7#[n,t’(),oco] — Q—ln[n,tmoco]

Ny
Q;o%o(f\to)S = Z Qj)gn’to’o‘ol(t)n["sfovao]*

n=1



Smeared-Smeared Correlator Construction

Correlator construction is particularly simplified with
smeared-smeared propagators.

Ny

Q7H(tlo) = Y vanltlvi[t1Q ™ (tlto) va[to] v} [ o]
m,n=1

N,
= Z Vm[t]Kmn(t‘tO)Vi[tO]
m,n=1
Meson correlation functions:

28t = t0) = T | MM e o) [l K o]

MI[E] = VIl (%) Din(x[x )i [£] (X))

x,x’



Baryon correlation functions:

CRPH(t—to) = > QI [t]Kin (t[to) Ky (t]t0) Kiaer (£ 0) Q05 [ t0]
ik
it il k!

Current Insertions:

Kij(tf|t0) — G,j-l(tf|t|t0)
G(tr]tlo) = w0 oM () ulioeol 1

Multi-hadron correlation functions are more complicated products
of M,K,Q, G



The V2 Problem

To maintain fixed o5, N, (and Nj,,) increases like ~ V.
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Error only goes down like ~ V.
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Preliminary Distillation Results (Small Volumes)

v

Nucleon, A, and Q baryon excitation spectra: Bulava, et al.
'10 (arXiv:1004.5072 [hep-lat])

v

Isovector meson excitation spectra: Morningstar, et al. '10
(arXiv:1011.6573 [hep-lat])

v

Isoscalar meson excitation spectra: Dudek et al. '11
(arXiv:1102.4299 [hep-lat])

» | =2 7 — 7 scattering phase shifts: Dudek et al. '10
(arXiv:1011.6352 [hep-lat])



A Hybrid Approach (Stochastic LapH)



A new way to introduce noise

Ordinary Lattice Noise : nga)( t) € Zy

LapH(LapIacian Heaviside) Noise :
1 (. £) = 30, dpvnalt](x). A € Za

Two distinct features of LapH Noise :
» Dramatically fewer random numbers than standard noise

> 7 is how gauge-covariant

Correlator construction is the same as discussed previously, with
source smearing.



Types of LapH dilution schemes

Dilution can now occur in time ® spin ® eigenmode space.

For each type of dilution, one has three simple options:
» Full (F): full dilution

» Interlace-N (IN): Each projector has support seperated by N

» Block-N (BN): Each projector has support on N adjacent
Examples:
» [F,F, F]: The maximal dilution limit.
» [F, F,I8] : Full time and spin dilution, support on every 8th
eigenvector

» [/16, F, 18] : Support on every 16th timeslice, full spin
dilution, support on every 8th eigenvector.



Numerical Tests/Demonstrations

Laph Noise vs. Lattice Noise (J. Bulava '09, P.H.D Thesis)

203 x 128, m,, ~ 400MeV, a, = .12fm = 3a;.
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Volume dependence of higher LapH dilution schemes (Morningstar,
et al. to appear )

Dilution schemes, from left to right:
[F,F,I8],[F,N,I16],[F,N,I12],[F, N, I8].
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C(1)

» Isoscalar(o and 7') mesons: Foley, et al. '10 (arXiv:1011.6573
[hep-lat])

» Examine disconnected contributions in Distillation vs.
Stochastic LapH.

ST B HEHHHHHHH *
UL (A



» Two-pion systems: Foley, et al. 10 (arXiv:1011.6573

[hep-lat])

» Disconnected diagrams from 77 — 77 (box diagram) and

p — mr(triangle diagram).
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Conclusions

All-to-all propagators are required to evaluate many
correlation functions, and (probably) have to be estimated
stochastically.

If you don't have to do all-to-all, a careful cost-benefit
analysis should be performed, analyzing the variance, etc.

Introducing additional dilution projectors reduces the variance
faster than NI-;‘}/2, to a point.

LapH noise seems to perform better (factor of ~ 8) than
lattice noise, although the construction of the eigenvectors is
a non-trivial (but relatively small) cost.

Additionally, highly diluted Laph noise has a volume
independent effectiveness. The [F, F, /8] scheme has an error
only 30% larger than the exact answer, for a factor ~ 4 — 32
less inversions (on a 2fm) lattice.



Additional all-to-all techniques

» Low-mode preconditioning: Neff, et al. '01 (hep-lat/0106016)

v

Even-odd preconditioning: Blossier, et al. '10
(arXiv:1004.2661 [hep-lat])

v

Eigenspectrum noise subtraction: Guerrero, et al. '09
(arXiv:1001.4366 [hep-lat])

v

Hopping parameter acceleration: Bali et al. '10
(arXiv:0910.3970 [hep-lat])

v

Truncated solver method: Bali et al. '10 (arXiv:0910.3970
[hep-lat])

v

Domain decomposition improvement: Burch and Hagen '06
(arXiv:hep-lat/0609011)
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