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Intro

Introduction

After running a simulation you have bits and bytes on disk.
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You want predictions for physical quantities (with errors!).

Georg von Hippel Data Analysis 1



Intro

Introduction

After running a simulation you have bits and bytes on disk.

Data analysis bridges the gap.
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You want predictions for physical quantities (with errors!).
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Two important tasks:

> Reliably estimate size of statistical errors

» Correlations between observables
» Autocorrelations between configurations

> Systematically control systematic errors

Lattice spacing

Finite volume

Unphysical pion mass
Excited state contaminations

vV vy VvVvYy
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Two important tasks:

> Reliably estimate size of statistical errors: data analysis

» Correlations between observables
» Autocorrelations between configurations

> Systematically control systematic errors

Lattice spacing: improvement, continuum extrapolation
Finite volume: M, L = 4, different volumes

Unphysical pion mass: M, < Mféhys, xPT
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Two important tasks:

> Reliably estimate size of statistical errors: data analysis

» Correlations between observables
» Autocorrelations between configurations

> Systematically control systematic errors

Lattice spacing: improvement, continuum extrapolation
Finite volume: M, L = 4, different volumes

Unphysical pion mass: M, < Mféhys, xPT

Excited state contaminations: data analysis!

vV vy VvVvYy
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Auto

Autocorrelations

Subsequent (in simulation time) measurements {«;} are generally
not fully independent
Autocorrelation function

Ca(t) = {itrai) — (aite) (i)
Normalised autocorrelation function

Fa(t) = (0

For large t,
Fa(t) ~ et/

Exponential autocorrelation time

Texp = SUP Ta,exp
a
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Define estimators for mean and variance

N
&:%Ea;

i=1

N
A ~N2
oo = w1 (ai—ad)
1

i
Error of estimated mean is given by

00% = <(5€ - <04>)2>
N
= <Z(ai — () (aj — <O‘>)>

ij=1

= R0 —{a)?+ ) (o)

ok = h((0?) —(0)) = G~ 5
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For data with autocorrelations,

2
" O
~ WazTa int

with the integrated autocorrelation time

N
_ 1
Toyint = 5 + g ra(t)



Auto
Binning data

Computing 7t accurately can be difficult. For more details, see

1. U. Wolff, Monte Carlo errors with less errors,
Comput.Phys.Commun. 156:143-153,2004;
Erratum-ibid.176:383,2007 [hep-lat/0306017].

2. S. Schaefer, R. Sommer, F. Virotta, Critical slowing down and
error analysis in lattice QCD simulations, Nucl.Phys.
B845:93-119,2011; [arXiv:1009.5228].

Often, it is sufficient to consider blocked data
kW
Bk = 1 Z o
i=(k—1)W+1
Then the estimated variance rises to the true variance of the mean
as W — o like
63 =04 — %
If W > 7, the correlations between the blocks can be neglected.
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Fit

Correlations between observables

Multiple observables ay, multiple measurements {a,}
Estimator for the covariance matrix

N
s —_— 1 N ~
i = N=D) E (tkn — Gik) (an — Gy)
n=1
Diagonal elements
2
Ckk = O—&k

Off-diagonal elements contain correlations between different o
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Fit

Correlated y?

Let expectation value be a function of P < K parameters {a,},

(k) = fi({ap})

Assuming means &y to follow Gaussian distribution

K
P(&k) o exp (é D (s = ()€ w6 — <a/>))

K
= exp (é > (k= A({ap))IC (@ — f,({ap})))

Maximise probability by minimising

K

C({ap})) = D (@~ {2 ))C (@ — fi{ap}))

k=1
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Fit

Problems with correlated fits

The covariance matrix is often poorly determined by the data and
may be numerically singular

The smallest and least well-determined eigenmodes have the
largest influence on 2
Possible cure:

» Compute SVD of C = SDT

» Omit singular values below some cut-off
C '~ TH[D;'0(D; — N)] ST

when computing x?
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Jack

Resampling techniques

Crucial idea: The best estimate you have of the actual
distribution of the observables and their correlations is given by the
data you have measured.

Resampling: Sample from this measured distribution to estimate
the (co-)variances, and thus the statistical errors
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Jack

The Bootstrap

Take this idea seriously to “pull yourself up by your bootstraps”
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Jack

The Bootstrap

» Given: N measurements {a;} of observable a
» Form B synthetic data sets Sy by selecting N measurements
(with repetitions allowed) for each

» Compute

N

d=xY o =% o k=1,...,B

i=1 i€Sy

» Compute for 6 = f(a), = (&)

> 0j is an estimate of the statistical error

» 0 — 0 is an estimate of the bias
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Jack

The Jackknife

» Given: N measurements {«a;} of observable a

» Form N synthetic data sets Sy by removing the k*?
measurement from Sy
» Compute
N
d=xY o ol=gg Y i k=1, N
i=1 i€ Sy

> 0j is an estimate of the statistical error
(N —1)(0 — 0) is an estimate of the bias
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Jack

Implementation notes

>

Bootstrap and Jackknife are very similar — can be
implemented as subclasses of a common superclass

v

Bootstrap errors can also be estimated from percentiles

v

Cheaper to generate Jackknife sample means from

ai:ﬁZa;:ﬁ(N&—ak)
itk

v

Built-in sum(), scipy.mean(), scipy.std() are significantly faster
than manual loops
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Jack

Practice Problems

Let's practice!

Georg von Hippel Data Analysis 1



Data Analysis 2

Georg von Hippel

J6lu

sonannes GUTENBERG
UNIVERSITAT MaINz

Institut fiir Kernphysik,
Johannes-Gutenberg-Universitat Mainz

Lattice Practices 2011
DESY Zeuthen, 9-11 March 2011

Introduction

Managing autocorrelations of data
Correlated fits

Resampling techniques

Excited state fits

The Generalised Eigenvalue Problem
Summary and Outloook

Georg von Hippel Data Analysis 2



Bayes

The trouble with excited states

Spectral representation of a correlator (infinite time extent)
C( ) <O(t Ze Ent W ‘ wn = <n’©‘0>7 En § En+1

Effective mass is contaminated by excitations

meff(t) = log C?t(-i{)l) =E + Ae_(EQ_El)t + ...

» Systematic error at small t vs statistical errors at large ¢
» Excited states themselves may be of interest

» Multi-exponential fits tend to be ill-conditioned
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Bayes

The Bayesian perspective

Bayes' theorem:

P(AIB)P(B) = P(B|A)P(A)
Bayesian interpretation:

Probabilities are degrees of belief

Rearrange to get the formula that tells you how to update your
beliefs given new data:

P({ap}[{ar}) = EUEalP(z)

where the “prior” is P({ap}).
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Bayes
Bayesian fits

With
K
P({aut{ap}) ocexp [ =3 D (& — A({ap})C (1 — fi({ap}))
k=1

and the mutually independent priors
= )2
P(ap) o exp (—7(3”20%") )

we can maximise P({ap}|{dx}) by minimising
K P
Cus{3p) = 3 (@Al @Al {ap))+ D e
k,/=1 p=1
where we may now have P > K.
If the fitted values are largely independent of the priors, we may

take them as having been determined by the data.
Otherwise, GIGO ...
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Bayes

Other y?-based methods

Other y?-based proposals include

> evolutionary algorithms

» sequential empirical Bayes method (SEBM)
Limitations of y2-based methods:

> Resolution of near-degenerate states

» Choice of fitting range
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GEVP

The Generalised Eigenvalue Problem

Measure a matrix of correlation functions
Gi(t) = (0i(1)0;(0) = e Efypitbny, i j=1,....N
n=1

'l/}ni = (1/),7); = <n‘©l|0> = w:l E” S E’H”l
and solve the GEVP(s)
C(t) va(t, to) = An(t, to) C(to) vn(t, t0), n=1,....,N t> t,

Define effective energy levels and creation operators [Biossier, GuH et al. 2008 |

Eeff — | A (t t())
n )\ (t + a, to)
Aeff(t to) _ e—.‘:lt (O, Vn(t7 tO)) )‘n(t0+ t/2,t0)
" (va(t, to) , C(t) va(t, to)) "2 Anlto +t. to)
such that
EST = E, +4(t, to) A0y = |n) + Z T (£, t0)|1")
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GEVP

The GEVP simplified

(Theoretically) split Cj into first N states and the rest

N 00
GO0 =Y e, )= D e ity
n=1

n=N+1
The (time-independent) dual vectors are defined by

N

(Unawm) = 5mna m,n < N. (Un;wm) = Z(Un)iwmi

i=1

One then has

COt)u, = e Ety,,
CO(t) u, AO(¢, t5) CO(ty) up,
)\fvo)(t, th) = e Enlt=to) va(t, to) o Uy

and an orthogonality relation valid at all ¢
(um, C(O)(t) Un) = Omn pn(t),  pn(t) = e Frt



GEVP

The GEVP simplified

The operators

N
./Ztn = Z(Un)iéi = (Oa Un),

i=1

create the eigenstates of the Hamilton operator

|n) = A,[0), Hn) = Eq [n).
So arbitrary matrix elements can be written as

pon = (0[P|n) = (0|PA,|0)
generalization:

P = (PO ) = Dot

(P(t)0;(0)) va(t, to);  An(to+t/2, to)
(va(t, to), C(t) va(t, to))/? An(to + . t0)
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GEVP

Perturbation theory for the GEVP

Following [Niedermayer & Weisz, 1998, unpublished |, Set up a perturbative expansion
for the GEVP as

Av, = \Bv,, A=A0 1A p=pB0O 4 g1,

(V,SO)7B(O)V,(,$)) = pnénm
A o= MO L aa® 2\
Vo = V,(,O) + ev,(,l) + 62v,(,2) .
We will later set
AO = O, AW = c(t),
BO = cO(t), eBM =cO(ty)
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GEVP

Perturbation theory for the GEVP

To second order

n

AOUD L ADO 3O [BOD 1 50,0] 4 AW 50O,

AOUD L ADD X0 [BO,D 1 0D 4 XD [BOD 1 50,0] 4 2D 500,

Solve using orthogonality (v,(,o)7 B v,(,g)) = Omn Pn

A= ot (W 80) L an = AW - AP BY
© A v(°>)

o _ @ -2 0 1) _ -1/2 (V"” nVn
Vﬂ - z#: anm pm Vm b anm - pm A(0) . A(0)

m=%#n n m

© A LO)?

@ _ -1 1 (V’"’ """) 2 (.0 ©) (O 1), 0
A= ;”" N BN O (47, 209) (4”8

m=%#n n m

Also get all-orders recursion formula for the higher-order coefficients.
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GEVP

Perturbation theory for the GEVP

Inserting the specific case of a correlator matrix and using (for m > n)
(>\§70) _ )\(0))—1 — ()\(0))—1(1 — e—(Em—En)(t—to))—l

m n

oo
_ ()\570))71 Zefk(Emen)(ffto)
k=0
find

en(t,tg) = O(e BEwanty  AF, , =E,—E,,
T (t, to) = O(e BEv1n®) 5t fixed t — o

to all orders in the perturbative expansion, giving efficient suppression of
excited state contributions for large enough N.
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Practice Problems

Let's practice!
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Summary

Summary and Outlook

Basic toolkit to deal with

» Statistical errors:

» Autocorrelations: blocking, i
» Correlations between observables: resampling, correlated 2

» Excited state contaminations: GEVP, Bayesian methods

More sophisticated versions

v

double jackknife for correlated fits

> using estimated Ty to estimate Ty
> optimising the GEVP by pruning
fitting to the GEVP

v
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Summary

Thank you for your attention

...and have fun with real data!
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