ATLAS Phase-2 Trigger Upgrade

Arantxa Ruiz Martínez (<u>aranzazu.ruiz.martinez@cern.ch</u>) on behalf of the ATLAS TDAQ community

15th Terascale Detector Workshop

1-3 March 2023

Present and Future of the LHC

Exploring the energy frontier, only ~6% of the data acquired (180 out of 3000 fb⁻¹)

Present and Future of the LHC

Exploring the energy frontier, only ~6% of the data acquired (180 out of 3000 fb⁻¹)

Run 3 (2022-2025)

- Increase of the center-of-mass energy $13 \ TeV \rightarrow 13.6 \ TeV$
- The success of Run 3 and culmination of the Phase-I upgrades is fundamental to pave the path for the HL-LHC

New hardware

First major ATLAS renovation (*Phase-I upgrade*)

New software

Migration to a multithreaded software in preparation for HL-LHC

Calorimeter detectors TileCal Muon detectors including NSV Detector Level-1 Calo Level-1 Muon Read-Out Endcap sector logic Barrel Preprocessor FE nMCM TREX sector logic СР (е, у, т) JEP (jet, E) СМХ СМХ e/j/g FEX ROD ROD MUCTPI el-1 Accep DataFlow L1Topo Read-Out System (ROS) CTP CTPCORE CTPOUT **Central Trigger** Level-1 High Level Trigger Data Storage (HLT) Accept Processors Tier-0

The ATLAS Experiment reached 30 years

ATLAS Phase-II Upgrade for the HL-LHC

ATLAS was designed 30 years ago and needs a major upgrade to face the HL-LHC conditions

Ambitious upgrade program ("new detector"):

- Unprecedented luminosity 7.5 × 10³⁴ cm⁻²s⁻¹
- harsh environment ~200 collisions (*pileup*)

Great challenge, cutting edge technology

Upgraded Trigger and Data Acquisition (TDAQ) System

Level-0 rate ~ 1 MHz (100 kHz in Run 3) Event Filter rate ~ 10 kHz (1 kHz in Run 3)

Upgraded electronics

Liquid Argon calorimeter Tile calorimeter Muon spectrometer

High Granularity Timing Detector (HGTD)

Forward region (2.4 < $|\eta|$ < 4.0)

ATLAS Review Process

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/AtlasTechnicalDesignReports

2013 TDR TDAQ Phase-I upgrade (<u>ATLAS-TDR-023</u>, <u>CERN-LHCC-2013-018</u>)

- 2017 TDR TDAQ Phase-II upgrade (ATLAS-TDR-029, CERN-LHCC-2017-020)
- 2022 TDR TDAQ Phase-II upgrade Event Filter Tracking Amendment (ATLAS-TDR-029-ADD-1, CERN-LHCC-2022-004)

Mandatory milestones:

- SPR: Reviews the specifications of (a) deliverable(s) so as to ensure that all requirements will be considered in the design phase.
- PDR: Reviews the design of the deliverable(s) during the prototyping phase.
- FDR: Reviews the final design of the deliverable(s) after a successful prototyping and testing stage and prior to the pre-production phase.
- PRR: Reviews the production readiness of the deliverable(s), as demonstrated through the pre-production phase.
- IRR: Reviews the readiness of the deliverables to be installed.

ATLAS TDAQ Upgrade in a nutshell

ATLAS Level-0 Trigger System

Level-0 Trigger subsystems:

• L0Calo:

LAr and Tile calorimeter data with coarse granularity sent to FPGA based Feature Extractors (FEXs) to build Trigger Objects (TOBS): electron, photon, tau, jets, E_{T.miss}

• L0Muon:

muon candidates are formed in the barrel and endcap, with new processors for the NSW and MDT

• Global Trigger:

runs full granularity offline-like reconstruction

• Central Trigger:

MUCTPI combines muon candidates from barrel and endcap CTP makes final L0 decision

ATLAS Level-1 Calorimeter Trigger

Phase-I LAr upgrade (<u>CERN-LHCC-2013-017</u>):

- Finer granularity LAr digital signal to L1Calo:
 - Run 2: 0.1 x 0.1 trigger tower (60 cells)
 - Run 3: 10 E_{T} values from "1-4-4-1" samples (SuperCells) per trigger tower
- Better resolution and background rejection

ATLAS Level-1 Calorimeter Trigger

Phase-I L1Calo upgrade:

- FOX (Fibre Optic Exchange) optical exchange networks to rearrange the data in suitable order for the FEX processors
- TREX (Tile Rear Extension) digitizes analogue signals from Tile for the FEX processors
- e/j/gFEX (electron/jet/global Feature EXtractors) new custom electronic boards with FPGA technology
- New L1Topo Multiplicity and topological selections (increases number of L1Calo triggers thresholds)

Legacy system running in parallel during the Run 3 commissioning

ATLAS Level-1 Calorimeter Trigger

Phase-I L1Calo performance improvements for Run 3:

- L1 EM trigger (eFEX): sharper turn-on curve and 20% rate reduction with respect to the legacy Run 2 trigger by applying more sophisticated jet discriminant cuts (R_n, R_{had}, w_{stot}) using the higher LAr calorimeter granularity
- L1 TAU trigger (eFEX, jFEX): isolation requirement on jFEX matches Run 2 ditau trigger performance
- L1 MET trigger (jFEX, gFEX): various algorithms proposed, outperforming the legacy Run 2 trigger for same rate

ATLAS Level-0 Calorimeter Trigger

Phase-II L0Calo upgrade:

- Based on the Phase-I L1Calo Trigger installed during LS2
- Various hardware, firmware and software modifications needed for Run 4
- Performance will be enhanced by an additional processing system, **forward FEX (fFEX)**, to reconstruct forward electrons and jets

Forward FEX

ATLAS Muon Trigger Upgrade

Main goals:

- Upgrade electronics to cope with the latencies and rates of the trigger for the HL-LHC (original system with maximum latency of 6.4 μs in barrel and 3.2 μs in endcap, maximum rate of 100 kHz)
- Improve acceptance x efficiency and momentum resolution
- Suppress fake triggers with more coincidences especially in the endcaps

ATLAS Muon Trigger Upgrade

ATLAS Original & Phase-0 Run 1 & 2

Level-1 Muon
Trigger System

Triggering:

- Resistive Plate Chambers (RPC) (barrel, $|\eta| < 1.05$)
- Thin Gap Chambers (TGC) (endcap, $1.05 < |\eta| < 2.4$)

Readout:

- Monitored Drift Tube (MDT) (barrel+endcap, $|\eta| < 2.7$)
- Cathode Strip Chambers (CSC) (endcap, $2.0 < |\eta| < 2.7$)

ATLAS Phase-I Run 3

Level-1 Muon Trigger System

Upgrades:

- New Small Wheel (NSW) (endcap, 1.3 < |η| < 2.7) Maximum latency: 60 μs Maximum rate: 1 MHz Micromegas and small-strip TGCs replaces Small Wheel (CSC, MDT)
- RPC BIS78

(endcap, $1.0 < |\eta| < 1.3$) RPC for triggering & small-diameter MDT (sMDT) for readout ATLAS Phase-II HL-LHC

Level-0 Muon Trigger System

Upgrades:

- Improved RPC coverage
- RPC and TGC electronics upgrade

Maximum latency: $60 \ \mu s$ Maximum rate: 1 MHz

• New MDT Trigger Processor

ATLAS Muon Trigger Upgrade

Phase-II ATLAS muon spectrometer layout (<u>CERN-LHCC-2017-017</u>):

- RPC (|η| < 1.05)
- TGC (1.05 < |η| < 2.4)
- NSW (1.3 < |η| < 2.7)
- MDT (|η| < 2.7)

Addition of RPCs in the Barrel Inner (BI) station Barrel efficiency > 90%

ATLAS Level-0 Muon Trigger

Main upgrades:

- The Sector Logic and NSW Trigger Processor installed in LS2 will be replaced:
 - New common hardware for Barrel and Endcap Sector Logic (FPGA-based Sector Logic boards)
 - NSW Trigger Processor to perform combined track segment reconstruction by sTGC and MM
- Inclusion of precision hit information (MDT) into Level-0 trigger (MDT Trigger Processor will be newly installed) to improve p_T resolution of muon candidates provided by the Sector Logic

Subsystem	Granularity	Coverage $ \eta $		
NSW processor	Full NSW detector	1.3 - 2.4		
MDT processor	Full MDT detector	< 2.4		
Barrel Sector Logic	Full RPC and Tile, MDT	< 1.05		
Endcap Sector Logic	Full TGC, Tile, RPC, NSW, MDT	1.05 - 2.4		

ATLAS Global Trigger

Global Trigger:

- Replaces and extends the functionality of the Phase-I Topological Processor (L1Topo system)
- Uses full-granularity calorimeter cells to perform algorithms, refines the L0Calo trigger objects and applies topological requirements → brings Event Filter like capability to Level-0

- Emphasis on firmware rather than on hardware:
 - Common hardware
 - Different functions implemented in firmware
- Global Common Module (GCM): common hardware platform and basis of the design, ATCA Front Board with 2 large FPGAs, where each FPGA can be configured as a MUX, GEP or CTPi node as required
- Firmware layers:
 - MUX: data aggregation & time multiplexing of events from all sub-detectors (~ 60 Tb/s)
 - GEP: Global Event Processing & trigger algorithms (~ x48) → parallelization
 - CTPi: Central Trigger Processor interface (demultiplexer to CTP)

ATLAS Global Trigger

- GCM has to provide significant processing resources together with a high input/output bandwidth
- 50 GCMs planned in the system, each with:
 - 2 Xilinx XCVU13P FPGAs for processing
 - 1 Xilinx Zynq UltraScale+ chip for readout, control, monitoring and debugging
- $\bullet \quad \mbox{Board design and fabrication is completed} \rightarrow \mbox{Ready for framework development}$
- Prototype hardware tested successfully (including connectivity, thermal and power tests)
- New GCM prototype with two Xilinx Versal FPGAs is upcoming

ATLAS Central Trigger System

- CTP will be implemented as a single ATCA shelf
- Receives digital trigger inputs from the Global Trigger and the MUCTPI
- Last stage of the processing chain of the Level-0 trigger system, making the final Level-0 accept (L0A) decision
- L0A signal formed as the logical OR of the enabled trigger items
- Responsible for introducing deadtime as required by the detector front-end and readout systems

ATLAS Central Trigger System

The Central Trigger System consists of:

 Central Trigger Processor (CTP): New for Phase-II

Output trigger items increase $(512 \rightarrow 1024)$ to support bigger trigger menus and exploit the Global Trigger

• Muon-to-CTP-Interface (MUCTPI): Upgraded in Phase-I

> MUCTPI merges the trigger information from barrel and endcap before passing it to the Global Trigger and CTP Firmware will be upgraded

• Trigger, Timing and Control (TTC) system: New for Phase-II

where the Local Trigger Interface (LTI) modules are an integral part, will make use of modern high-bandwidth optical-link technologies

ATLAS Event Filter

Event Filter (EF):		$\begin{array}{ c c } \operatorname{Run} 1 \\ \operatorname{Offline} p_{\mathrm{T}} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Planned HL-LHC	L0	After regional	Event Filter
Responsible for executing		Threshold	Threshold	Offline $p_{\rm T}$	Rate	tracking	Rate
	Trigger Selection	[GeV]	[GeV]	Threshold [GeV]	[kHz]	cuts [kHz]	[kHz]
sophisticated event selection	isolated single e	25	27	22	200	40	1.5
algorithms at high rate, in a	isolated single μ	25	27	20	45	45	1.5
massively parallelised form	single γ	120	145	120	5	5	0.3
	forward e			35	40	8	0.2
Main goal is to maintain	$\mathrm{di-}\gamma$	25	25	$25,\!25$		20	0.2
	di-e	15	18	$10,\!10$	60	10	0.2
rejection, suppress pileup an	di- μ	15	15	$10,\!10$	10	2	0.2
keep efficiency high	$e-\mu$	17,6	8,25 / 18,15	10,10	45	10	0.2
	single τ	100	170	150	3	3	0.35
 The EF will need to make us 		40,30	40,30	$40,\!30$	200	40	$0.5^{\dagger\dagger\dagger}_{}$
more CPU-intensive offline-ty	single b-jet	200	235	180	25	25	$0.35^{\dagger\dagger\dagger}$
	· single jet	370	460	400			0.25
selection techniques, includir		470	500	300	40	40	0.5
greater use of full-event tracking	ing $four-jet (w/b-tags)$		$45^{\dagger}(1\text{-tag})$	65(2-tags)	100	20	0.1
	four-jet	85	125	100	100		0.2
 Representative trigger menu 	for H _T	700	700	375	50	10	$0.2^{\dagger\dagger\dagger}$
1 MHz Level-0 rate	$E_{\mathrm{T}}^{\mathrm{miss}}$	150	200	210	60	5	0.4
	VBF inclusive			2x75 w/ ($\Delta \eta > 2.5$	33	5	$0.5^{\dagger\dagger\dagger}$
• Thresholds lower than in Rur	1			& $\Delta \phi < 2.5)$			
	B-physics ^{††}				50	10	0.5
• O(1500) triggers in Run 3	Supporting Trigs				100	40	2
	Total				1066	338	10.4
	¹ In Run 2, the 4-jet k-tag trigger operates below the efficiency ploteon of the Level-1 trigger. ¹⁰ This is a phase-boller for selections to be defined. ¹¹¹ Anazaros additional analysis specific requires at the Event Filter level.			-) -

Accelerator Hardware for the ATLAS Event Filter

- Original Phase-II ATLAS Event Filter system based on a CPU farm and a Hardware-based Tracking for the Trigger, HTT (<u>ATLAS-TDR-029</u>, <u>CERN-LHCC-2017-020</u>)
- **Data centers are adopting hybrid systems** that integrate multiple types of computational units:
 - CPUs
 - GPUs
 - FPGAs
- CMS and LHCb already using GPUs and FPGAs in Run 3
- New baseline for the ATLAS Event Filter Tracking project in HL-LHC (<u>ATLAS-TDR-029-ADD-1</u>, <u>CERN-LHCC-2022-004</u>):
 - Heterogeneous system CPU/GPU/FPGA
 - Better performance/cost and less electric consumption
 - Redesign software in HEP for a hybrid environment

ATLAS Event Filter Tracking Amendment

Main reasons for the revision:

- With the latest **fast ITk reconstruction software** prototype, and with the updated ITk layout, the time for reconstructing an event **went down by more than a factor of 8** without major compromises in tracking performance
- Delays to the LHC schedule and recent developments on the CPU market have resulted in a significant reduction in predicted cost per HEP-SPEC06 (HS06): it is now 1.3 CHF/HS06 in 2027, compared to the Phase-II TDAQ TDR prediction of 2 CHF/HS06 for 2026

- HL-LHC start expected in 2029 with an ultimate instantaneous luminosity of 7.5x10³⁴ cm⁻²s⁻¹ and ~200 interactions per bunch crossing
- Ambitious Phase-II Upgrade program for the ATLAS Trigger and Data Acquisition System to cope with the harsh HL-LHC conditions, increased output rate at the first (100 kHz → 1 MHz) and second (1 kHz → 10 kHz) stages
- Improvements include new L0Calo fFEX, L0Muon electronics (including MDT Trigger Processor), Global Trigger and CTP
- Upgraded trigger system will use increased granularity for the calorimeter based triggers and improved efficiency for the muon based triggers
- Continued good progress across TDAQ Phase-II upgrade project areas