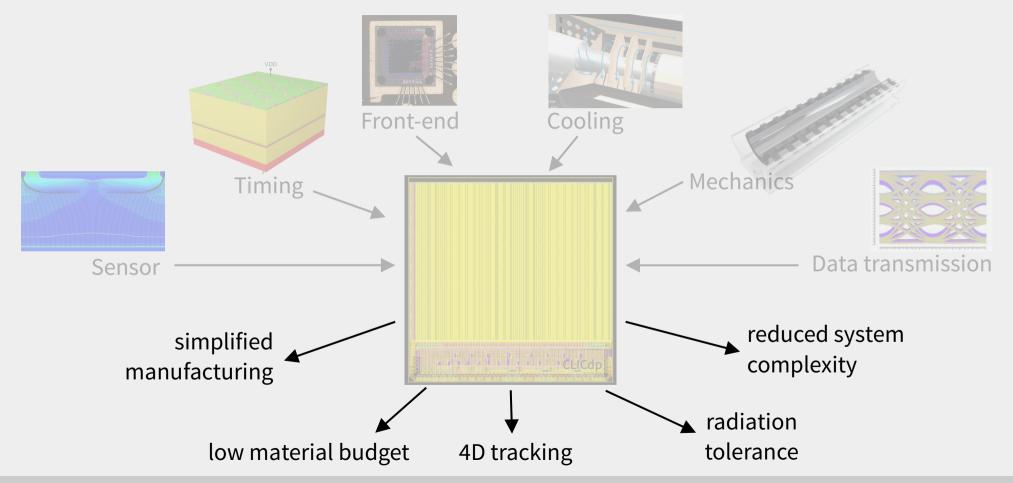

https://www.desy.de/

Thin, Precise, Fast

Ways Towards the Ultimate Silicon Sensor

Faster, Harder, Scooter Scooter, 2009 Ways Towards the Ultimate Silicon Sensor Detector

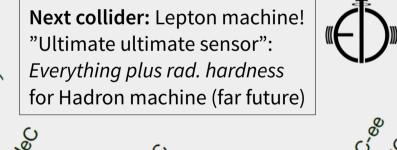

The Ultimate Silicon Sensor: A Detector-On-Chip System

S. Spannagel - Terascale Detector Workshop - Thin, Precise, Fast

The Ultimate Silicon Sensor: A Detector-On-Chip System

The Question Is What Is The Question Scooter, 2009 Requirements Differ...

The Landscape of Future Colliders & Upgrades


- European Strategy Update evaluated possible directions for particle physics
- ECFA published Detector R&D Roadmap to structure development of detectors & technology
- Higgs boson plays unique role in extending knowledge

2030-2035

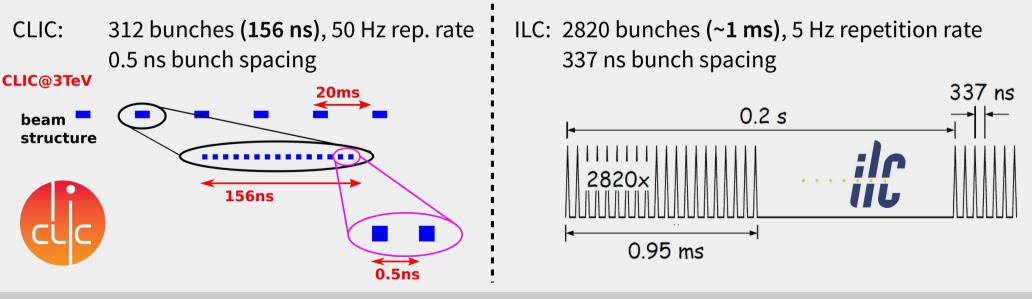
- Address questions within SM, provide sensitivity to new physics
- Precision measurements required

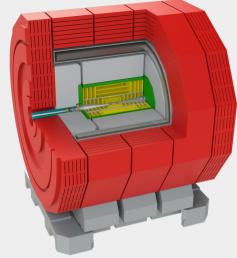
< 2030

2040-2045

> 2045

ECFA Detector R&D Roadmap

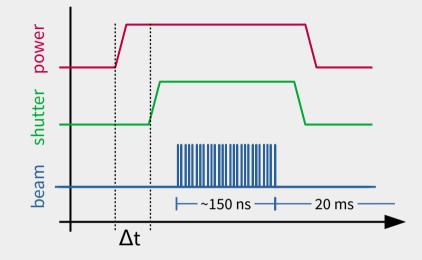

European Strated


2035-2040

S. Spannagel - Terascale Detector Workshop - Thin, Precise, Fast

Challenges at Linear Colliders

- High precision, low material, radiation hardness less of an issue
- Adjustable cms energies emphasis on different components
- LC operate in bunch trains with low duty cycle: trigger-less, frame-based readout architecture possible

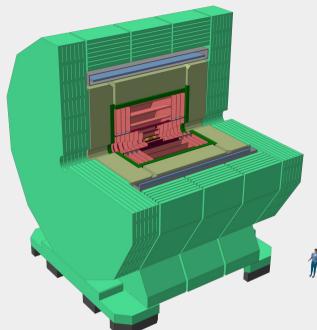


Linear Colliders: Power Pulsing

• LC have very low duty cycle, for CLIC < 0.01 ‰

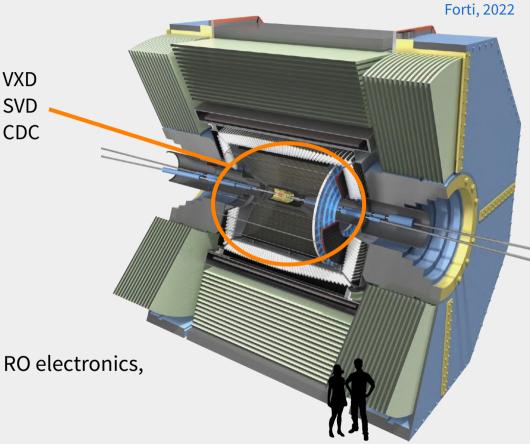
- Save power by switching to lower-power idle state between bunch trains
 - Analog power pulsing: Multiplex DACs of amplifiers, discriminators between ON and OFF state
 - **Digital power pulsing**: e.g. by gating clock to pixel matrix

• Allows to significantly reduce overall heat dissipation, reduce requirements on cooling capacity, material, ...



Challenges at Circular Lepton Colliders

Precision requirements similar to linear colliders, however...


- Continuous beams (no bunch trains); bunch spacing down to 20 ns
- Power management and cooling (no power pulsing)
- Physics events at up to 100 kHz
 - Fast detector response ($\leq 1 \mu$ s) to minimize dead-time and pile-up
 - Strong requirements on front-end electronics and DAQ systems

• At the same time: low material budget! Minimize electronics, cables, cooling, ...

Belle II Upgrades

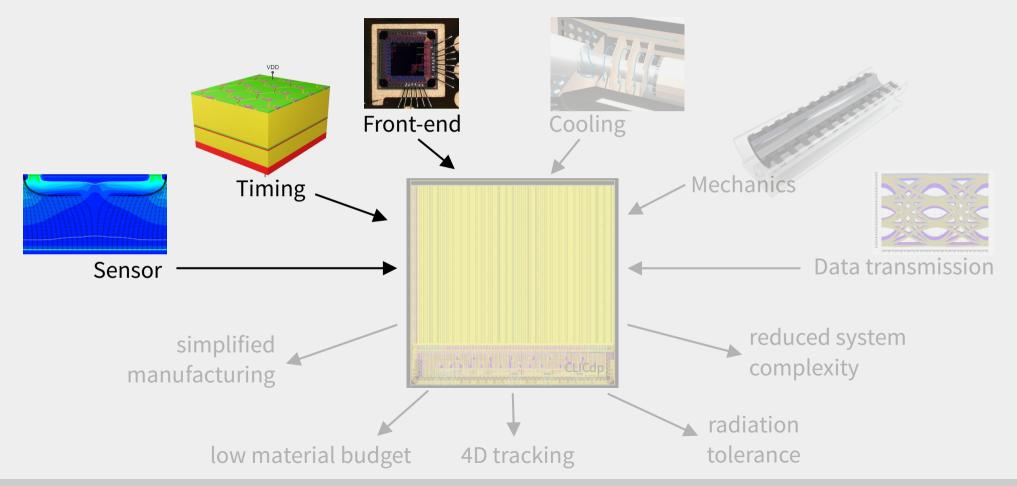
- Currently luminosity limited by
 - beam-beam effects,
 - Beam lifetime,
 - injection backgrounds
- Upgrade detectors for
 - better resilience against backgrounds,
 - improved performance
- Many Upgrade ideas currently discussed:
 - "adiabatic improvements", replacement of RO electronics, entirely new sub-detectors, ...
 - Upgrade proposals with MAPS, e.g. OBELIX

Silicon Detector Requirements at Lepton Colliders

- Precision measurements especially demanding on vertex & tracking detectors
 - Momentum resolution
 - Impact parameter resolution –
 - Time resolution

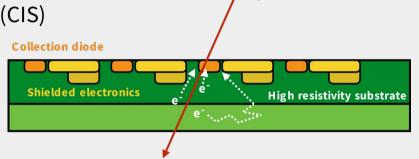
- large lever arm, minimum scattering
 - high resolution, min. scattering, small radii
- fast sensor response, large S/N

	Lepton Colliders	(HL-) LHC (ATLAS/CMS)			
Material budget	< 1% X ₀	10% X ₀			
Single-point resolution	≤ 3 µm		~ 15µm		
Time resolution	~ ps – ns		25ns		
Granularity	≤ 25 µm x 25 µm		50µm x 50µm		
Radiation tolerance	$< 10^{11} n_{eq}^{2} / cm^{2}$		O(10 ¹⁶ n _{eq} / cm ²)		
Duty cycle	< 0.01 ‰ @ ~ms (linear)	100 % @ ~ns (circular)	100 % @ 25ns		


Opportunities in Small-Scale Experiments

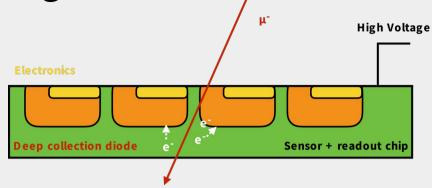
- Many non-accelerator (or small accelerator) based experiments planned •
- Several will require silicon detectors (e.g. LUXE) •
- Requirements differ significantly, no funding for dedicated R&D •

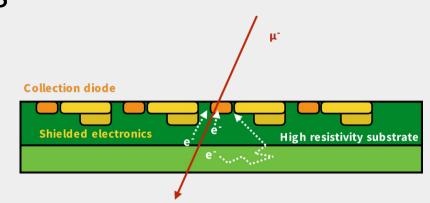
< 2025 > 2035 2025-2030 2030-2035 ECFA Detector R&D Roadmap


The Ultimate Silicon Sensor: A Detector-On-Chip System

And No Matches Scooter, 2013 New Technologies for the "Ultimate" Sensor

Monolithic Active Pixel Sensors


- Electronics & sensor in the same wafer
 - Produced in commercial CMOS imaging processes (CIS)
 - Fully integrated: amplification, discrimination & readout
 - Shield electronics via additional implants
- Large-scale manufacturing simplified compared to hybrids
 - No bump bonding required
 - No limitation on minimum pitch size
- Design can be very intricate
 - Sensor: electric field complex
 - ASIC design, process limitations, ...


μ-

- Different approaches
 - Deep collection diode surrounding electronics
 - Separate shielding & collection diode

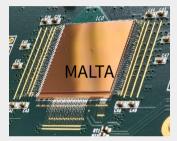
Large & Small Electrode Designs

- Shield electronics via deep collection diode around electronics
 - Allows high bias voltage to be applied
 - Fast & large signal, large depletion volume
- Challenge: large collection diode leads to
 - large input capacitance
 - increased power consumption

- Electronics outside charge-collection well
 - Requires high-resistivity material (e.g. epitaxial layer) to allow depletion
 - Small collection diode leads to small capacitance
- Challenge: effect of p-well potential on electric field / charge collection

Many Technologies, Many Chips

- Started with 350nm process, now at 180nm 130nm technologies
- Many successful chips designed & produced over last few years
 - First large-area detectors built in HEP
 - Many spin-offs for applications outside HEP (medical, space)
- So far: no single prototype satisfies *all* requirements!


List by no means exhaustive, chips not to scale...

Kremastiotis et al., 2020

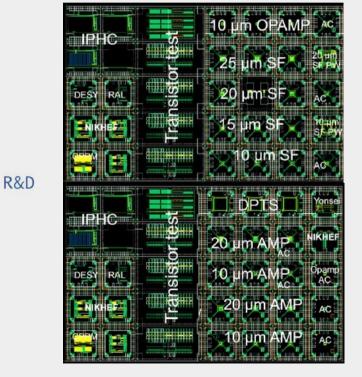
Pernegger et al., 2021

IPHC, 2021

Bespin, 2023

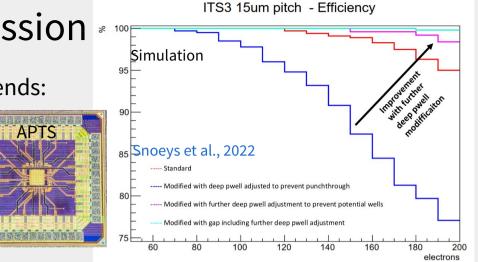
65nm CMOS Imaging Technology Node

- MAPS design in 65 nm CMOS imaging process first application in HEP
 - Higher logic density → reduced pixel pitch
 - Lower analog/digital power consumption
 - Large 300 mm wafers

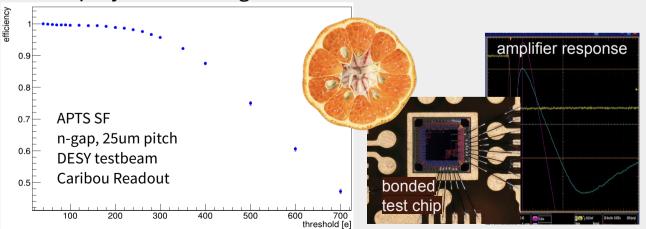

Timing resolution

- International collaboration for common submissions to foundry, organized through CERN EP R&D programme
- Goal: explore new technology in terms of
 - Scalability

- wafer-scale sensors through stitching
- through sensor layout optimization
- Position resolution through increased granularity

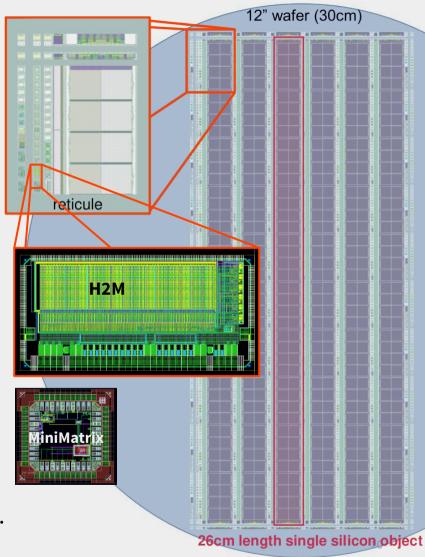


MLR1 reticle



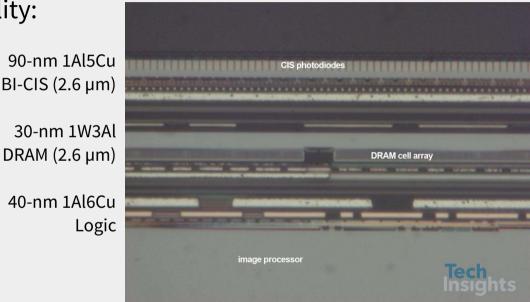
(Some) Results from First Submission

- Many test chips for pixel characterization & front-ends: APTS, DPTS, CE65, DMLR1
 - Enormous effort from many groups to characterize different pitches, front-ends
 - Validation of process modifications in 65nm



- "Tangerine" Helmholtz Innovation Pool project for next-generation silicon detectors
 - Focus: fast pixel front-end (ns timing, with ToT and ToA)
 - Sensor charact. with APTS chip
 - Sensor simulations with TCAD & Allpix² MC

Second Submission Taped Out


- ALICE ITS3: wafer-scale stitched sensor MOSS
 - Learn stitching, yield, defects masking
 - Study power schemes, leakage, spread, noise, speed
- H2M Hybrid to Monolithic (DESY, CERN, IFAE)
 - Full-matrix chip following digital-on-top design
 - Port full hybrid feature set to monolithic chip
 - Timepix-like architecture, different modes (ToT, ToA, ...)
- Expected back from foundry end of April 2023
- This isn't the end have not yet found the holy grail: Analog circuitry doesn't scale, very thin active region, ...

- 3D Integration / Wafer-Wafer Bonding
- Hybrid approach to separate functionality:
 - CIS process: sensor & amplifier
 - CMOS process: digital logic, readout
- Bonding & thinning at wafer level can be expensive for prototyping
- Popular in industry, e.g.
 - Sony IMX400 for Cell Phones
 20 Million 1.22-µm Pixel @ max. 1 kfps

• More flexibility on digital circuitry, but might come with higher power dissipation

How Much Is The Fish Submission?

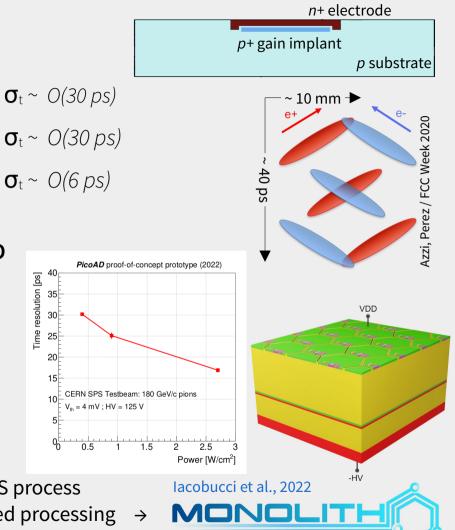
- "CMOS sensors are cheap and production is scalable" yes and no
 - Initial cost of small technology nodes very expensive (mask production, ...)
 - Multi-project wafer runs (MPWs) not always available, prototypes require engineering runs
 - Scaling for final production indeed scales better than e.g. bump bonding
- Same issues of course also apply to CMOS readout ASICs

- General issue: single-vendor problem
 - Processes & designs specific to individual vendors
 - Also true for specialty foundries (LGADs, current sensors)

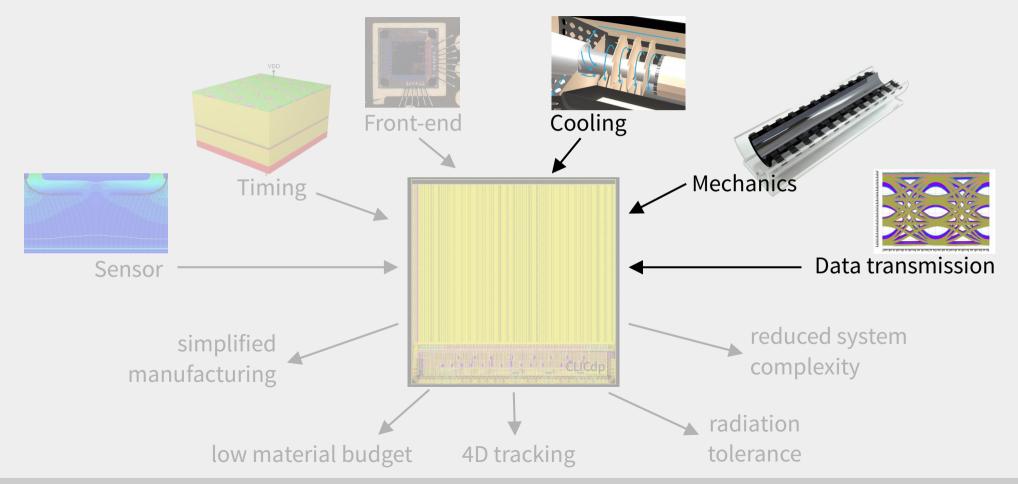
Picosecond Timing

- Timing information for pile-up mitigation
- PID for heavy flavor physics, CP violation, B physics •
- Chromatization: \sqrt{s} depends on longitudinal bunch pos. $\mathbf{\sigma}_{\rm t} \sim O(6 \, ps)$
- Dedicated timing detectors with LGAD sensors / UFSD •
 - Low gain $(x10-30) \rightarrow$ fast-rising pulse enables timing
 - Dedicated timing layers: additional material
 - Integration into MAPS detectors: 4D measurements

 \leftarrow



180nm commercial CMOS process 130nm BiCMOS, dedicated processing

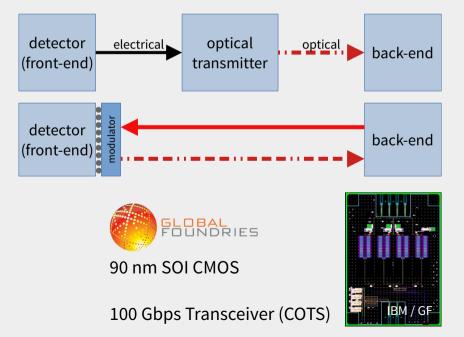

[sd]

resolution

ime

The Ultimate Silicon Sensor: A Detector-On-Chip System

Liquid Is Liquid Scooter, 2019 Considerations for Cooling, Mechanics & Data Transmission


I Want You To Stream – Data Transmission

• Bandwidth & power consumption of data transmission critical for future experiments:

~ Gb/s

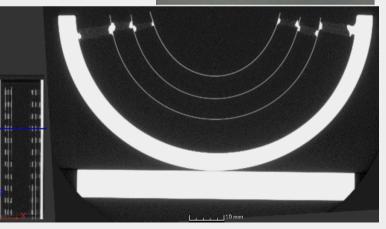
 $\frac{1 \, cm^2 \text{chip area}}{(15 \, \mu \, m)^2 \text{pixel pitch}} \ge 450 \, kPix \rightarrow 450 \, kPix \cdot 20 \, \text{bit} \cdot 10^{-5} \text{occupancy} \simeq 90 \, b \rightarrow \frac{90 \, \text{bit}}{20 \, ns} \ge 4.5 \, Gb \, s^{-1} cm^{-2}$


- Currently: Electrical transmission off-chip, conversion by optical transmitters
 - Limited bandwidth
 - Driving signals is power consuming ~ *pJ/bit*
 - Additional material, electromagnetic interference, ...
- Silicon Photonics: external laser, modulation on ASIC
 - Increased bandwidth >> 10 Gb/s
 - Energy efficient, only modulation << pJ/bit
 - 3D integration with MAPS

Forced Gas Flow Cooling

- To drastically reduce material budget, we need to avoid "active cooling"
 - Cooling with forced gas flow through tracking volume
 - Remove material for piping, coolant, thermal connectors, ...
 - Demands reduction of heat dissipation
- Example: CLIC Vertex Detector
 - Cooled with forced air flow
 - Spiral vertex disks direct air
- Example: mu3e Detector
 - Cooled with helium flow

S. Spannagel - Terascale Detector Workshop - Thin, Precise, Fast


Mind The Gap – Fully-Active Detectors

- "Remove everything that doesn't look like a sensor"
 - Below 50 µm thickness silicon becomes flexible
 - Bending wafers into cylinders adds stability
 - Building half-shells from full-wafer sensors
- ALICE started R&D effort for ITS3 upgrade
 - Monolithic CMOS pixel detectors
 - Wafers thinned & bent
 - Held in place by low-density carbon foam spacers

Šuljić, 2020

The Only One – The Ultimate Silicon Detector

- The ultimate silicon sensor will be a **detector-on-chip system**.
- Requirements for future lepton collider experiments similar:
 - Very low material budget
 - High position & time resolution
- Monolithic Active Pixel Sensors matured in past years
 - Many new prototypes & full detectors
 - Move to smaller technology nodes on the way
 - Considerations for future developments: cost, 3D integration, timing
- Sensor is always part of a system
 - Data transmission power reduction, bandwidth increase with silicon photonics
 - Cooling with forced gas flow to minimize material power dissipation critical
- Far future: Radiation hardness industry is developing processes for wide-bandgap semiconductors

32

			< 2030	2030- 2035	2035- 2040	2040- 2045	> 2045
Solid state DRDT	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors				•	
	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and calorimetry		•		•	
	DRDT 3.3	Extend capabilities of solid state sensors to operate at extreme fluences				•	
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics		•	•	•	
Electronics DRDT 7.3	Advance technologies to deal with greatly increased data density						
	DRDT 7.2	Develop technologies for increased intelligence on the detector					
	DRDT 7.3	Develop technologies in support of 4D- and 5D-techniques					
	DRDT 7.4	Develop novel technologies to cope with extreme environments and required longevity					
	Evaluate and adapt to emerging electronics and data processing technologies		•		•		
DRDT 8	DRDT 8.1	Develop novel magnet systems					
	DRDT 8.2	Develop improved technologies and systems for cooling		-			
megration	DRDT 8.3	Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.			•		
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects			•		