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Abstract7

The Parton Branching (PB) method is applied to identify the different terms in the8

Collins-Soper-Sterman (CSS) formalism by the introduction of a soft resolution scale zdyn9

motivated by angular ordering and the requirement of resolvable branchings. The soft10

contributions, which are an essential part of the DGLAP evolution and the PB approach11

provide a natural explanation of the "non-perturbative" Sudakov form factor in CSS lan-12

guage. The PB approach allows a direct calculation of this non-perturbative Sudakov13

form factor.14

1 Introduction15

The transverse momentum spectrum of Drell-Yan (DY) lepton pairs in hadron collisions is16

sensitive at very small pT to the intrinsic motion of the partons inside the hadrons. At larger17

transverse momentum soft gluon emissions have to be resummed. Then, at large transverse18

momentum fixed higher order calculations become important. The DY pT- spectrum has19

been investigated in [1–6] and later formulated as the Collins Soper Sterman (CSS) approach20

in [7]. In Ref. [8] it is argued, that the CSS equation follows from a more general TMD21

factorization approach.22

The DY spectrum is also rather well described by parton shower approaches as imple-23

mented in PYTHIA [9, 10], HERWIG [11, 12] and SHERPA [13, 14]. However, the description of24

the lowest DY pT spectrum is not consistent for different centre of mass energies [28, 29]25

The Parton Branching (PB) method [15,16], which is based on a branching solution of the26

DGLAP [17–20] evolution equation allows a very good description of the DY pT spectrum27

from very low to large center-of-mass energies without the need for adjusting additional28

parameters [21, 22].29

In the CSS approach, parameters for the intrinsic transverse momentum distribution as30

well as for the so-called non-perturbative Sudakov form factor need to be extracted from31

experimental measurements. On the contrary, the PB approach needs no extra introduction32

of the non-perturbative Sudakov form factor.33

In this note we show how the CSS formalism directly emerges from the PB approach, and34

how the non-perturbative Sudakov form factor is related to soft gluon emissions, which are35

essential and treated already by the PB solution of the DGLAP equation.36

2 PB method37

The PB method [15,16] has been shown to provide an exact solution of the DGLAP evolution38

equations. The PB method is based on the concept of resolvable and non-resolvable branch-39

ings [16, 23] via Sudakov form factors. The evolution equation for the parton density* of40

*Please note, it is the parton density, not the momentum weighted density f̃ = xf
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parton a with momentum fraction x at the scale µ2 reads in PB language:41

fa(x, µ
2) = ∆S

a (µ
2) fa(x, µ

2
0) +

∑
b

∫ µ
2

µ
2
0

dµ′2

µ′2
∆S

a (µ
2)

∆S
a (µ

′2)

∫ zM

x

dz

z
Pab(αs(µ

′2), z) fb

(x
z
, µ′2

)
(1)

with µ0 being the starting scale. The DGLAP splitting function for b → a + c is given by42

Pab(z) = PR
ab(z)+δ(1−z)Dab with PR

ab being the real emission probability and Dab = δabda (in43

the notation of Ref. [15]). The parameter zM = 1− ϵ is needed to allow numerical integration44

over z, where ϵ → 0 is required to reproduce DGLAP. The Sudakov form factor ∆S
a (µ

2) is45

defined as:46

∆S
a (µ

2, µ2
0) = exp

(
−
∫ µ

2

µ
2
0

dµ′2

µ′2

∫ zM

0
dzPab(αs(µ

′2), z)

)
. (2)

The expression of this Sudakov form factor is different from the one used in Ref. [15], since47

the full splitting function, including virtual contributions is applied.48

Equation eq.(1) can be easily extended for transverse momentum dependent parton den-49

sities, following the same arguments given in Ref. [15]:50

Aa(x,k, µ
2) = ∆S

a (µ
2) Aa(x,k, µ

2
0) +

∫
d2q′

πq′2
∆S

a (µ
2)

∆S
a (q

′2)
Θ(µ2 − q′2) Θ(q′2 − µ2

0)

×
[∫ zM

x

dz

z
Pab(αs(q

′2), z) Aa

(x
z
,k+ (1− z)q′,q′2

)]
, (3)

In order to arrive at an evolution equation for momentum weighted parton distributions51

(Ã = aA as given in Ref. [15]), the momentum sum rule for the splitting functions to eq.(1)52

is applied. The splitting functions in eq.(1) are the full DGLAP splitting functions.53

3 The PB Sudakov form factor and CSS54

In the following we concentrate on the Sudakov form factor given in eq.(2) and reformulate55

it to provide a similar structure as obtained in CSS. The splitting function Pab(αs, z) is given56

in lowest order by (in the notation of [15]):57

Pab(αs, z) = da(αs)δ(1− z) + ka(αs)
1

1− z
+Rab(αs, z) (4)

with:58

d(0)q =
3

2
CF

αs

2π
, k(0)q = 2CF

αs

2π
, (5)

d(0)g =
11

6
CA +

2

3
TRNf

αs

2π
, k(0)g = 2CA

αs

2π
(6)
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and Rab containing analytic terms for z → 1. Inserting this into eq.(1) (focusing on z → 1,59

neglecting Rab):60

∆S
a (µ

2, µ2
0) = exp

(
−
∫ µ

2

µ
2
0

dµ′2

µ′2

[∫ zM

0
dz

kq
1− z

− dq

])
(7)

As in the CSS approach, we divide different regions of qT . For that, we insert a finite reso-61

lution scale zdyn = 1 − q0/µ
′, which is motivated from being able to resolve partons with a62

transverse momentum qt > q0 in an angular ordering environment [24–26].63

∆S
a (µ

2, µ2
0) = exp

(
−
∫ µ

2

µ
2
0

dµ′2

µ′2

[∫ zdyn

0
dz

kq
1− z

− dq

])

× exp

(
−
∫ µ

2

µ
2
0

dµ′2

µ′2

∫ zM

zdyn

dz
kq

1− z

)
(8)

The qT > q0 region or resolvable region is treated with perturbative physics. While the64

qT < q0, the non-resolvable region, can become non-perturbative when q2T << Q2.65

The qT > q0 region66

The term in eq. 8 that contributes to the qT > q0 region is,67

∆S
a (µ

2, µ2
0) = exp

(
−
∫ µ

2

µ
2
0

dµ′2

µ′2

[∫ zdyn

0
dz

kq
1− z

− dq

])
. (9)

For the simple case, with αs independent on z, we can perform the z integral analytically:68

log∆S
a (µ

2, µ2
0) = −

∫ µ
2

µ
2
0

dµ′2

µ′2

[∫ zdyn

0
dz

ka
1− z

− da

]

= −
∫ µ

2

µ
2
0

dµ′2

µ′2

[
1

2
ka log

(
µ′2

q20

)
− da

]

= −1

2

∫ µ
2

µ
2
0

dµ′2

µ′2

[
log

(
q20

µ′2

)
A+B

]
(10)

The factors A and B (the global 1/2 arises since CSS has only one Sudakov form factor,69

while in PB each initial parton has its own Sudakov form factor) can be identified with the70

CSS terms, they are given in lowest order by (at higher order correspondingly):71

A = −ka B = −2da (11)

One could mention studies on higher orders? Make a reference to future paper from Antwerp?72
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The qT < q0 region73

For the qT < q0 region, if q2T << Q2, we are in the non-perturbative region of the TMD.74

We refer to the term in the Sudakov form factor that contributes at qT < q0 as the "non-75

perturbative" Sudakov form factor:76

∆non−pert.
a (µ, µ0) = exp

(
−
∫ µ

2

µ
2
0

dµ′2

µ′2

∫ zM

zdyn

dz
kq

1− z

)
. (12)

For the simple case, with αs independent on z, we can perform the z integral analytically:77

log∆non−pert.
a =

∫ µ
2

µ
2
0

dµ′2

µ′2

∫ zM

zdyn

dz
ka

1− z
= −

∫ µ
2

µ
2
0

dµ′2

µ′2
1

2
ka log

(
ϵ2µ2

q20

)
(13)

This term arising from the z integral between zdyn and zM = 1−ϵ covers the region of very78

soft gluon emissions, with transverse momenta qt < q0 extending to the very soft region. This79

region while covered by the DGLAP equation is important also for inclusive distributions,80

as we will show below. This very soft region is labelled as the " non-perturbative Sudakov81

form factor " in the CSS formalism [7]. The corresponding term in eq.(13) can be rewritten in82

the following form:83

log∆non−pert
a (µ2, µ2

0) = −
∫ µ

2

µ
2
0

dµ′2

µ′2
1

2
kq log

(
q20

µ′2ϵ2

)

= − log

(
µ2

µ2
0

)
g1(αs, q0) , (14)

with g1(αs, q0) is calculable analytically in the simple case when αs is independent on z and84

µ′, otherwise it has to be calculated numerically as in PB.85

A remark on the integrand log
(

q
2
0

µ
′2
ϵ
2

)
is needed: since both µ0 and ϵ are non-zero, the86

value of the log stays finite, however for ϵ → 0 it can become large, which in the exponential87

of the Sudakov form factor contributes only very little, leaving the whole expression stable88

and finite.89

In the PB-approach, the non-perturbative Sudakov form factor arises from the require-90

ment, that the z integration has to extend close to one, and is not cutoff by the angular or-91

dering requirement zdyn. Even for collinear distributions, limiting the z-integration by zdyn92

will lead to non-cancellation of important terms and will result in distributions which are no93

longer consistent with DGLAP.94

4 Numerical results95

In Fig. 1 we show parton distributions, obtained with the DGLAP evolution package QCD-96

num [27] and compare it with parton distributions obtained with the PB approach using97
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the same starting distribution. We show distributions for the gluon and down quark parton98

densities for different values of zM : zM → 1 and zM = zdyn = 1 − q0/q with q0 = 2 GeV99

obtained with PB. While for zM → 1 the DGLAP distributions, as obtained by QCDnum are100

well reproduced, applying zM = zdyn leads to significant deviations over the whole range.101
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Figure 1: Integrated gluon and down-quark distributions at µ2 = 10 GeV2 (left column) and µ2 = 105

GeV2 (right column) obtained from the PB approach for different values of zM , compared with the
result from QCDnum [27]. The ratio plots show the ratio of the results obtained with the PB approach
to the result from QCDnum.

In the transverse momentum distributions, the effect of the zM cutoff is even more visible.102

In Fig. 2 the transverse momentum distributions obtained with the PB-approach are shown103

for the same configuration as in Fig. 1. In order to obtain clean configurations, no intrinsic104

kT distribution is used (qs = 0 GeV).105

The transverse momentum distributions show very clearly the effect of applying the sep-106

aration scale zM = zdyn = 1−q0/q, which was introduced in order to identify the logarithmic107

structure as in CSS. From the discussion on the Sudakov form factor as well as from the dis-108

tributions in Fig. 2 it is obvious, that the soft, non-perturbative region plays an important109

role. The PB approach offers a very natural explanation of this non-perturbative region, and110
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Figure 2: Transverse momentum distributions gluon and down-quarks at µ = 3 GeV (left column)
and µ = 100 GeV (right column) obtained from the PB approach for zM → 1 as well as zM = zdyn =
1− q0/q . Here, no intrinsic kT distribution is included.

allows to calculate the corresponding non-perturbative Sudakov form factor explicitly.111

5 Conclusion112

Within the PB approach the main characteristics of the CSS formulation from DY production113

is automatically recovered when using the DGLAP splitting functions in the region of large114

z, neglecting finite and small z terms. The identification of the A and B terms of the CSS115

formulation in the PB-approach requires the introduction of an angular ordering motivated116

soft resolution separation parameter zdyn < 1. With this, the single and double logs of CSS117

are reproduced exactly up to next-to-leading log level.118

The introduction of the artificial soft resolution parameter zdyn leaves a non-perturbative119

region which is automatically included in PB by the requirement to reproduce DGLAP (zM →120

1) and can be calculated.121

The PB approach provides a very natural explanation of the so-called non-perturbative122

Sudakov form factor, by the requirement, that on a collinear level, the DGLAP evolution123

equation is recovered exactly.124
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