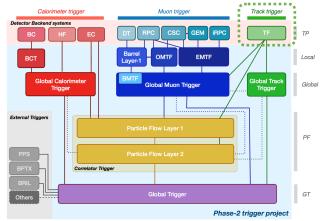
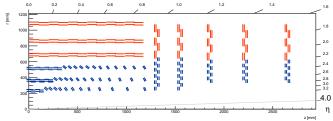

CMS Phase-2 Trigger Upgrade Using a track finder at Level-1

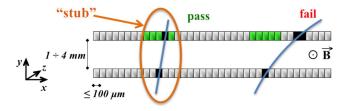

Thomas Schuh

2nd March 2023

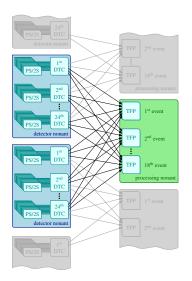
RUTHERFORD APPLETON LABORATORY


CMS L1-Trigger Phase 2

- L1 tracks must be used to associate trigger objects with single vertices
- vertices are formed in global track trigger
- global trigger may associate trigger objects with single vertices
- additional Particle Flow begins with tracks and vertices to create trigger objects


Phase II Outer Tracker

- replacement of entire outer tracker
- 13 200 modules, 190 m² silicon, 213 M channel (legacy: 10 M channel)
- 6 barrel layer plus 2×5 endcaps discs


- two kinds of $p_{\rm T}$ -modules:
 - strip-strip (2S): 5 cm×90 μm
 - pixel-strip (PS): 1.6 mm / 2.5 cm × 100 μm
- constructed to enable online track reconstruction above 2 GeV

Stubs - on detector data reduction

- new modules allowing rough p_T estimate
- cut at 2 GeV reduces data rate by \sim one order of magnitude
- *p*_T-information is useful during track reconstruction

Outer Tracker Back-End System

outer tracker

- organised in detector nonants
- each nonant read out by 24 DTCs
- each DTC connected with up to 72 modules

track trigger

- organised in processing nonants
- shifted by half a nonant w.r.t. detector nonants
- each nonant processed by 18 TFPs
- each TFP connected with up to 48 DTCs

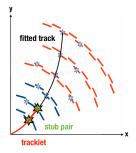
Data, Trigger & Control Board (DTC)

Serenity-S1

- hosts a VU13P, -2, A2577 (128 GTY)
- uses 72 links @2.56, 5.1/10.24 gbps towards detector
- and 36 @25 gbps towards back/end
- I am not covering: IpGBT, DAQ, slow Control, calibration, ...
- focus on stub processing:
 - sensor modules sending stubs in 8 BX boxcars
 - DTC repacks them into 18 BX long trains containing only stubs from single events
 - and assigns stubs to processing nonants

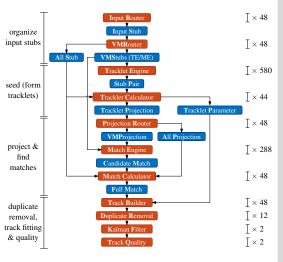
Track Finding Processor (TFP)

Apollo

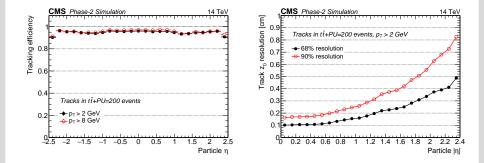

- hosts up to two VU13P, -2, A2577 (128 GTY)
- gets stub over 48 links @25 gbps from DTCs
- sends tracks over 3 × 2 links @25 gbps downstream

CMS L1 track trigger requirements

- reconstructs prompt tracks above 2 GeV
- covering $|\eta| \le 2.4$
- allowing beam spot window of ± 15 cm in beam direction
- within 4 µs latency


CMS L1 track trigger algorithm

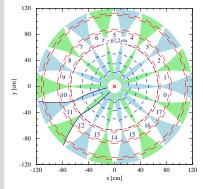
- track finding through road search based on tracklet seeds
- multiple seeding layer combinations used for redundancy and high efficiency
- found tracks sharing stubs get merged (duplicate removal)
- track fit uses kalman filter
- BDT provides qualifiers for improved fake reduction


CMS L1 track trigger algorithm – Implementation

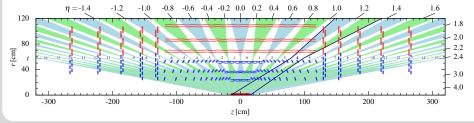
- track finding organized in alternating processing and memory modules
- multiple copies of each module run in parallel
- most processing modules written in HLS
- memory modules, kalman filter and top level written in VHDL
- targeting 240 MHz
- f/w nearly complete

CMS L1 track trigger algorithm - Performance

- examples of expected L1 tracking performance based on simulation
- high efficiency across $p_{
 m T}/\eta$
- precise z₀ resolution for vertex association

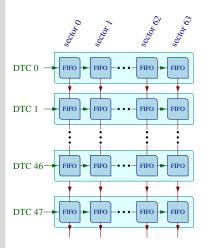


Exploration of an alternative L1 Tracking Algorithm


- benefit of an all FPGA system: one can explore alternatives
- alternative track reconstruction chain:
 - GP: spatial sectoring
 - HT: track finding in $r \phi$
 - MHT: finer track finding in r-φ
 - ZHT: finer track finding in r-z
 - TB: track builder
 - KF: kalman filter fit
 - DR: duplicate removal
- currently targeting single VU13P running @ 360 MHz
- simpler and faster as CMS L1 track trigger algorithm
- based on already working f/w
- reconstructs however only prompt tracks above 3 GeV

the approach described in the following is one possible implementation that is not at this moment the CMS baseline

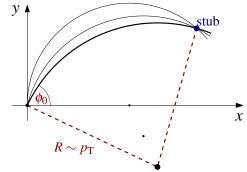
Geometric Processor - Divide and Conquer



- division of each nonant in $2\phi \times 32\eta$ sectors
- stub duplication at sector boundaries leads to:
 13 k stubs → 26 k stubs in tī@200PU
- enables parallel track-finding per sector

Thomas Schuh - CMS - Track Trigger

Geometric Processor – Implementation

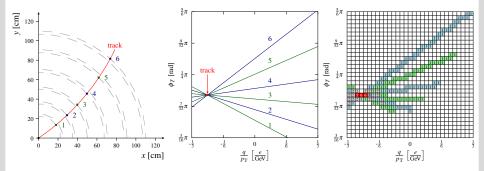

- 336 ns latency
- utilization:

- bit and clock accurate emulator written
- \sim 1 ‰ stub loss due to truncation in

tī@200PU events

Hough Transform – Theory

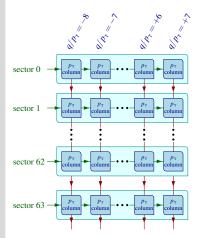
- search for primary tracks in the r-φ plane
- infinite number of circles $(\phi_0, \frac{q}{\rho_T})$ consistent with beam-line & any individual stub position (r, ϕ)



• they must obey constraint:

$$\phi_0 \approx \phi + \frac{q}{p_{\rm T}} \times r$$

stub positions corresponds to straight lines in the track parameter plane

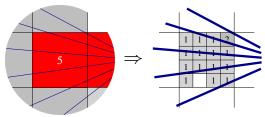

Hough Transform – Algorithm

per sector:

- calculate $\phi_0(q/p_T)$ for all stubs within the sector
- fill stubs in the corresponding cells of a $\phi_T q/p_T$ histogram (32×16)
- define cells with stubs from at least 5 layer as track candidate

Hough Transform – Implementation

706 ns latency


utilization	n:
-------------	----

LUT	20 %
LUTRAM	17 %
FF	13 %
BRAM	20 %
DSP	8%

- bit and clock accurate emulator written
- data reduction: 25.6 k stubs \rightarrow 2.7 k stubs

Mini Hough Transform (MHT)

- analyze found tracks with $4 \times 4 r \phi$ mini array
 - adaptive track parameter space of mini array covers candidate's rough HT cell
 - takes stub ϕ uncertainty into account
 - uses 4 layer threshold to define found tracks
- does not create a track for each cell above layer threshold
 - instead removes stubs which are not found in the finer track collection
 - removes track entirely when no finer track has been found

- 67 ns latency
- utilization:

LUT	<1 %
LUTRAM	≪1%
FF	<1 %
BRAM	1%

- 2.7 k stubs → 1.3 k stubs
- 351 tracks → 196 tracks

Z Hough Transform (ZHT)

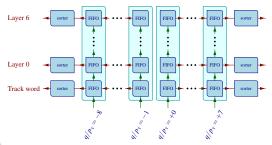
• identical to MHT but looking at r - z plane instead of $r - \phi$

- adaptive track parameter space of mini array covers r z sector
- 67 ns latency
- utilization:

LUT	<1 %
LUTRAM	≪1%
FF	<1 %
BRAM	1%

- 1.3 k stubs \rightarrow 1.1 k stubs
- 196 tracks \rightarrow 159 tracks

Track Builder (TB)

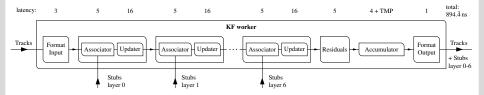

track builder only restructures the data flow

input: 16 streams of stubs

- one stub per clock tick
- a track is a sequence of stubs
- contains gaps

output: 2 streams of tracks

- a track consists of a track word and 7 stub words (one per layer)
- layer id are counted along found track from inside out
- we allow up to 4 stubs per layer: one track takes between 1 and 4 clock ticks
- gap-less

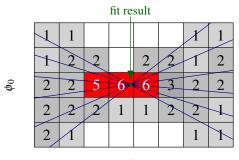


572 ns latency

utilization:

LUT	1%
LUTRAM	<1 %
FF	<1 %
BRAM	3%

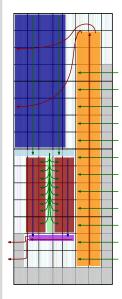
Kalman-Filter (KF)



- iterative track fit also used offline and HLT
- tuned for CMS L1 track trigger algorithm
 - no cuts during iterations
 - no final cuts
 - good efficiency with CMS L1 track finding
- need re-implementation of combinatorics reduction strategies

894 ns latency	
utilization:	
LUT LUTRAM FF BRAM DSP	1% <1% 1% 6% 3%

Duplicate Removal (DR)


- example: HT finds 3 candidates out of 6 stubs from one particle
- track fit delivers almost same track parameter for these 3 candidates

 q/p_{T}

- DR removes candidates with inconsistent fitted and found parameter
- much simpler as conventional algorithms (comparison of track pairs)

Alternative L1 Tracking Implementation

- VU13P floorplan
 - Geometric Processor
 - Hough Transform
 - Mini Hough Transforms
 - Track Builder
 - Kalman Filter (FW being refined)
 - Duplicate Removal (FW being refined)
- total latency: \sim 2750 ns

Conclusion

this talk focused on alternative track finding implementation

- ongoing CMS L1 track trigger algorithm work and improvements are not covered
- targeting complete alternative track reconstruction chain demonstration in next months
- costs, latency and performance of alternative TFP seems to be in required margin
- alternative TFP is neither baseline nor backup though